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A New Class of EM Algorithms. Escaping Local
Minima and Handling Intractable Sampling

Stéphanie Allassonnière and Juliette Chevallier

Abstract—

The expectation-maximization (EM) algorithm is a powerful computational technique for maximum likelihood estimation in incomplete
data models. When the expectation step cannot be performed in closed form, a stochastic approximation of EM (SAEM) can be used.
The convergence of the SAEM toward local maxima of the observed likelihood has been proved and its numerical efficiency has been
demonstrated. However, despite appealing features, the limit position of this algorithm can strongly depend on its starting position.
Moreover, sampling from the posterior distribution may be intractable or have a high computational cost. To cope with this two issues,
we propose here a new stochastic approximation version of the EM in which we do not sample from the exact distribution in the
expectation phase of the procedure. We first prove the convergence of this algorithm toward local maxima of the observed likelihood.
Then, we propose an instantiation of this general procedure to favor convergence toward global maxima. Experiments on synthetic and
real data highlight the performance of this algorithm in comparison to the SAEM.

Index Terms—EM-like algorithm, stochastic approximation, stochastic optimization, tempered distribution, theoretical convergence.
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1 INTRODUCTION

THE expectation-maximization (EM) algorithm [1] is a
popular and often efficient approach to maximum likeli-

hood (or maximum a posteriori) estimation in incomplete data
models. In certain situations, however, the EM is not appli-
cable because the expectation step cannot be performed in
closed form. To deal with these problems, [2] proposed to
replace the expectation step of the EM by one iteration of
a stochastic approximation procedure, referred to as SAEM,
standing for stochastic approximation EM.

The convergence of the SAEM toward local maxima has
been proved in [2] and its numerical efficiency has been
demonstrated in several situations such as in inference in
hidden Markov models [3]. However, despite appealing
features, the limit position of this algorithm can strongly
depend on its initialization. In order to avoid convergence
toward local maxima, Lavielle and Moulines [4] have pro-
posed a simulated annealing version of the SAEM. The
main idea was to allow the procedure to better explore the
state-space by considering a tempered version of the model.
More precisely, assuming that the data are corrupted by an
additive Gaussian noise with variance σ2, at each iteration
k of the SAEM algorithm, they consider the ”false” model
in which the noise variance is equal to ((1 + Tk)σ)2, where
(Tk) is a positive sequence ot temperatures that decreases
slowly toward 0. Therefore, the bigger Tk is, the more the
likelihood of the model is flattened and the optimizing se-
quence can escape easily from local maxima. The simulations
gave good results but there were no theoretical guarantee
for this procedure. Based on the same idea, Lavielle [5] has
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proposed to use the simulated-annealing process as a ”trick”
to better initialize the SAEM algorithm. This initialization
scheme is implemented in the MONOLIX software and gives
impressive results on real data [6], [7], [8].

All theoretical results regarding the convergence of the
SAEM algorithm assume that we are able to sample from the
posterior distribution, but in practice it may be intractable
or have a high computational cost. To overcome this issue,
Umberto and Samson [9] have proposed to couple the
SAEM algorithm to an approximate Bayesian computation
step (ABC, see [10] for a review), leading to the ABC-SAEM
method in which ABC is used to sample from an approxi-
mation to the posterior distribution. Simulations show that
this algorithm can be calibrated to return accurate inference,
and in some situations it can outperform a version of the
SAEM incorporating the bootstrap filter. However, [9] do
not provide any theoretical guarantee of its convergence.

We propose here a new stochastic approximation version
of the EM in which we do not sample from the exact distri-
bution in the expectation phase. This new procedure allows
us to derive a wide class of SAEM-like algorithms, including
the ”trick” initialized SAEM of [5] and the ABC-SAEM
algorithms to cope with intractable or difficult sampling.

This general framework allows us to build a procedure,
with the thought of the simulated annealing version of the
SAEM [4], to prevent convergence toward local maxima. We
introduce a sequence of temperatures and sample from a
tempered version of the posterior distribution. Therefore,
the posterior-likelihood of the model is ”flattened” and
the optimizing sequence can escape more easily from lo-
cal maxima. We refer to this particular instantiation as the
tempering-SAEM. Note that our tempering-SAEM differs to
the ones of [4] as we do not modify the model but only the
sampling-step.

In Section 2, we introduce our new stochastic approxima-
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tion version of the EM algorithm, namely the approximated-
SAEM, and prove the convergence of this algorithm toward
local maxima under usual assumptions. Thus, we provide
a theoretical study of the convergence of the tempering-
SAEM toward local maxima. We also give a heuristic to the
convergence to ”less local” maxima. Section 3 is dedicated
to experiments. The first application we take into account
is the maximum likelihood estimation of the parameters of
a multivariate Gaussian mixture models. This example sup-
ports the previous heuristic discussion and gives intuitions
into the behavior of the tempering-SAEM algorithm. The
second application consists in independent factor analysis
[11]. In both applications, we focus on the contribution of
the tempering-SAEM in comparison to the SAEM.

2 MAXIMUM LIKELIHOOD ESTIMATION THROUGH
AN EM-LIKE ALGORITHM

We use in the sequel the classical terminology of the missing
data problem, even though the approaches developed here
apply to a more general context.

