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REVIEW

Merging information in the entorhinal cortex: what can we learn
from robotics experiments and modeling?
Philippe Gaussier1,*, Jean Paul Banquet1, Nicolas Cuperlier1, Mathias Quoy1, Lise Aubin1,5, Pierre-Yves Jacob2,
Francesca Sargolini2, Etienne Save2, Jeffrey L. Krichmar3,4 and Bruno Poucet2

ABSTRACT
Place recognition is a complex process involving idiothetic and
allothetic information. In mammals, evidence suggests that visual
information stemming from the temporal and parietal cortical areas
(‘what’ and ‘where’ information) ismerged at the level of the entorhinal
cortex (EC) to build a compact code of a place. Local views extracted
from specific feature points can provide information important for view
cells (in primates) and place cells (in rodents) even when the
environment changes dramatically. Robotics experiments using
conjunctive cells merging ‘what’ and ‘where’ information related to
different local views show their important role for obtaining place cells
with strong generalization capabilities. This convergence of
information may also explain the formation of grid cells in the
medial EC if we suppose that: (1) path integration information is
computed outside the EC, (2) this information is compressed at the
level of the EC owing to projection (which follows a modulo principle)
of cortical activities associated with discretized vector fields
representing angles and/or path integration, and (3) conjunctive
cells merge the projections of different modalities to build grid cell
activities. Applying modulo projection to visual information allows an
interesting compression of information and could explain more recent
results on grid cells related to visual exploration. In conclusion, the EC
could be dedicated to the build-up of a robust yet compact code of
cortical activity whereas the hippocampus proper recognizes these
complex codes and learns to predict the transition from one state to
another.

KEY WORDS: Hippocampus, Place cells, Grid cells, View cells,
Navigation, Path integration, Modulo projection, Robot

Introduction
Navigation is a critical task for most species, and it requires complex
representations (target objects, landmarks, places, etc.) and strategies.
Many species use path integration (PI) or dead reckoning (a
navigation strategy relying on idiothetic information useful in the
dark or in a poor visual environment) in conjunction with allothetic
information-based navigation (vision, odors, sounds, touch). Starting
from a robotics and system modeling point of view, we investigate

how mammals can use visual and proprioceptive information to
perform homing behaviors or to reach specific goal places.

Many studies related to mammals focus on the hippocampal
system (HS), which is composed of the hippocampus and the
entorhinal cortex (EC), two brain structures highlighted by the
discovery of place cells (O’Keefe and Nadel, 1978) and grid cells,
respectively (Hafting et al., 2005), as well as by their involvement in
episodic memory (Eichenbaum et al., 1992). Indeed, hippocampal
destruction results in a severe anterograde amnesia in humans
(Scoville and Milner, 1957). The HS is connected to the associative
cortical areas and performs multimodal fusion, as well as fast
detection and recall of complex events (McClelland et al., 1995).
The HS can be also be thought of as a generic indexing tool for
episodic memories (Teyler and DiScenna, 1986; McClelland et al.,
1995; Cohen and Eichenbaum, 1993). The main inputs to the
hippocampus come from the EC, which contains grid cells. Grid
cells have been recorded in the dorsal medial EC (dMEC) in rodents
(Hafting et al., 2005), bats (Yartsev et al., 2011; Geva-Sagiv et al.,
2015) and even in humans (Doeller et al., 2010; Killian et al., 2012;
Jacobs et al., 2013). In contrast, the lateral EC (LEC) shows little
spatial selectivity (Hargreaves et al., 2005) but is hypothesized to
perform joint processing of spatial and non-spatial information
(Yoganarasimha et al., 2011; Deshmukh and Knierim, 2011; Van
Cauter et al., 2012; Tsao et al., 2013; Knierim et al., 2014; Save and
Sargolini, 2017). The linear combination of dMEC grid cells with
different spacings and orientations provides an efficient way to build
place cell activities (Rolls et al., 2006; Solstad et al., 2006). Yet,
how grid cell activity is generated (and what grid cells code for) is
intensely debated (Giocomo et al., 2011; Zilli, 2012; Moser et al.,
2014). The hexagonal firing patterns of grid cells can be modeled
either by oscillatory interference models (Burgess et al., 2007) or by
continuous attractor models (Wan et al., 1994; Touretzky and
Redish, 1996; Redish and Touretzky, 1997; Samsonovich and
McNaughton, 1997). These models have been instrumental for
designing neurobiological experiments to either validate their
theoretical predictions or modify their assumptions (Giocomo
et al., 2011; Zilli, 2012). Prior robotics experiments and simulations
showed that: (1) visual place cells can be easily obtained from the
merging of ‘what’ and ‘where’ information [we refer to the ‘what’
and ‘where’ visual pathways (Ungerleider and Haxby, 1994) for
primates, but it looks as if rodents could also perform some detailed
visual tasks (Lashley, 1938; Kolb and Tees, 1990)] and (2) homing
behavior can be achieved through the competition between a small
number of place–action associations (Gaussier and Zrehen, 1995;
Gaussier et al., 1997, 2000) in a way similar to what has been shown
for insects (Wittmann and Schwegler, 1995; Collett and Baron,
1995; Etienne, 1998; Schwarz et al., 2017). In addition, our model
of PI shows that it can be performed based on a one-dimensional
(1D) field of neurons in a way also quite similar to insects. In
mammals, this computation might be performed in different brain
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structures, including the retrosplenial cortex (RSC) or the parietal
cortex (Cooper and Mizumori, 2001; Save et al., 2001; Parron and
Save, 2004; Vann et al., 2009; Elduayen and Save, 2014; P.G and
J.L.K., unpublished data).
In this paper, we first summarize results showing how place cells

