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Symbolic models for incrementally stable singularly perturbed hybrid
affine systems *

Zohra Kader! and Antoine Girard!

Abstract— In this paper, we consider the problem of symbolic
models design for the class of incrementally stable singularly
perturbed hybrid affine systems. Contrarily to the existing
results in the literature where only switching are taken into
account, here we consider a more general class of hybrid
systems including switches, impulsions and dynamics evolv-
ing in different timescales. Firstly, a discussion about incre-
mental stability of the considered class of systems is given.
Secondly, a new method for designing symbolic models for
incrementally stable singularly perturbed hybrid affine systems
is proposed. Inspired from singularly perturbed techniques
based on decoupling the slow dynamics from the fast ones,
the obtained symbolic abstraction is designed by discretizing
only a part of the state space representing the slow dynamics.
An ¢-approximate bisimulation relation between the original
singularly perturbed hybrid affine system and the symbolic
model obtained by discretizing the slow dynamics is provided.
Indeed, since the discrete abstraction is designed for a system
of lower dimension, the number of its transitions is drastically
reduced. Finally, an example is proposed in order to illustrate
the efficiency of the proposed results.

I. INTRODUCTION

Hybrid systems have been largely studied in the literature
during the last decades [4], [5], [8]. Due to their heteroge-
neous nature, they are used for modelling physical systems
that present discrete events during their continuous dynamics.
Two types of events can be encountered in real processes:
switches i.e., dynamics changes without state jumps and
impulses i.e., jumps in the system’s state.

Another phenomena that can occur in physical systems is
the presence of processes evolving in different timescales
[6], [7], [9]. Recently, a large interest has been given to
the class of singularly perturbed hybrid systems. Different
examples can motivate this interest, namely the design of
fast controllers for hybrid systems [13] and the existence of
physical systems in engineering presenting discrete events
and different timescales [9], [12]. Moreover, in the presence
of timescales separation, stability analysis and control design
become more complex and singular perturbation theory must
be utilized [6], [7]. Numerous results have been already
proposed namely on the stability analysis and stabilization
of this class of systems - see for instance [9], [12], [13].
However, technology advances demand that more complex
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control goals such as language and logic specifications,
safety properties, obstacle avoidance be considered. This
leads to several studies using symbolic models also called
discrete abstractions, for controller design, see for instance
[2], [14]. The main advantage when using symbolic models is
that if the obtained symbolic model is finite then the problem
of controller design can be efficiently solved using the mature
methods for supervisory control design for discrete-event
systems.

Symbolic models are very popular for hybrid systems
design [2], [11], [14]. In particular, based on the Lyapunov
theory, several approaches for designing symbolic models
for incrementally stable hybrid systems have been proposed.
For instance, we can cite the work proposed in [3] where a
symbolic model has been designed using both state and time
discretization. However, to the best of our knowledge, the
existing results about symbolic models design consider only
the class of switched systems. Moreover, those results do
not take into account the case where the system’s dynamics
evolve in different timescales.

Here, we are interested in the design of symbolic mod-
els for a more general class of hybrid systems presenting
switches, impulses, and dynamics that evolve in different
timescales. First, global incremental asymptotic stability of
hybrid affine systems is defined. A discussion about how
the conditions for global asymptotic stability of singularly
perturbed hybrid linear systems provided in [12] can be
used in order to show incremental global uniform asymptotic
stability of hybrid affine systems is provided. Then, a new
method for designing symbolic models for incrementally
stable singularly perturbed hybrid affine systems is proposed.
Inspired from singularly perturbed techniques based on de-
coupling the slow dynamics from the fast ones, the obtained
symbolic abstraction is designed by discretizing only a part
of the state space representing the slow dynamics. We have
equally shown that the original singularly perturbed hybrid
affine system is related by an €-approximate bisimulation
relation to the symbolic model designed by discretizing the
slow dynamics. Besides the fact that this design methodology
takes into account the singular perturbation nature of the
system, the main advantage of the proposed method is that
the obtained symbolic model is of reduced size. Indeed,
since the discrete abstraction is designed for a system of
lower dimension, the number of its transitions is drastically
reduced.