Let Y ⊂ Rny denote the set of observations, Z ⊂ Rnz
the set of latent variables and Θ ⊂ Rnθ the set of admissible
parameters. Let µ be a σ-finite positive Borel measure on
Z . For sake of simplicity, we will use the notation q for
different likelihoods, specifying their variables in brackets.
In particular, for all (y; θ) ∈ Y ×Θ, q(y, · ; θ) is the complete
likelihood given the observation y and parameter θ and
we assume it is integrable with respect to the measure µ.
As for, we note q(y; θ) =

∫
Z q(y, z; θ) dµ(z) the observed

likelihood and q(z|y; θ) = q(y,z;θ)
q(y;θ) the posterior distribution

of the missing data z given the observed data y. Our goal
is to estimate the parameters that maximize the likelihood
of the observations of n independent samples of a random
variable Y , i.e. that maximize the observed data likelihood.

2.1 A New Stochastic Approximation Version of the EM
Algorithm

We propose in this contribution a generalization of the
SAEM algorithm, referred to as approximated-SAEM. Sim-
ilar to the SAEM, the basic idea is to split the E-step into a
simulation step and a stochastic averaging procedure. In the
original SAEM, the S-step consists in generating realizations
of the missing data vector under the posterior distribution
q(·|y; θ). Here, we propose to sample under approximation
of the posterior distribution. The following paragraph de-
scribes this new algorithm.

Let γ = (γk)k∈N be a sequence of positive step-size
for the stochastic approximation, and q̃ = (q̃k)k∈N be a
sequence of approximated distributions on Z × Θ such that
for all k ∈ N and all θ ∈ Θ, q̃k(·; θ) is integrable on Z
with respect to the measure µ. As in the SAEM, once the
step size γk decreases, we can consider a constant number
of simulations. In practice (and from now on to avoid
cumbersome notations), as the S-step is generally the most
computationally costly, we set this number to one. Then, the
approximated-SAEM iterates the following three steps:

S-step: Sample the latent variable z̃k under the approx-
imated density q̃k(·; θk);

SA-step: Update Qk(θ) as

Qk(θ) = Qk−1(θ)+γk
(

log q(y, z̃k; θ)−Qk−1(θ)
)

;

M-step: Maximize Qk(θ) in the feasible set Θ, i.e. find
θk+1 ∈ Θ such that

∀θ ∈ Θ, Qk(θk+1) > Qk(θ) .

Note that without approximation, i.e. if the approxi-
mated densities q̃k match with the correct posterior dis-
tribution, we feature the classical SAEM. Moreover, the
approximated densities q̃k may not depend on the obser-
vations y, as in variational Bayesian methods or may be
done by ABC samplers as in ABC-SAEM. In Section 2.2,
we propose a way to build a sequence q̃ leading to good
properties in practice and theoretical guarantees are given
in the following section.

2.1.1 Curved Exponential Family
Before establishing the convergence of this procedure, we
briefly recall the hypothesis required to prove the conver-
gence of the EM. More precisely, we restrict our attention
to models for which the complete data likelihood belongs
to the curved exponential family. In this paragraph and the
following, we keep the notations of [2]: an hypothesis stated
with a (?) means that it is a direct generalization of the
corresponding one in [2]; on the contrary, hypothesis stated
without are unchanged compared to the original one.

(M1?) The parameter space Θ is an open subset of Rnθ .
For all y ∈ Y , z ∈ Z and θ ∈ Θ, the complete
data likelihood function can be expressed as

q(y, z; θ) = exp
(
−ψ(θ) + 〈S(y, z) |φ(θ) 〉

)
where S : Rnz → S ⊂ Rns is a Borel function
and S is an open subset of Rns . The convex hull
of S(Rnz ) is included in S . For all θ ∈ Θ, all
y ∈ Y and all k ∈ N, we have∫

Z
‖S(y, z)‖ q̃k(z; θ) dµ(z) < +∞

and
∫
Z
‖S(y, z)‖ q(z|y; θ) dµ(z) < +∞ .

Let ` : Θ→ R and L : S ×Θ→ R defined as,

for all y ∈ Y, ` : θ 7→
∫
Z
q(y, z; θ) dµ(z)

and L : (s, θ) 7→ −ψ(θ) + 〈 s |φ(θ) 〉 .

(M2) The functions ψ : Θ→ R and φ : Θ→ S are twice
continuously differentiable on Θ;

(M3) The function s̄ : Θ→ S is continuously differen-
tiable on Θ, where s̄ is defined as: ∀y ∈ Y ,

s̄ : θ 7→
∫
Z
S(y, z)q(z|y; θ) dµ(z) = Eθ [S(Z)] ;

(M4) The function ` : Θ → R is continuously differen-
tiable and for all y ∈ Y and θ ∈ Θ

∂θ

∫
Z
q(y, z; θ) dµ(z) =

∫
Z
∂θ q(y, z; θ) dµ(z) ;

(M5) There exists a continuously differentiable func-
tion θ̂ : S → Θ such that

∀θ ∈ Θ, ∀s ∈ S, L(s, θ̂(s)) > L(s, θ) .
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Hypothesis (M1?) differs from (M1) as we do not only
require the function z 7→ ‖S(z; θ)‖ to be integrable with
respect to the posterior measure q(·|y; θ) dµ, but also with
respect to all approximated distributions q̃k(·; θ) dµ, for all
parameters θ ∈ Θ, all observations y ∈ Y and all iterations
k ∈ N. For most models of practical interest (see for in-
stance Section 3.2), the function L(s; ·) has a unique global
maximum and the existence and the differentiability of θ̂ is a
direct consequence of the implicit function theorem.