can be built from visual information or PI. Second, we show how
grid cell activity can be explained as a general ‘modulo projection’
property of the cortical activity (Gaussier et al., 2007) if we suppose
the existence of PI traces in the RSC. Third, we show how to obtain
visual grid cells again using a modulo operator on the ‘where’
component of visual information. We conclude that spatial
specificity of the rodent HS reflects a more general role in
memory formation through its capability to detect novelty and to
learn transitions between complex multimodal states that cannot not
be easily detected at the cortical level. Hence, we question whether
the hippocampus is the brain area where PI is computed (so as to
build a Cartesian map of the environment as proposed by O’Keefe
and Nadel, 1978) or, rather, where the results of different spatial
computations are projected.

Significance statement
In this paper, we show how a simple robotics model of mammal
navigation is useful to interpret neurobiological recordings. We
question the current models of the dMEC as a path integrator.
Instead, we propose that the EC is a generic merging tool that builds
a compact representation of the cortical activity (a kind of hash
table). We summarize experiments and simulations showing that
grid cells related to PI could be explained as a modulo projection of
cortical activity computed in the RSC, where PI could take place.
Furthermore, we suggest that the visual grid cells recorded in the
human EC could also be explained by the same mechanism.

Place cells from visual information
A place can be characterized by the identity of the landmarks
(‘what’), and their azimuth, distance or elevation (‘where’). It can be
a direct visual snapshot from a given position (as proposed for
insects). Yet, if the image is decomposed into local views related to
‘important’ visual features or landmarks, then conjunctive cells (i.e.
cells combining some different input types on common postsynaptic
targets to produce ‘conjunctive’ activities) can be used to build a
place code merging ‘what’ and ‘where’ information with better
generalization capabilities over long distances (Insausti et al., 1987;
Zola-Morgan et al., 1989; Gaussier and Zrehen, 1995; Gaussier
et al., 1997). This increases the robustness of the visual system to
occlusions, and the displacement of objects or displacement of the
animal by making it possible to recognize unaltered local areas
(landmarks) and to measure their apparent displacement in the

visual scene for place recognition and navigation. The merging of
‘what’ and ‘where’ information stemming from the perirhinal and
parahippocampal cortex, respectively, is a good candidate for such a
conjunctive function. If we assume the animal has access to an
allocentric reference frame corresponding to a kind of internal
compass (built from vestibular, tactile or visual information, for
instance), it may easily obtain information about the angular
displacement of a given landmark while moving in the environment.
The multimodal head direction (HD) cells can represent such a
visual compass (Lepretre et al., 2000; Delarboulas et al., 2014).

