B. Efron and T. Hastie, Computer-Age Statistical Inference, 2016.

Y. Lecun, Deep learning, Nature, vol.521, issue.7553, pp.436-444, 2015.

M. I. Jordan and T. M. Mitchell, Machine learning: Trends, perspectives, and prospects, Science, vol.349, issue.6245, pp.255-260, 2015.

J. Haynes, A primer on pattern-based approaches to fMRI: Principles, pitfalls, and perspectives, Neuron, vol.87, issue.2, pp.257-270, 2015.

N. Kriegeskorte and P. K. Douglas, Cognitive computational neuroscience, Nature neuroscience, p.1, 2018.

A. H. Marblestone, Toward an integration of deep learning and neuroscience, Frontiers in computational neuroscience, vol.10, p.94, 2016.

C. Woo, Building better biomarkers: brain models in translational neuroimaging, Nat Neurosci, vol.20, issue.3, pp.365-377, 2017.

F. Pereira, Machine learning classifiers and fMRI: a tutorial overview, Neuroimage, vol.45, pp.199-209, 2009.

T. Naselaris, Encoding and decoding in fMRI, Neuroimage, vol.56, issue.2, pp.400-410, 2011.

L. Breiman, Statistical Modeling: The Two Cultures, Statistical Science, vol.16, issue.3, pp.199-231, 2001.

D. Donoho, 50 Years of Data Science, Journal of Computational and Graphical Statistics, vol.26, issue.4, pp.745-766, 2017.

D. Bzdok, Classical statistics and statistical learning in imaging neuroscience, Frontiers in neuroscience, vol.11, p.543, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01583175

D. M. Blei and P. Smyth, Science and data science, Proceedings of the National Academy of Sciences, vol.114, issue.33, pp.8689-8692, 2017.

M. I. Jordan, Frontiers in Massive Data Analysis, 2013.

T. J. Hastie and R. J. Tibshirani, Generalized additive models, Monographs on Statistics and Applied Probability, vol.43, 1990.

F. E. Harrell, Regression modeling strategies, with applications to linear models, survival analysis and logistic regression, 2001.

R. L. Wasserstein and N. A. Lazar, The ASA's statement on p-values: context, process, and purpose, Am Stat, vol.70, issue.2, pp.129-133, 2016.

D. Szucs and J. Ioannidis, When null hypothesis significance testing is unsuitable for research: a reassessment. Frontiers in human neuroscience 11, p.390, 2017.

V. Amrhein, The earth is flat (p> 0.05): significance thresholds and the crisis of unreplicable research, PeerJ, vol.5, p.3544, 2017.

E. W. Steyerberg, Poor performance of clinical prediction models: the harm of commonly applied methods, Journal of clinical epidemiology, vol.98, pp.133-143, 2018.

T. Hastie, The Elements of Statistical Learning, 2001.

P. Norvig, On chomsky and the two cultures of statistical learning, 2011.

J. Pearl, Causal inference in statistics: An overview, Statistics Surveys, vol.3, pp.96-146, 2009.

P. Fusar-poli, The science of prognosis in psychiatry: A review, JAMA Psychiatry, 2018.

D. Bzdok and B. T. Yeo, Inference in the age of big data: Future perspectives on neuroscience, NeuroImage, vol.155, pp.549-564, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01516891

M. D. Rosenberg, Prediction complements explanation in understanding the developing brain, Nature communications, vol.9, issue.1, p.589, 2018.

G. C. Siontis, Predicting death: an empirical evaluation of predictive tools for mortality, Archives of internal medicine, vol.171, issue.19, pp.1721-1726, 2011.

G. C. Siontis, Comparisons of established risk prediction models for cardiovascular disease: systematic review, Bmj, vol.344, p.3318, 2012.

G. C. Siontis, External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination, Journal of clinical epidemiology, vol.68, issue.1, pp.25-34, 2015.

B. A. Goldstein, Opportunities and challenges in developing risk prediction models with electronic health records data: a systematic review, Journal of the American Medical Informatics Association, vol.24, issue.1, pp.198-208, 2017.

A. Rajkomar, Scalable and accurate deep learning with electronic health records, npj Digital Medicine, vol.1, issue.1, p.18, 2018.

M. R. Arbabshirani, Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls, NeuroImage, vol.145, pp.137-165, 2017.

G. Shmueli, To explain or to predict? Statistical science, pp.289-310, 2010.

A. Lo, Why significant variables aren't automatically good predictors, Proc Natl Acad Sci U S A, vol.112, issue.45, pp.13892-13899, 2015.

G. James, An introduction to statistical learning, 2013.

P. M. Visscher, 10 years of GWAS discovery: biology, function, and translation, The American Journal of Human Genetics, vol.101, issue.1, pp.5-22, 2017.

I. J. Goodfellow, Deep learning, 2016.

S. Weichwald, Causal interpretation rules for encoding and decoding models in neuroimaging, NeuroImage, vol.110, pp.48-59, 2015.

J. D. Gabrieli, Prediction as a humanitarian and pragmatic contribution from human cognitive neuroscience, Neuron, vol.85, issue.1, pp.11-26, 2015.