For exponential families, the SA-step is more conve-
niently (and equivalently) replaced by an update of the
estimation of the conditional expectation of the sufficient
statistics. Namely, the k-th iteration of the approximated-
SAEM summarizes in:

sk = sk−1 + γk
(
S(y, z̃k)− sk−1

)
(1)

and θk = θ̂(sk) where z̃k ∼ q̃k(·; θk−1) .

2.1.2 Convergence Toward Local Maxima

Let F̃ = {F̃k}k∈N the natural filtration with respect to the
process (z̃k)k∈N and F = {Fk}k∈N the natural filtration
with respect to the process (zk)k∈N where zk ∼ q(·|y; θk−1)
for all k. Consider the following assumptions which are
generalization of the ones of [2]:

(SAEM1) For all k ∈ N, γk ∈ [0, 1],
∑∞
k=1 γk = ∞ and∑∞

k=1 γ
2
k <∞;

(SAEM2) The functions ψ : Θ → R and φ : Θ → S are
m times differentiable;

(SAEM3?) For all positive Borel functions φ, for all k ∈
N and all y ∈ Y ,

E
[
φ(Zk+1)

∣∣F̃k] =

∫
Z
φ(z)q̃k(z; θk) dµ(z)

and

E
[
φ(Zk+1)

∣∣Fk] =

∫
Z
φ(z)qk(z|y; θk) dµ(z) ;

(SAEM4?) For all θ ∈ Θ, all y ∈ Y and all k ∈ N,∫
Z
‖S(y, z)‖2 q̃k(z; θ) dµ(z) < +∞ .

Assumption (SAEM1) is characteristic of stochastic ap-
proximation procedures in which the step-size have to
decrease not too fast. Like Assumption (M1?), (SAME3?)
is similar to (SAEM3), except that we assume that, given
θ0, . . . , θk, both simulated latent variables z̃1, . . . , z̃k and
z1, . . . , zk are conditionally independent, given their re-
spective natural filtration. In Assumption (SAEM4?), we
demand the integrability of z 7→ ‖S(y, z)‖2 with respect
to the measures q̃k(z; θ) dµ.

The following theorem ensures the convergence of our
new stochastic approximation version of the EM algorithm.
This theorem is the approximated counterpart of Theorem 5
of [2]. Let ` : Θ→ R defined as, for all y ∈ Y ,

` : θ 7→
∫
Z
q(y, z; θ) dµ(z) .

Theorem 2.1 (Convergence of the approximated-SAEM).
Assume that (M1?), (M2-5), (SAEM1), (SAEM2), (SAME3?)
and (SAEM4?) hold. Assume in addition that:

(A) For all y ∈ Y , the sequence
(
q̃k(·; θ)

)
k∈N converge in

mean on every compact subset of Θ for the measure S.µ
to q(·|y; θ), that is to say for all observations y ∈ Y
and all compact K ⊂ Θ,

lim
k→∞

{
sup
θ∈K

∫
Z
S(y, z)

(
q̃k(z; θ)

− q(z|y; θ)
)

dµ(z)

}
= 0 ;

(B) With probability 1, clos ({sk}k∈N∗) is a compact subset
of S .

Let L = {θ ∈ Θ|∂θ`(θ) = 0}. Then, with probability 1,

lim
k→∞

d(θk,L) = 0 .

Hypothesis (A) makes explicit what we mean by se-
quence of approximated densities. In particular, it allows a
wide variety of numerical schemes; we propose an example
of practical interest in Section 2.2. Note that (SAEM4?) and
(A) ensure the function z 7→ ‖S(y, z)‖2 to be integrable with
respect to the measure q(y, zθ) dµ.

In practice, checking the compactness condition (B) may
be intractable. In that case, we have to recourse to a stabi-
lization procedure. We proceed as in [12]. Let (Kn)n∈N be an
exhaustion by compact sets of the space S , i.e. be a sequence
of compact subsets of S such that⋃

n∈N
Kn = S and ∀k ∈ N, Kn ⊂ int(Kn+1)

where int(A) denotes the interior of the set A. The main
idea is to reset the sequence sk to an arbitrary point every
time sk wanders out of the compact subset Knk , where nk
is the number of projections up to the k-th iteration. Let ε =
(εk)k∈N be a monotone non-increasing sequence of positive
numbers and let K be a subset of Z . Last, let Π: Z × S →
K ×K0 be a measurable function (See [12] for details about
the way to choose Π). The stochastic approximation with
truncation on random boundaries summarizes as:

Fig. 1. Stochastic approximation with truncation on random boundaries
1: Set n0 = 0, s0 ∈ K0 and z̃0 ∈ K
2: for all k ∈ N do
3: Sample z̃∗ ∼ q̃k(·; θk−1)
4: Compute s∗ = sk−1 + γk