The paper is structured as follows: Section 2 provides a de-
scription of the considered singularly perturbed hybrid affine
system. The notion of incremental stability of singularly



perturbed hybrid affine systems is defined and definitions
necessary for our study are given in Section 3. In Section
4, we propose a method for constructing symbolic models
for incrementally stable singularly perturbed hybrid affine
systems. In Section 5, a numerical example that illustrates
the proposed results is provided. The paper ends with a brief
conclusion.

Notations.: In this paper we use the notations R, RF)L
and R™ to refer to the set of real, non-negative real, and
positive real numbers, respectively. Z, N, and Nt refer to
the sets of integers, of non-negative integers and of positive
integers, respectively. card(.#) refers to the cardinal of a
set .. ||x|| denotes the Euclidean norm of a vector x €
R" and x; refers to its i-th row. I, denotes the identity
matrix of dimension n. 0 refers to a matrix of appropriate
dimension whose elements are null. The notation M7 refers
to the transpose of a matrix or vector M. M~! indicates the
inverse of a square matrix M. M > O (respectively M <0 )
denotes a positive definite (respectively, negative definite)
matrix. M > 0 (respectively M < 0 ) refers to a positive
semidefinite (respectively, negative semidefinite) matrix. For
a symmetric matrix M > 0, M 3 is the unique symmetric
matrix S > 0 such that S = M. For a positive definite matrix
M, Amin(M) (respectively, Amax(M)) stands for the minimum
(respectively, maximum) eigenvalue of M. The matrix M is
said to be Hurwitz if all its eigenvalues have negative real
parts. M is said to be Schur if its eigenvalues lie strictly
inside the unit disk. The notation x(z, ) = lim x(r—d) is

d—0,d>0

equally used in the paper.

A continuous function ¥ is said to belong to class £ if
it is strictly increasing and ¥(0) = 0. A continuous function
B:Ry xR — Ry is said to belong to class %" if : for any
fixed r, the map B(.,s) belongs to the class J#, and for each
fixed s the map B (r,.) is strictly decreasing and f3(r,.) goes to
zero as s tends to infinity. Given a function /: (0,8) — R, we
say that [(8) = €' (a(0)) if and only if there exists 6 € (0,0)
and ¢ > 0, such that for all 8 € (0,6)),|/(0)| < co(0).

II. SYSTEM DESCRIPTION AND PROBLEM STATEMENT
A. Singularly perturbed hybrid affine systems

Here, we are particularly interested in the construction of
symbolic models for the class of singularly perturbed hybrid
affine systems. The dynamics of the hybrid affine system X
are defined as follows:

{}'c(t)

— AP()
0z(r) = AP

zg;] +aP) = P (x(r),2(1)), V1 € [te,1141), k €N

tg:ﬂ — o) i) t&: ﬂ Pl )—p)

= PP (x (1), 2(1 ), Yk > 1, 0
where x(f) € R"™, z(t) € R™ are the slow and fast variables
respectively. ny € N and n; € N are the dimensions of the
slow and fast varying variables such that n, +n, = n where
n € N is the system’s order. 8 > 0 is the small parameter
characterizing the time scale separation between the slow
and the fast dynamics. p € & denotes the switching signal
with & is a subset of . (R, P) which refers to the set of

piece-wise constant and right continuous functions p from
R} to the finite set of modes P = {1,2,...,m}, with a finite
number of discontinuities on every bounded interval of Rg .
This guarantees the absence of Zeno behaviours. In the rest
of our paper we will denote p~ = p(,") and p = p(t). For
all p,p~ € P, AP € RV, P ¢ R P —P ¢ R™", and
dP”—P ¢ R™! are matrices defining the continuous and
impulsive dynamics.

