Evaluating physiological responses of a kelp to environmental changes at its vulnerable equatorward range limit
Matthew Bracken

To cite this version:
Matthew Bracken. Evaluating physiological responses of a kelp to environmental changes at its vulnerable equatorward range limit. 2019, pp.100010. hal-02043511

HAL Id: hal-02043511
https://hal.archives-ouvertes.fr/hal-02043511
Submitted on 21 Feb 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Evaluating physiological responses of a kelp to environmental changes at its vulnerable equatorward range limit

Matthew Bracken

1 Department of Ecology and Evolutionary Biology, University of California – Irvine, California, United States of America

Understanding processes at species’ range limits is of paramount importance in an era of global change. For example, the boreal kelp *Laminaria digitata*, which dominates low intertidal and shallow subtidal rocky reefs in northwestern Europe, is declining in the equatorward portion of its range [3]. In this contribution, Migné and colleagues [2] focus on *L. digitata* near its southern range limit on the coast of France and use a variety of techniques to paint a complete picture of the physiological responses of the kelp to environmental changes. Importantly, and in contrast to earlier work on the species which focused on subtidal individuals (e.g. [1]), Migné *et al.* [2] describe responses not only in the most physiologically stressful portion of the species’ range but also in the most stressful portion of its local environment: the upper portion of its zone on the shoreline, where it is periodically exposed to aerial conditions and associated thermal and desiccation stresses.

The authors show that whereas *L. digitata* possesses mechanisms to protect it from irradiance stress at low tide, these mechanisms are not sufficient to prevent damage to photosynthetic pathways (e.g., reduction in optimal quantum yields of photosystem II). This species experiences severe heat stress associated with mid-day low tides during the summer, and the
cumulative damage associated with these stresses is likely associated with the range contraction that is currently underway. Given the important role that L. digitata plays as food and habitat for other organisms, its loss will have cascading impacts on community structure and ecosystem functioning. Understanding the mechanisms underlying these declines is essential to understanding the impacts of climate change on species, communities, and ecosystems.

References


Appendix

Reviews by two anonymous reviewers, DOI: 10.24072/pci.ecology.100010