(
S(y, z̃∗)− sk−1

)
5: if s∗ ∈ Knk−1

then
6: Set (z̃k, sk) = (z̃∗, s∗) [
7: else
8: Set (z̃k, sk) = Π(z̃k−1, sk−1) and nk = nk−1 + 1
9: Set θk = θ̂(sk) ]

10: end if
11: end for

The proof of the theorem consists in applying the (re-
called in Appendix A) theorem 2 of [2]. In particular, (SA0 -
4) refer to their hypothesis (SA0 - 4). For sake of simplic-
ity, we prove the convergence of the approximated-SAEM
under the compactness condition (B). However, the result
remains true even if (B) is not satisfied, on condition of
having recourse to this truncation on random boundaries
procedure.
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Proof. As for all k ∈ N, γk ∈ [0, 1], (SA0) is verified under
(M1?) and (SAEM1). Moreover, (SA1) is implied by (SAEM1)
and (SA3) by (B). Note that under Assumption (B), there
exists, with probability 1, a compact set K such that for all
k ∈ N, sk ∈ K .

Let, for all s ∈ S and k ∈ N, h(s) = s̄(θ̂(s))− s,

ek = S(y, z̃k)− E
[
S(y, z̃k)|F̃k−1

]
and rk = E

[
S(y, z̃k)|F̃k−1

]
− s̄(θ̂(sk−1))

such that Equation (1) writes on Robbins-Monro type ap-
proximation procedure.

As Lemma 2 of [2] depends only of the meanfield of the
model, it can be applied as it is. More precisely, (SA2.i) is
satisfied with the Lyapunov function V = −` ◦ θ̂ and

{s ∈ S|F (s) = 0} = {s ∈ S|∂sV (s) = 0} ,
θ̂ ({s ∈ S|F (s) = 0}) = {θ ∈ Θ|∂θ`(θ) = 0} = L .

Moreover, (SA2.ii) is satisfied due to the Sard theorem and
(SAEM2). We only need to focus on (SA4).

Set for all n ∈ N∗, En =
∑n
k=1 γkek. The sequence

(En)n∈N∗ is a F̃ -martingale: for all m > n, E
[
Em|F̃n

]
= En

as for all k > n, F̃n ⊂ F̃k−1. Moreover, for all n ∈ N,

E
[∥∥∥S(y, z̃n+1)− E

[
S(y, z̃n+1)|F̃n+1

]∥∥∥2 ∣∣∣ F̃n]
6 E

[
‖S(y, z̃n+1)‖2

∣∣∣F̃n] <∞ a.s.

since by (B) and (M5), with probability 1, θ̂(sn) is in the
compact set θ̂(K) ⊂ Θ. So,

∞∑
n=1

E
[
‖En+1 − En‖2

∣∣∣ F̃n]
6
∞∑
n=1

γ2
n+1 E

[
‖S(z̃n+1)‖2

∣∣∣F̃n] <∞ a.s. .

According to Theorem 2.15 of [13], with probability 1,
limn→∞En exists. Moreover,

rn =

∫
Z
S(y, z)

(
q(z|y, θ̂(sn−1))− q̃n(z, θ̂(sn−1))

)
dµ(z)

for all n ∈ N, which converge to 0 according to hypothesis
(A), proving (SA4).

Thus, Theorem 2 of [2] applies and

lim sup
k→∞

d(sk, {s ∈ S|∂sV (s) = 0})

= lim sup
k→∞

d(sk, {s ∈ S|F (s) = 0}) = 0 .

Lastly, by continuity of θ̂ : S → Θ,

lim sup
k→∞

d
(
θ̂(sk), θ̂

(
{s ∈ S|F (s) = 0}

))
= lim sup

k→∞
d(θk,L) = 0 .

The obtained results demonstrate that, under appropri-
ate conditions, the sequence (θk)k∈N converges to a con-
nected component of the set L of stationary points of `.
Moreover, some conditions upon which the convergence

toward local maxima is guaranteed are given in Section 7
of [2]. As this conditions only depend on the design of the
model and not on the definition of the optimizing sequence
(θk)k∈N, the corresponding theorems remain exact in our
context leading to classical hypothesis ensuring convergence
toward local maxima.

2.2 A Tempering Version of the SAEM

We focus in the following on an instantiation of the
approximated-SAEM, leading to the tempering-SAEM. Let
T = (Tk)k∈N be a sequence of positive numbers such that
limk→∞ Tk = 1. We set, for all y ∈ Y , all z ∈ Z , all θ ∈ Θ
and all k ∈ N,

q̃k(z; θ) =
1

cθ(Tk)
q(z|y; θ)

1/Tk

where cθ(Tk) is a scaling constant.
Let y ∈ Y and K ⊂ Θ compact. Then, by continuity of

q(z|y; ·), it exists M ∈ R such that

sup
θ∈K
|S(y, z) (q̃k(z; θ)− q(z|y; θ))|

6 sup
θ∈K

M

∣∣∣∣1− 1

cθ(Tk)
exp

(
−
(

1− 1

Tk

)
q(z|y, θk)

)∣∣∣∣ .
Thus, as K is compact, (A) is satisfied.