B. Change of variables
Let for all p~,pe P

cP /P =

p-—p p-—p p~—p
ot Gy, dr P = dy
ch —r cp |’ B -

21 22

where Af|,CP, 7 € R AR CL TP e R
of df P e R ol df TP e R, and Af,, AL,
Cf, P, €5, T are matrices of appropriate dimensions.

When we set 8 = 0 in (1) the dimension of the state
equation reduces from n; + ny to n, because, for all p € P
the differential equations of the fast dynamics z degenerate
to

0=A0z+Ax+ 0. )

Let us make the standard assumption in the singular pertur-
bation theory framework [6], [7], in the following
Assumption 1: A%, are non-singular for all p € P.

Under this assumption for all p € P, the solutions of (2) are
given by

z=h'(x) = —(AD) 'ASx— (AD) o
which corresponds to the quasi-steady state of the fast
dynamic of the respective mode p. It is more convenient
and common in the literature of singular perturbed systems
to perform the change of coordinates that renders the quasi-
steady state of the fast dynamic null. Here, in order to take

into account the hybrid nature of system (1), for all p € P we
perform the following time-dependent change of coordinates

y(t) =z(t) —h" (x(t)), Yt € [tr,tx41), k€N (3)

to shift the quasi-steady state of z to the origin.
Using the change of coordinates (3), the continuous dy-
namics in (1) become

. Ap Ap Bp
o] = Lokt ou) [+ o] v et wem o
where for all p € P:
-1

Ag = A11)1 _A[fz(Agz) Aglv AIf = A11)2

~1 ~1
Ag = (Agz) AglAg7 Ag = (Agz) A[271A11)27 AZ :Agza
B = af — AL, (A%,)'of, BY = (A5,) A, BY.

Likewise, the impulsive dynamics in (1) turn into

{X(tk)} _ {Rﬁﬁ” R, Hp} {X(ﬂ} ¥ {ﬂlpﬂ’} NE>1, (5)

T | pp P P 1, P —p
RS, RY, v |2



where for all p~,p € P

R g g
R ek

e

+(A%,) T ADRY, T
Rl )
B =l P AR ) el
R
+ (Agz) - ng o (Agz )710‘{'

In the rest of our paper we will denote b
pap Y ly(t,(x,y).p)

point reached at time ¢ by the trajectory of system (4), (5)
starting at x(0) = x, y(0) =y under the switching signal p.

X (T, ()

or (1, (x,y))
4), (5) at time #,_ |, with ;| =1+ 7 starting from x(t ) =x
and y(r,") =y under the switching signal p where p(r, ) =p~
and p(nr) = p(ty,,) = p-
III. PRELIMINARIES

will refer to the value of the solution of

A. Incremental stability

It has been shown recently for different classes of systems
such as switched nonlinear and networked systems that the
construction of symbolic models can rely directly on the
incremental stability notion [3], [10]. This notion has been
presented for nonlinear systems in [1]. An extension of
this result to the case of switched nonlinear systems has
been provided in [3]. Hereafter, we adapt the definition
of incremental stability to the class of singularly perturbed
hybrid affine systems which is under study in this paper.

Definition 1: A singularly perturbed hybrid affine system
Y is said to be incrementally globally uniformly asymptoti-
cally stable (6-GUAS) if there exists .# ¢ function f such
that for all 1 € Ry, for all x,x € R™, y,y’ € R" and for all
switching signal p € &, the following condition holds:

[uxy)p) x(r, (¢ ,y>p>} Sﬁ(B } )(6)
-y

y(t,(x,y),p) = y(t.(x )),p)
Roughly speaking, incremental stability means that all the

trajectories induced by the same switching signal converge
to the same reference trajectory independently of their initial
states.