Fig. 1 shows a simplified view of the neural network, which was
tested on a robot that learned visual places. The robot performed a
serial exploration of the visual scene focusing on the local maxima
of off-center cells (difference of Gaussians) applied on the gradient
of the input image. The robot’s visual scan path was controlled by
the intensity of the feature points (a winner-takes-all mechanism
with an inhibition of return allows the selection of feature points
such as corners, end of line, etc., of decreasing activity). This
simulated ocular saccades and an attentional spotlight mechanism.
One local view is extracted around each saccade after a log/polar
transformation of the image, mimicking the projection from
the retinal to the primary visual areas (Schwartz, 1980). This
transformation provides a robust signature to small-scale variation
and rotation. We proposed that the azimuth and elevation of the
focus point are coded as a spatial activity bump on two different 1D
maps of neurons representing the associated angles. Next,
conjunctive cells could be triggered when a local view was
recognized under a specific azimuth or elevation (Fig. 1). As a
result, if the landmark was perceived from a different position, its
azimuth would change. The activity bump on the ‘where’ field
would move and would provide lower activity on the associated
connection. This mechanism provided a direct way to measure the
angular variation of a given landmark between its learned angular
position and its current position in the visual field. When the local
views or landmarks were explored sequentially (focus of attention
or ocular saccades), adding a short-term memory on the conjunctive
activities resulted in an activity pattern insensitive to the exploration
order of the panorama. At the end of exploration, the short-term
memory had a copy of all the activated conjunctive cells building a
spatial code (a constellation of landmark×azimuth×elevation) easy
to manage for pattern matching (i.e. place recognition).

To test the performance of this model, the robot was put in
different locations in a room (7×5 m) to learn 5×5=25 places
regularly spaced every 1 m. For each location, the learning of one
place cell was triggered. Next, the robot was moved everywhere in
the room and the activity of each cell was recorded.

As shown in Fig. 2A, we obtained place fields that generalize over
long distances in the room. Each rectangle represents the recording
of one cell according to the location of the robot in the room.We can
see, for instance, that the neuron that has learned the upper left
corner of the room (upper-left rectangle) responds more in that part
of the environment. Similarly, the neuron associated with the
position in the middle of the room responds more in that location.
The neuronal activity is related to the different places. It decreases
slowly and spreads over more than 2 m in the experimental room.
This interesting result means that we can create large attraction
basins around a given location that allow very good generalization
capabilities to unvisited places, and the capability to learn a path
from place–action association and competition (Giovannangeli
et al., 2006). Yet, it is also a puzzling finding, because place fields
recorded in the dorsal hippocampus (in the CA3 or CA1 regions) are
clearly sharper than the model’s place fields. The diameter of the

List of abbreviations
1D one-dimensional
dMEC dorsal medial EC
EC entorhinal cortex
HD head direction (cells)
HS hippocampal system
LEC lateral EC
MEC medial EC
mod modulo operation (i mod M is the remainder of the

Euclidian division of i by M)
PI path integration
proj projection according to a modulo value
RSC retrosplenial cortex
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real fields in rodents is at least 10 times smaller (10 to 20 cm)
(Mizuseki et al., 2012). This discrepancy may be resolved by adding
a competition between place cells, thus leading to sharper place
fields as shown in Fig. 2B) or by supposing that our cells correspond
more to the place cells recorded in the ventral hippocampus (Jung
et al., 1994; Poucet et al., 1994). A second question is whether the
cells we recorded in the robot would be classified as place cells
by neurobiologists. The answer is clearly no, because the cells
are somewhat active everywhere in the environment. The
neurobiologists would term these ‘diffuse place cells’ (Quirk
et al., 1992; Song et al., 2012), much like some of the unclassified
medial EC (MEC) cells [e.g. see Savelli et al. (2008) and also the
discussion in Poucet et al. (2014) on ventral MEC ‘place-like cells’].
Is it possible that place cells useful for navigation in an open