Note that our tempering-SAEM differs from the simu-
lated annealing version of [4] as we do not modify the model
but only the sampling-step of the estimation algorithm.

2.2.1 Escape Local Maxima
This scheme has been built with the intuition of the simu-
lated annealing: the sequence T has to be interpreted as a
sequence of temperatures. The higher Tk, the more the cor-
responding distribution q̃k lies flat and the (approximated)
hidden variable zk is able explore all the set Z . On the
contrary, a low temperature will freeze the exploration of
zk (see Figure 2c). Thus, finding an appropriate sequence
T to keep a balance between both behaviors is a great
methodological challenge.

We propose here an oscillatory tempering pattern: we
start from a high temperature and then we oscillate around
one with decreasing amplitude. In other words, given an
(high) initial temperature T0, the decreasing and amplitude
rate a, b and the delay r, we define our sequence of temper-
atures by for all k ∈ N,

Tk = tanh

(
k

2r

)
+

(
T0 −

2
√

2

3π
b

)
× ak/r + b

sin(κ)

κ

where κ = k
r + 3π

4 . We design this scheme to decrease,
with an exponential rate, from T0 to 1, with dampened
oscillations.

Due to the oscillations of the temperature, the latent
variable zk will explore and gather in turns, leading to
the possibility to switch from one mode to the other in
a multimodal density during heating and explore these
modes during cooling steps. In this way, the local maxima
of the likelihood can be avoided, especially during the
firsts iterations. Moreover, as the approximated distribu-
tions regularly gather around the modes of the posterior
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Fig. 2. Applying the tempering-SAEM to Gaussian mixture model. Fig. 2a: Learning dataset for the multivariate GMM (see Section 3.1). Fig. 2b:
Evolution of the temperature over iteration for the tempering-SAEM. Fig. 2c: Influence of the temperature over the pattern of the distribution.

distribution q(·|y; θk), the exploration of z will stabilize and
the algorithm will converge.

Although the analysis of this algorithm is heuristic, the
simulations (see the following section and Figure 3) confirm
the intuition and give good results. A theoretical analysis is
an ongoing problem.

3 APPLICATION AND EXPERIMENTS

As explained in the previous paragraph, the tempering-
SAEM allows us to escape from local maxima. To illustrate
this phenomenon, we propose two applications: cluster
analysis through Gaussian mixture model and independent
factor analysis which can lead to blind source separation
[11], [14], [15].

3.1 Multivariate Gaussian Mixture Models

Before considering a more realistic application, we first
present an application of the tempering-SAEM to multivari-
ate Gaussian mixture model (GMM). Actually, in spite of
an apparent simplicity, this model illustrates well the main
features of our algorithm.

Let y = (yi)i∈J1,nK ∈ Rnd be a n-sample of Rd. We
assume that y is distributed under a a weighted sum of
m d-dimensional Gaussians: Given α = (αj)j∈J1,mK[0, 1]m

such that
∑m
j=1 αj = 1, µ = (µj)j∈J1,mK ∈ Rmd and

Σ = (Σj)j∈J1,mK ∈ (SdR)m, we assume that

y|z, θ ∼
n⊗
i=1

N (µzi ,Σzi) and z|θ ∼
m∑
j=1

αjδj

where θ = (α, µ,Σ) and z = (zi)i∈J1,nK is the latent variable
specifying the identity of the mixture component of each
observation. In the following, we compare the efficiency of
the EM, the SAEM and the tempering-SAEM algorithms to
produce a maximum likelihood estimate of the parameters
with the a priori given exact number of components m.

Classically, as closed-form expressions are possible for
finite GMM, the EM algorithm is a very popular technique
used to produce the maximum likelihood estimation of the
parameters [16]. However, the computational cost can be
prohibitive. A faster procedure is to use the SAEM al-
gorithm. Nevertheless, both algorithms are very sensitive
to the initial position: solutions can highly depend on
their starting point and consequently produce sub-optimal

maximum likelihood estimates [17]. The tempering-SAEM
appears as a way to escape from local maxima and reach
global maxima more often.

To quantify this assertion, we have generated a synthetic
dataset (Figure 2a) and performed the estimation 500 times
for the three algorithms. The relative errors for α and µ and
the KullbackLeibler divergence between the true covariance
matrices Σ and the estimated one are compiled in Figures
3b, 3d and 3f. The class refer to the ones of Figure 2a. We
consider the algebraic relative error for α so that we can
deduce if the studied algorithm tend to empty (class E) or
overfill (class B) the classes. First thing to remark is that the
tempering-SAEM is always competitive with the EM and
the SAEM and most of the time greater. That is to say that
the global maximum is more often reached while tempering
the posterior distribution. Moreover, while EM and SAEM
achieve fairly identical results, the tempering-SAEM is able
to discriminate overlapped classes. Class A, which is the
only isolated class, is seemingly the best learned. The EM
and SAEM seem to empty the class C for the benefit of the
class B and merge them together on a ”super-class” as if
there were only 5 components in the Gaussian mixture.

The three procedures are detailed in Appendix B.