Showing that system (4), (5) is incrementally globally
uniformly asymptotically stable (§-GUAS) leads to prove
that the hybrid linear system

: p p
i) = ok g [0 e el e

[exok)] _ lR’fl - R’fﬁ”] [ex“k)] k> 1

ey()] RGP RL, | ley(n)

)
where e, (1) = x(1) —x (1) and e, (t) = y(1) —y (t), is glob-
ally asymptotically stable. Recently, sufficient conditions for

global asymptotic stability of singularly perturbed hybrid
linear systems of the form (7) have been proposed in [12].
In order to construct symbolic models for the singularly
perturbed hybrid affine system (1) (or equivalently system
4), (5)), we consider the following assumption:
Assumption 2: A} and Al are Hurwitz for all p € P.
This means that there exist symmetric positive definite ma-
trices Qf = I,, and Q; = I,, and positive scalars A and lf’f

such that
( p)TQp—i-Q”AP —27Lpr
(Ap) Qf—i-Q A”< ZIPQf

Under this assumption, it has been shown in [12] that if

6 € (0,60,) where 6, = with Ay = mml As =
f = B

I, % = [(@p)2A5(00)7 |,
) 2|, and b; :ma;}bﬁ.’,j € {1,2,3}, then
P E pe

)

fz
by+b
(14/132) +bs

r;nn/'kY . bl =10 )%A1(Q?)%l
bE =1(Q%)2A5(Q

Vp(ex,ey) = efoex+e§Q?ey,Vp epP 9)

is a Lyapunov function in mode p. Thus, all the modes of
(7) are Lyapunov stable. The asymptotic stability of system
(7) and therefore the incremental stability of system (4), (5)
has been shown while using the following functions

WP (ex(t)) = \/ ex(t)T QY ex(t), Vt € [tr,t511), k €N,
(10)
Wfp(ey(t)) =/ey()T Qfey( ), Vt € [tr, 1), k € N.
N As Yy
Considering 6, € (0,61)N(0, ), c1 = if 3 s 02 = = oy

and ¢3 = b‘C‘ , the evolution of these functions between two

events (sw1tch or impulse) and when an event occurs are
characterized in the following lemmas respectively.
Lemma 1 ([12]): Under Assumption 2, let 8 € (0, 6;], and

try1 — 1 =T > 0. Then for all k€ N
Wsp(ex(tk:Ll)) ( ( ))( AST"‘GC3)
+Wf'~’ (ey(t))0(c2 +c3)

A

WP (ey(11)) < WP (ex (1)) Bct + WP (e (1)) (e 77 + Ocy).

Lemma 2 ([]2]) For all k£ > 0,
WP (ex (1) <YWy (ex(t)) +yiaW/ (ex(t))
1

WP ey (1) < WaW) (ex(ty)) + W/ (ey(i "),

where

Y

wi = max [(QF)2R, P(Q7 )Y,
p~,PEP

Lop~ =1

yiz = max |(00)3R, Q] ) 2l
Lop~ =1

v = max |[(0)2R] QL)

-1
v = max [[(Q)ERE, (0] )72
p_.PE
A sufficient condltlon for the global asymptotic stabil-
ity of system (4), (5) has been given in [12]. It con-
sists in the existence of a minimal dwell time 7* for
which the positive matrix MY is Schur with M+ =



—AsT*
e +0c3 95;'2*"1‘ c3) and W — |:11111 l[112:| . Here,
Oc; e 7" +0¢ Vo1 Y22
we consider the case where yq; satisfies the following
assumption:
Assumption 3:
vy < 1. (12)

Under this assumption sufficient conditions for deriving the
values of 7" have been provided in [12] and are recalled
hereafter:

o if yy; =1 and 1[112750 then

> %ln(e)
+ﬂln< v12+abyrn >
Ar o \a—wyii(cr+c3) — yiaer —ab(yar(c2 +c3) + yaocy
— 0(0In(6))

(13)
with @ > 0 chosen such that a > y1(c2 + ¢3) + Y1215
o if Y11 =1 and yy, =0 then

T > 13(6) = ﬁ(@)

where I3(0) = max(/;(0),1,(0)) with

1 abyn;
Lh(0)=— (In(1+
1(6) As (n( 748} )