E. S. Finn, Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity, Nature neuroscience, 2015.

R. Mcelreath and . Statistical-rethinking, , 2015.

M. P. Paulus, Pragmatism instead of mechanism: a call for impactful biological psychiatry, JAMA psychiatry, vol.72, issue.7, pp.631-632, 2015.

T. R. Insel and B. N. Cuthbert, Brain disorders? Precisely, Science, vol.348, issue.6234, pp.499-500, 2015.

D. R. Weinberger and E. Radulescu, Finding the elusive psychiatric "lesion" with 21st-century neuroanatomy: a note of caution, American Journal of Psychiatry, vol.173, issue.1, pp.27-33, 2015.

A. S. Bassett and E. W. Chow, Schizophrenia and 22q11. 2 deletion syndrome, Current psychiatry reports, vol.10, issue.2, p.148, 2008.

G. P. Bates, Huntington disease, Nature Reviews Disease Primers, vol.1, p.15005, 2015.

K. G. Moons, Transparent Reporting of a multivariable prediction model for Individual Prognosis or Diagnosis (TRIPOD): explanation and elaboration, Annals of internal medicine, vol.162, issue.1, pp.1-73, 2015.

D. Bzdok and A. Meyer-lindenberg, Machine learning for precision psychiatry: Opportunites and challenges, Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01643933

K. G. Moons, Risk prediction models: I. Development, internal validation, and assessing the incremental value of a new (bio) marker, Heart, vol.98, issue.9, pp.683-690, 2012.

J. P. Ioannidis and I. Tzoulaki, What makes a good predictor?: the evidence applied to coronary artery calcium score, Jama, vol.303, issue.16, pp.1646-1647, 2010.

M. P. Paulus, A roadmap for the development of applied computational psychiatry, Biological psychiatry: cognitive neuroscience and neuroimaging, vol.1, issue.5, pp.386-392, 2016.

E. W. Steyerberg, Risk prediction with machine learning and regression methods, Biometrical Journal, vol.56, issue.4, pp.601-606, 2014.

T. He, Is deep learning better than kernel regression for functional connectivity prediction of fluid intelligence, 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), pp.1-4, 2018.

M. Van-smeden, Sample size for binary logistic prediction models: Beyond events per variable criteria. Statistical methods in medical research, p.0962280218784726, 2018.

Y. S. Abu-mostafa, Learning from data, 2012.

E. W. Steyerberg and Y. Vergouwe, Towards better clinical prediction models: seven steps for development and an ABCD for validation, European heart journal, vol.35, issue.29, pp.1925-1931, 2014.

R. A. Poldrack, Scanning the horizon: towards transparent and reproducible neuroimaging research, Nature Reviews Neuroscience, vol.18, issue.2, p.115, 2017.
URL : https://hal.archives-ouvertes.fr/cea-01896468

N. D. Shah, Big Data and Predictive Analytics: Recalibrating Expectations, 2018.

H. Naci and J. P. Ioannidis, How good is "evidence" from clinical studies of drug effects and why might such evidence fail in the prediction of the clinical utility of drugs?, Annual review of pharmacology and toxicology, vol.55, pp.169-189, 2015.

B. Djulbegovic and J. P. Ioannidis, Precision medicine for individual patients should use population group averages and larger, not smaller, groups, European journal of clinical investigation, 2018.

S. Leonelli, Data-centric biology: a philosophical study, 2016.

T. T. Wu, Genome-wide association analysis by lasso penalized logistic regression, Bioinformatics, vol.25, issue.6, pp.714-721, 2009.

D. Bzdok, Statistics versus machine learning, Nature Methods, vol.15, pp.233-234, 2018.
URL : https://hal.archives-ouvertes.fr/cea-01883658

A. K. Manrai, In the era of precision medicine and big data, who is normal?, JAMA, vol.319, issue.19, pp.1981-1982, 2018.

E. W. Steyerberg and F. E. Harrell, Prediction models need appropriate internal, internalexternal, and external validation, Journal of clinical epidemiology, vol.69, pp.245-247, 2016.

P. C. Austin, Geographic and temporal validity of prediction models: different approaches were useful to examine model performance, Journal of clinical epidemiology, vol.79, pp.76-85, 2016.

B. A. Nosek, Promoting an open research culture, Science, vol.348, issue.6242, pp.1422-1425, 2015.

E. Studerus, Prediction of transition to psychosis in patients with a clinical high risk for psychosis: a systematic review of methodology and reporting, Psychological medicine, vol.47, issue.7, pp.1163-1178, 2017.

J. A. Damen, Prediction models for cardiovascular disease risk in the general population: systematic review, Bmj, vol.353, p.2416, 2016.

R. D. Riley, External validation of clinical prediction models using big datasets from e-health records or IPD meta-analysis: opportunities and challenges, bmj, vol.353, p.3140, 2016.

A. I. Iglesias, Scientific reporting is suboptimal for aspects that characterize genetic risk prediction studies: a review of published articles based on the Genetic RIsk Prediction Studies statement, Journal of clinical epidemiology, vol.67, issue.5, pp.487-499, 2014.