3.2 Independent Factor Analysis
The decomposition of a sample of multi-variable data on a
relevant subspace is a recurrent problem in many different
fields from source separation problem in acoustic signals to
computer vision and medical image analysis. Independent
component analysis has become one of the standard ap-
proaches. This technique relies upon a data augmentation
scheme, where the (unobserved) input are viewed as the
missing data. We observe multivariable data y which are
measured by n sensors and supposed to arise fromm source
signals x, that are linearly mixed together by some linear
transformation H , and corrupted by an additive Gaussian
noise ε. Simply put, we observe y = (y(t))t∈J1,T K where
each measurement is a point of Rn and assumed to be given
by y(t) = Hx(t) + ε(t) where H ∈ Mn,mR, x(t) ∈ Rm and
ε(t) i.i.d∼ N (0, λIn), λ ∈ R. The suitability of the SAEM
algorithm in this context has been demonstrated in [14] and
[15]. We propose here to modify the learning principle to
make the procedure less susceptible to trapping states.

As in [14] and [11], we assume that:

1) (x(t))t∈J1,T K and (ε(t))t∈J1,T K are independent;
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(f) KL distance between the true Σ and the estimated one

Fig. 3. Multivariate Gaussian mixture model. Figs. 3a, 3c and 3e: Qualitative comparison of the maximum likelihood estimation of the parameters.
The estimation is performed with the same initial points (in orange). Figs. 3b, 3d and 3f: Relative error (expressed as a percentage) for the weights
α and the centrods µ. Kullback-Leibler distance between the true covariance matrices Σ and the estimated ones, for 500 runs and n = 1000.

2) (x(t))t∈J1,T K is an i.i.d sequence of random vectors,
with independent component. Each component x(t)

i

is given by a mixture of k Gaussians indexed by
z

(t)
i ∈ J1, kK with means µzi(t) , variances σ2

zi(t)
and

mixing proportions αzi(t) :

q(x
(t)
i ; θ

(t)
i ) =

k∑
z
(t)
i =1

αzi(t) G
(
x

(t)
i − µzi(t) ;σ

2
zi(t)

)
θ

(t)
i =

(
αzi(t) , µzi(t) , σ

2
zi(t)

)
where for all vectors x and µ and all symmetric
matrix Σ, G(x − µ,Σ) refers to the (multivariate)
Gaussian distribution.

This model is called independent factor analysis (IFA). The
problem is to find the value of the parameter W = (H,λ, θ)
given y. Identifiability in this model is discussed in [18].
Basically, the sources are defined only to within an order
permutation and scaling. To avoid trivialities, we fix the
variances (σ2

j )j∈J1,kK to one [15]. Note that this definition
of the IFA model is somewhat less general that the one

introduced by Attias [11] in which the components are
supposed to be independent but not necessarily identically
distributed. Nevertheless, it has been shown that restrictive
IFA models can perform well in practice [15].

The likelihood of the IFA can be put in exponential form
using the sufficient statistics, for all j ∈ J1, kK,

S1,j(x, y, z) =
1

m

m∑
i=1

1{zi=j} ; S4(x, y, z) = y ty ;

S2,j(x, y, z) =
1

m

m∑
i=1

xi 1{zi=j} ; S5(x, y, z) = y tx ;

S3,j(x, y, z) =
1

m

m∑
i=1

x2
i 1{zi=j} ; S6(x, y, z) = x tx .

The M-step is then given by

H = [S5] ([S6])
−1

; α = [S1] ; µ =
[S2]

[S1]
; σ2 = 1k ;

λ = ‖ [S6] ‖22 − 2〈H | [S5] 〉+ 〈 tHH | [S6] 〉
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(a) Decomposition images (left)
and samples of the dataset

SAEM tmp-SAEM
1

2

3

4

·10−2

(b) KL distances

Fig. 4. Independent factor analysis – BG-ICA. Kullback-Leibler distance
between the source matrix H used to build the dataset and the esti-
mated one. The dataset consists of 100 images distributed in accor-
dance with the two-components Bernouilli-Gaussian model build from
the square and the cross binary images.

where 1k stands for the k-vector off all 1 and the brackets
denote the empirical-average. Moreover, it is possible to
compute the conditional distribution of the hidden variable
(x, z) given observed values of y and the E-step can be
computed exactly [11]: For all ζ ∈ J1, kKm,

P(z = ζ|y;W ) =
αζ G (y −Hµζ ;H∆ζ

tH + λIn)∑
z αz G (y −Hµz;H∆z

tH + λIn)

and q(x|y, z;W ) = G (x− νy,z; Σz)

where

αz =
m∏
i=1

αzi ; µz = (µzi)i ; ∆z = Diag
(
(σ2
zi)i
)

;

Σz =

(
1

λ
tHH + ∆−1

z

)−1

; νy,z = Σz

(
1

λ
tHy + ∆−1

z µz

)
.

Thus, as well as for the GMM, we can compare the efficiency
of SAEM vs tempering-SAEM algorithms in this context.

In Section 3.1, we were interested in the performance
of our algorithm for data generated according to the true
model. We relax here this assumption and observe T =
100 images distributed in accordance with the Bernoulli-
Gaussian model (BG-ICA [15]), with two components. The
components are represented as two-dimensional binary im-
ages. The first one is a black image with a white cross
in the top left corner. The second one has a white square
in the bottom right corner. At Figure 4, we present the
two decomposition images, 4 typical observations and the
Kullback-Leibler distance between the true H (in the BG-
ICA model) and the estimated one for 50 runs.