— In(1- 61103+ Wizc1) —ab*(Ya1c3 + Yinac)))

(14)

b(6) =
_ iln (a— yi1(ca +c3) — Wiaey —a6(l//2|(cz+C3)+1,/2251)>
As ay» ’

and a > 0 chosen such that a > ;1 (c2 +¢3) + Yiacr;
« finally, if y1; <1, then

" > 14(0), (15)

where

l4(0) =

9 ( Vi2 +ayn )

Ap - \a—0(yii(c2+c3) +yioer) —ab(yar(ca +e3) + yner) )
with a > 0 chosen such that y1; +ayp; < 1.

In order to provide our result about symbolic models con-

struction for singularly perturbed hybrid affine systems, we

will consider the following properties of functions W/ in the

rest of our paper :

Vp € P/ Aginllexll S WP (ex) < v Ajuxllexlls (16)
and for all p € P, for all x,x/,}‘c € R™
W2 (x—x) =W (x=%)| < VAgulx =2 (17)
where A3, = 1;161113 Amin(QF) and AS,, = max Amax (OF).
Likewise for W;’ we have
Vp € P Adulley] S WPeye) <\ Adaslleyll,  (18)
and for all p € P, for all y,y',y e R™
WPy —y) =Wl —9)| < VAdaly =51 (19)

FA— f o
where A, = I;lel};l A«min(Qi) and Alax = III}S}’( Lnax(Q?).

B. Transition systems

We are interested in the computation of discrete abstrac-
tions for singularly perturbed hybrid affine systems. In what
follows, we present the concept of transition systems that
allows us to describe both hybrid systems and symbolic
models in a common framework:

Definition 2: A transition system is a
(Q,U,0,A,I) where:

o (is a set of states ;

e U is a set of inputs ;

¢ O is a set of outputs ;

¢« ACQOXUXxQXxO is a transition relation;

o I C Q is a set of initial states .

T is said to be metric if the set of outputs O is equipped
with a metric d such that d(o1,072) = ||o1 — 02||, symbolic if
Q and U are finite or countable sets.

(x,0) € A(x,u) will refer to the transition (x,u,x,0) € A.
This means that by applying the input u the trajectory of
the transition system will evolve from the state x to the state
x while providing the output o. Given a state x € O, an
input u € U is said to belong to the set of enabled inputs,
denoted by Enab(x), if A(x,u) # 0. A state x € Q is said to be
blocking if Enab(x) =0, it is said non-blocking otherwise.
T is said to be deterministic if for all x € Q and for all
u € Enab(x), card(A(x,u)) = 1.

Definition 3: Let T = (Ql,U,O,Al,Il), L =
(02,U,0,A;,I;) be two metric transition systems with
the same input set U and the same output set O equipped
with the metric d. Let € > 0 be a given precision. A relation
Z C Q1 X @, is said to be an g-approximate bisimulation
relation between 7; and 75 if for all (x;,x) € Z,
Enab(x) = Enab(x,) and for all u € Enab(x;):

tuple T =

V(x/l,ol) €A (xl,u),ﬂ(x/z,oz) € Ay(xy,u) such that
d(01,02) < € and (x,,%,) € %;
V(xy,02) € Aa(x2,u),3(x},01) € Ay (x1,u) such that

d(01,07) < € and (x,,x,) € Z.
IV. APPROXIMATE BISIMILAR MODEL DESIGN
Given a singularly perturbed hybrid affine system X
with & = (R, P), and a time sampling parameter T, €
R* we define the associated transition system Tr (X) =
(01,U,0,AI}) where:
o 01 =R™ xR™ x P is the set of states;
o« U =P is the set of inputs;
e O =R"™ xR™ is the set of outputs;
¢« AC Q) xU x Q1 x O is the transition relation defined
as follows: Yu € U, Y(x,y,p~) € 01, ((x,y,p),01) €
A(x,y,p~,u) if and only if
u=p. (x,ay,) = ( 4 *)p(TSa (xvy))a 357 *)P(Tsa (xvy)))’
and o = (x,y);
o I} = R™ x R"™ x P is the set of initial states.
The reduced state space R"™ is then approximated by the

lattice:
R™], = R™|qun = kil k€ Z, i= 1
[ ]TI_ qx € |qx(l)_ lﬁa i€ Lyt=1,...,nx ¢,



where 11 € R™ is the reduced state space sampling parameter.
The quantizer 2y : R"™ — [R™]; is defined by 2y, (x) =g«
if and only if

Vi=1,...,nx, qui)— <Xy < Ga(i) T (20)

. .
It can be easily verified that for all x € R™, || 2y (x) —x|| < 7.
We  define the symbolic model 77 ,(X) =
(On,U,0n,Ay,Iy) as follows:
o the set of states is Qp = ([R™], N€) x P, where ¢ is
a compact set in R™;
« the set of labels (inputs) is U = P;
« the set of outputs is Op = R"™ x R";
o the transition relation Ay € Op X U X On X Oy is
given as follows: Yu € U, ¥(qy,p~) € On, (¢, p,02) €
An(gx,p~,u) if and only if

u= [77 qx = Qn (¢fiﬂp(thgﬂqx7ygqi))) and
0y = [qx yfq} N

where y, is such that

I
Vol |eAr Ar veal | |6y |
ie., (xb, ,¥b, ) is the equilibrium point of the system in
mode p~.
o the set of initial states is I;y = ([R™], N¢) x P.
Theorem 1: Consider system (4), (5) under Assumptions

2 and 3. Let 7, > 7" > 0 such that the positive matrix M; ¥
is Schur. Consider i) > 0 and let & > 0 and &¢ > 0 such that

Prr-]zz M W)™ [ %mﬂ 1)
/’Lmln ¥r ( 0 )

where
ArT,
\/ max f~‘ —
(9C1W + (e + 9C1)Wf)
V mm
with
W= max +/ dXH)cgquP Py R’llziﬁpygl;*e@fiﬁpﬂa (22)
P~ PEP,GxEC
and
Wr= max  \/ Adalyl, — RS “Tax—RE, Iy — 2 T, (23)
P, PEP,xEE

where (xb;,y%,) is the equilibrium point in mode p, then

K = X - Sp X—dqx min &
J{(( 3P ) (g p ))texQn{ (y_ygq)} L/»Vlf ”

min

is an e-approximate bisimulation relation between Tr, (X) and
TS o(Z) with € = [e? + &7
Proof: See the Appendix. [ ]
Remark 1: The result in Theorem 1 is constructive. We
may remark that &; depends on ¥(6) which can be computed
numerically. £ is a function of 8 and 1 which are small

parameters, therefore the obtained precision & for the fast
dynamic is sufficiently small.
Remark 2: In the case of switched affine systems W =

—AsTs
[15;;1 IS and when 6 — 0 we have M, = [e 0 8}
Thus, 1nequahty (21) leads to
] 1,
)me

From this inequality we can remark that the obtained
precision for the slow dynamics is /AJ. & > [l —
e M%)~ /As. M. This expression recalls the one obtained
in [3] for 6-GUAS switched systems when using the classical
method for symbolic models design.

In this paper we provide new design method of symbolic
models based on the singular perturbation theory for glob-
ally incrementally stable hybrid affine systems. The main
advantage of this approach is that since the fast dynamic
y vanishes very quickly to zero then instead of discretizing
the system of dimension n the symbolic model is designed
while discretizing only the slow dynamics which reduces
drastically its number of transitions.