This experience confirms the robustness of the
tempering-SAEM. Moreover, one could have feared that the
augmentation of the number of hyper-parameters due to
the choice of the temperature scheme would increase the
variance. Figure 4 eliminates this assumption. However, the
context is very favorable to the SAEM algorithm which
obtain very good and hard to outperformed results. To
measure the efficiency of the tempering-SAEM, we test it
on the USPS database, which contains gray-level images of
handwritten digits.

We consider a balanced mix of the digits 0, 3 and 8, which
consists of 50 samples for each of the three digits. We then
run both the SAEM and the tempering-SAEM. We present
at Figure 5 two typical runs (in line). If the two of them

(a) SAEM (b) tempering-SAEM

Fig. 5. Independent factor analysis – USPS dataset. Results of the
independent factor estimation on a balanced mix of digits 0, 3 and 8
from the USPS database. The dataset is composed of 50 samples of
each digits.

succeed in discriminate 0 against 3 and 8, the tempering-
SAEM outperform the SAEM algorithm concerning 3 versus
8. Thus, the tempering-SAEM produces meaningful sources,
which could be the result of a clustering procedure, while
the SAEM runs into difficulties. Hence, this experience
suggests that the tempering-SAEM can indeed escape from
local maxima in which the SAEM can be trapped.

Finally, applying the tempering-SAEM for independent
factor analysis aims to check that the advantages of the
tempering-SAEM over the SAEM can improve significantly
the results of maximum likelihood estimation in complex
hierarchical models.

3.3 Discussion and Perspective

We propose here a new stochastic approximation version
of the EM algorithm. The benefit of this general procedure
is twofold: we can deal with the problem of intractable
or difficult sampling in one hand and favor convergence
toward global maxima in the other hand.

Our first contribution is theoretical with the proof of
the convergence of the approximated-SAEM toward local
maxima. This result gives an a posteriori justification for
some existent schemes like the ABC-SAEM or MONOLIX.
Moreover, our general framework is versatile enough to
encompass a wide range of algorithms. Our second con-
tribution goes this way by proposing an instantiation of
this general procedure to prevent convergence toward local
maxima, referred to as tempering-SAEM. This tempering-
SAEM method is the one used in the MONOLIX software. We
have applied this algorithm in both synthetic and real data
frameworks and obtained improved results with respect to
the state of the art algorithms in both cases.

APPENDIX A
THEOREM 2 AND LEMMA 2 OF [2]
In order our article to be more self-contained, we recall The-
orem 2 and Lemma 2 of [2]. Actually, the proof of Theorem
2.1 is based on this theorem which establish the convergence
of Robin-Monroe type approximation procedure, i.e. the
convergence of sequences defined recursively as

∀k ∈ N, sk = sk−1 + γk
(
h(sk) + rk + ek

)
.

Theorem A.2 (Delyon, Lavielle, Moulines). Assume that

(SA0) With probability 1, for all k ∈ N, sk ∈ S .



8

(SA1) (γk)k∈N∗ is a decreasing sequence of positive num-
bers such that

∑∞
k=1 γk =∞.

(SA2) The vector field h si continuous on S and there exists
a continuously differentiable function V : S → R
such that :

(i) for all s ∈ S , F (s) = 〈dsV (z) |h(s) 〉 6 0,
(ii) int (V (L)) = ∅ where L = {s ∈ S|F (s =

0)}.

(SA3) With probability 1, clos ({sk}k∈N) is a compact sub-
set of S .

(SA4) With probability 1,
∑
γkek exists and is finite,

lim rk = 0.

Then, with probability 1, lim d(sk,L) = 0.

Lemma A.2. Assume (M1-M5) and (SAEM2). Then (SA2) is
satisfied with V = −` ◦ θ̂. Moreover,

{s ∈ S|F (s) = 0} = {s ∈ S|dsV (s) = 0}
and θ̂ ({s ∈ S|F (s) = 0}) = {θ ∈ Θ|dθ`(θ) = 0}

where F : s 7→ 〈dsV (s) |h(s) 〉.

APPENDIX B
MULTIVARIATE GAUSSIAN MIXTURE MODEL

We give here some details about the estimation procedure
in the multivariate Gaussian mixture model. The complete
log-likelihood of the GMM model is

log q(y, z; θ) = −n log 2π

−
m∑
j=1

n∑
i=1

(
1

2
log|Σj | − logαj

+ t(yi − µj) Σ−1
j (yi − µj)

)
1{zi=j} .

B.1 Estimation through the EM Algorithm

Let t index the current iteration. The general EM algorithm
iterates the following two steps:

E-step: Compute Q(θ|θt) = E [log q(y, z; θ)|y, θt];
M-step: Set θt+1 = argmaxθ∈ΘQ(θ|θt).

For all (i, j) ∈ J1, nK × J1,mK, set τi,j = P [zi = j|yi, θt].
Then,

Q(θ|θt) = −n log 2π

−
m∑
j=1

n∑
i=1

(
1

2
log|Σj | − logαj

+ t(yi − µj) Σ−1
j (yi − µj)

)
τi,j .