V. ILLUSTRATIVE EXAMPLE:ROOM TEMPERATURE
REGULATION

Consider the thermal dynamics of a room-heater system
modelled as a singularly perturbed switched affine system
with two modes as follows:

d [ h ] _ |:—K12— K10 K12 ] |:Tl] n [ k1070 ]
dt |07, K21 — K21 — KU T KszfI/é
where 77 is the thermal dynamic of the room, 7, is the
thermal dynamic of the heater. 77 and 7, are the two
continuous-time states variables. u is the discrete variable
which takes values u =1 and u = 0 that correspond to the
positions “switch ON” and ” switch OFF” of the heater,
respectively. Ty is the ambient temperature and 7y is the
maximal temperature of the heater. k2, K0, k21, Ky are
the heat transfer coefficients. 6 is the time-scale separation
parameter between the fast dynamic 7, and the slow dynamic

1.
Considering x =T} and z = T, system (26) can be written
in the form (1) as follows

[X] AP[]—Fal’,pe{l 2} 27)
0z
where Al = |K27Ko K12 , AT =
K21 —K21 — Kpf
—Kio—Kio K12 ol — K10To o — K10To
K21 —K21 ’ K'Qfo ’ 0 ’
ere, we consider the following numerical values of the
parameters : K2 =4, Kjo =1, k1 =1, Koy = 0.5 and

6 = 1073. Matrices A}, and A3, are not singular. Then,
Assumption 1 holds and the time-dependent change of
coordinates given in (3) is derived as follows

y(t) = 2(1) — 0.6667x(r) — 16.6667, p = 1

y(t) = z(t) —x(t), p=2. (28)



Fig. 1. Symbolic abstraction for room-heater system (26) : dark gray:
mode 1, light gray: mode 2, medium gray: both modes are acceptable.
Slow manifolds (lines in magenta) Trajectories of the closed loop system
originating at [x, z]T = [24.51, 30]7 (blue line).

:ﬁ‘ m‘/}
‘ ‘J JU N‘ ‘q U

Fig. 2. Trajectories of system (26) starting at [x, z]7 = [24.51, 30]7. Active

modes of system (26)

Assumption 2 holds. LMIs (8) are feasible for A = A =
1 and QFf = Q? =1,Vpe{l,2}. yi1 =1 and y;, =0
(ie., ¥ = 1) thus from (14) we obtain 7° = 0.0322h.
For simulations we consider 7, = 0.0354 > 7* such that
the positive matrix MW is Schur. Therefore, under these
conditions system (26) is 6-GUAS. Thus, we are now able
to design our symbolic model for system (26).

We restrict the dynamics of the system to the compact set
€= [24 25.5] . The state space sampling parameter is taken
as 1 =0.0002. The regulation goal is to maintain the room
temperature around 25 degrees i.e., 71 € €. The obtained
precisionis € =1.72761.e., €, =0.1790 and & = 1.7184. We
can observe from Figure 1 that the obtained symbolic model
does not have blocking states. Therefore, all the transitions
of the obtained abstraction are safe. We can remark that the
trajectory of the system remains inside the safe set € =
[24.5 25.5].

VI. CONCLUSION

This paper has provided a new method for symbolic
models design for the class of incrementally stable singu-
larly perturbed hybrid affine systems. The proposed method

is inspired from singularly perturbed techniques based on
decoupling the slow dynamics from the fast ones. Thus,
the obtained symbolic abstraction is designed by discretizing
only a part of the state space representing the slow dynamics.
An g-approximate bisimulation relation between the original
singularly perturbed hybrid affine system and the symbolic
model obtained by discritizing the slow dynamics has been
provided. It has been shown that since the discrete abstraction
is designed for a system of lower dimension, the number of
its transitions is drastically reduced. Finally, simulations have
been performed for a room temperature regulation system in
order to assess the efficiency of the proposed approach.
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APPENDIX
PROOF OF THEOREM 1

Proof: The proof of Theorem 1 follows the steps
of Definition 3. First, let ((x,y,p), (qx, 7)) € Z and let
((x /,y/ p),01) € A. There exists (q,,p) € On such that
((q.,p),02) € Ay (qx,p~,p). Then, let verify that d(o01,07) <
€.