According to Bayes’ rule,

τi,j =
αj G(yi − µj ; Σj)∑m
j=1 αj G(yi − µj ; Σj)

where G(y − µ; Σ) refers to the Gaussian distribution with
mean µ and covariance matrix Σ. Lastly, a straightforward
computation gives

αt+1
j =

1

n

n∑
i=1

τi,j , µt+1
j =

∑n
i=1 τi,jyi∑n
i=1 τi,j

and Σt+1
j =

∑n
i=1 τi,j(yi − µ

t+1
j ) t(yi − µt+1

j )∑n
i=1 τi,j

.

B.2 Estimation through the SAEM Algorithm

Given a sequence of positive step-size for the stochastic
approximation γ = (γt)t∈N, the general SAEM algorithm
iterates the following two steps:

SAE-step: Sample a new hidden variable zt+1 accord-
ing to the conditional distribution q(z|y, θt)
and compute

Qt+1(θ) = Qt(θ)+γt
(
log q(y, z; θt)−Qt(θ)

)
;

M-step: Set θt+1 = argmaxθ∈ΘQt+1(θ).

The GMM belongs to the curved exponential family.
Actually, for all y, z and θ,

log q(y, z; θ) = −n log(2π)

+
m∑
j=1

(
logαj −

1

2
log|Σj |+ 〈µj tµj |Σ−1

j 〉F
)
S1,j(y, z)

+
m∑
j=1

[
〈Σ−1

j |S3,j(y, z) 〉F − 2〈Σ−1
j µj |S2,j(y, z) 〉

]
where, for all j ∈ J1,mK,

S1,j(y, z) =
n∑
i=1

1zi=j ; S2,j(y, z) =
n∑
i=1

yi 1zi=j

and S3,j(y, z) =
n∑
i=1

yi
tyi 1zi=j .

So, the SAE-step is replaced by an update of the estimation
of the conditional expectation of the sufficient statistics,
namely, for all ` ∈ {1, 2, 3}, and all j,

S t+1
`,j = S t`,j + γt

(
S`,j(y, z

t+1)− S t`,j
)

where, for all i, zt+1
i is sampled from the discrete law∑m

j=1 τi,jδj where τi,j = P [zi = j|yi, θt] as in the EM-case.
The M-step can also be computed in close-form:

αt+1
j =

1

n
S1,j , µt+1

j =
S2,j

S1,j

and Σt+1
j =

S3,j − S2,j
tµt+1
j

S1,j
.

B.3 Estimation through the tmp-SAEM Algorithm

The previous computation remain true except that the hid-
den variables zt+1

i are now sampled from the tempered
conditional distribution 1

c(Tt)

∑m
j=1 τ

1/Tt
i,j δj where c(Tt) =∑m

j=1 τ
1/Tt
i,j and Tt is defined in Section 2.2.
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algorithm to left-censored data in nonlinear mixed-effects model:
Application to hiv dynamics model,” Computational Statistics &
Data Analysis, vol. 51, no. 3, pp. 1562–1574, 2006.

[8] P. L. Chan, P. Jacqmin, M. Lavielle, L. McFadyen, and B. Weath-
erley, “The use of the saem algorithm in monolix software for es-
timation of population pharmacokinetic-pharmacodynamic-viral
dynamics parameters of maraviroc in asymptomatic hiv subjects,”
Journal of pharmacokinetics and pharmacodynamics, vol. 38, no. 1, pp.
41–61, 2011.

[9] U. Picchini and A. Samson, “Coupling stochastic em and approxi-
mate bayesian computation for parameter inference in state-space
models,” Computational Statistics, vol. 33, no. 1, pp. 179–212, 2018.

[10] J.-M. Marin, P. Pudlo, C. P. Robert, and R. J. Ryder, “Approxi-
mate bayesian computational methods,” Statistics and Computing,
vol. 22, no. 6, pp. 1167–1180, 2012.

[11] H. Attias, “Independent factor analysis,” Neural Computation,
vol. 11, no. 4, pp. 803–851, 1999.
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at the École polytechnique, Palaiseau. Her inter-
ests are ranging from fundamental subjects such
as Riemannian geometry or stochastic optimiza-
tion to high-dimensional statistics and applica-
tion to medicine. In particular, she has worked on
the statistical analysis of longitudinal manifold-
valued data with application to chemotherapy
monitoring.


	1 Introduction
	2 Maximum Likelihood Estimation through an EM-Like Algorithm
	2.1 A New Stochastic Approximation Version of the EM Algorithm
	2.1.1 Curved Exponential Family
	2.1.2 Convergence Toward Local Maxima

	2.2 A Tempering Version of the SAEM
	2.2.1 Escape Local Maxima


	3 Application and Experiments
	3.1 Multivariate Gaussian Mixture Models
	3.2 Independent Factor Analysis
	3.3 Discussion and Perspective

	Appendix A: Theorem 2 and Lemma 2 of DelyonLavielleMoulines
	Appendix B: Multivariate Gaussian Mixture Model
	B.1 Estimation through the EM Algorithm
	B.2 Estimation through the SAEM Algorithm
	B.3 Estimation through the tmp-SAEM Algorithm

	References
	Biographies
	Stéphanie Allassonnière
	Juliette Chevallier