We have ((x,y,p”),(qx,p”)) € %, and from (16), we
obtain

Adinllx— qell S WP (x—gx) </ AS 8. (29)



This leads to

1 _
[lx—axl| < T WP (x—qx) < &. (30)
‘min
Likewise, for the fast dynamics, from (18) we obtain
VALl =38, | SWE (v, ) < /Ay 3D
oo
where A/, = 1;161113 ﬂ,min(Q?).
Thus,
Iy —yb, Il < —fW” (y—vb, ) <& (32)
mln
Now we should verify that d(o;,0,) < €.
x—q -
d(or.0n) = ||| A < =gl + Iy — oty - 33)
Y= Yeq
From (30) and (32), we obtain
a0 <\ l—alP+ v P < e vel oy
=€.
Therefore, the first condition in Definition 3 holds.
Now let ((x,y,p~),(4x,p")) € #. To show that
((x,y,p), (g, p)) € Z it is sufficient to prove that
va(x/ 7q;) Vv Z’mme
{W}'(y' — o) = AL e 83

From (17), (19) we have

{Wf({/—q;)} - { PO T (5 gty ) — ¢£ﬂ'<rh<x7y)))}
WP =yeg) | = [WE(9f P (1, (a3 ) — 98 P (3, (x,3))

{\/Amaxmx % (40l ))q .
% lmax”)eq ¢p TP (T, (g, yeq )l

From Lemma 1 and Lemma 2, for all 7, > 7" we have
]7( : qx) lfilmgs
<M ¥ | 5
{Wﬂ ) N
V a1

i H”(Tm(qmyé'q))l} 4

)
)
o8 (a

(36)

(37
|

A’max”)’eq
From (18), we obtain

Wp()elq - 3577*>p(7v’(q.wygqi)))

P *)17(

Hy('q TM(q’va(»q ))H < (38)

From Lemma 1, we have
WP (v — PP (T, (g )l )
<WJ (o, —RY, "Pa =R, TTyE, — B 770 (39)

RP D0

+WI (v, — RS, gy Vo, — B Py 4 6er),

where (xbg,y5,) is the equilibrium point in mode p.
From this last inequality, (38) leads to

yEg = 0 P (T, (qx.7% )

1 _
< —— (Wt R g

‘min

Rp Hp) %” “"oc

(40)

- S A
AW (Ve =R, "Pax =R, TPy, — B3 T)(e 0 +901)>.

From (16) and (18), (40) becomes

Hyeq 7P (T, (g )8y )l
VAaxllxh, = R, 7P g —RY, 7Pyh — B 7P||6cy
mm( ax ||1*eq eq 1 @1
- rTs
Moy~ R 0= R oty — e o))
By definition of W, and Wy, (41) leads to
l T5
0ci (e 5 46
12, = 0 P (1 gy DI € — Vg, @)
\/> \/’IT
min min
Thus
\/)‘maXH)eqf 3177 *>p TVv(arygz;))H
(43)

\/ Z.f Afts o
< ﬁ (66‘1"1754-(67T +6C1)Wf> = ’)7f(6)
A

‘min

Thanks to the last inequality, (37) becomes

P(x X mb ax
B ] VA

Therefore, in order to show that ((x,y,p),(q.,p)) € Z it is
sufficient to prove that

W ( /—q \% mm83 \/mn \% mm83
|:W”(/ pq):| MTV { /l;{un } { Yf { /l;{un . (45

The second term of inequality (45) is equivalent to

[Mn} (1— M%) {\/2‘271 46)

Since My ¥ is a positive and Schur matrix and from the
Neumann series properties, the matrix / —M; ¥ is invertible
and its inverse (I —MTS‘P)’1 is positive. Therefore, (46) leads

to

Thus, from the last 1nequa11ty and from (45), (35) is
verified. Therefore, ((x,y,p),(q.,p)) € %Z. Then, Z is
an g-approximate bisimulation relation between T (X) and

T‘z:ss n (2) ||