environment (with long-distance generalization capabilities) exist
outside the hippocampus proper? If we suppose that entorhinal cells
merge multimodal information, they could be a good candidate to
explain why rats with a lesioned hippocampus can still perform
some navigation tasks. Even though such large visual place cells
could be located in the LEC, results from Deshmukh and Knierim
(2011) and Tsao et al. (2013) do not support their existence. Yet,
many cells react to objects and their locations, and their weak spatial
correlates could correspond to our large place cells. Place-related
activity in the LEC in the presence of objects or goals could also
correspond to the kind of cells proposed in our model because their
learning would be related to the presence of specific distant
landmarks and their azimuth or apparent distance. The cells
recorded in the ventral MEC could also correspond to some low-
resolution grid cells, which we will discuss in the next section, or to
the parahippocampal place area, where neurons were found to react
to the visual recognition of places (Epstein and Kanwisher, 1998;
Epstein, 2008). A last question related to our simple model of visual
place cell is what happens if the field of view is limited to 180 deg,
as in primates who have a smaller field of view than rodents? By
using the same neural network as that used for place cells with a
field of view of 180 deg, we obtained an activity pattern similar to
the one recorded in the hippocampus of monkeys by Rolls and
O’Mara (1995) (Fig. 2). It should be noted that the landmarks were
tables, chairs, windows, cabinets, etc., in the room. Yet, no parallax
issue related the apparent displacement of proximal landmarks can
be seen in the results because the robot was not using two or three

landmarks but more than 20 local views for the learning and
recognition of the view cells. This provides an averaging effect,
reducing the parallax effect regarding any particular landmark.
Moreover, landmarks perceived from two different points of view
are not recognized and do not provide activity to the view cells, thus
also reducing parallax issues in this case. In more complex cases, the
solution proposed by Bicanski and Burgess (2016) may apply as a
robust input to our network.

Grid cells from path integration
Although place cells occur in the HS and grid cells have been
observed in the EC, we propose that PI in a two-dimensional
environment is primarily performed outside the EC and the HS. PI
can be performed on a 1D field of neurons on which activity bumps
related to the current direction and speed of the animal are
integrated. The summation of different bumps of activity having a
cosine shape results in a single bump of activity in which the most
active neuron corresponds to the direction of the global motion (PI
vector) and the amplitude of its activity represents the distance
traveled in a straight line. This model, inspired by insect navigation
(Mittelstaedt and Mittelstaedt, 1980; Wehner and Srinivasan, 1981;
Hartmann and Wehner, 1995; Collett et al., 1996; Heinze and
Homberg, 2007; Stone et al., 2017), can be generalized to mammals
if the cosine shape is replaced by a Gaussian-like shape (or a Von
Mises function) representing the activity of the HD cells (built from
a 1D attractor model using the angular speed as an input; see
McNaughton et al., 1996). Even if the HD cell activity bump is
limited to 120 deg, it is sufficient to perform a good approximation
of PI, and a leaky integrator or synaptic learning is sufficient to
perform PI (P.G. and J.L.K., unpublished data). Field activity can be
recalibrated according to egocentric (the entrance of a maze) or
allocentric information (a distant landmark). As a result, we can
obtain allocentric information related to either turns or the route
based on the time constant used in the leaky integrators. The
resulting activity looks similar to cell activity recorded in the rat’s
RSC (Alexander and Nitz, 2015, 2017) and parietal cortex (Nitz,
2012), two of the main inputs to the EC.

At the level of the RSC and posterior parietal cortex, several 1D
fields associated with different preferred directions may be
maintained and used to perform navigation in the direction of one
target according to some population code. The interesting point is that

Local view/landmark recognition
‘what’

Neural field activity
‘where’

Landmark azimuth

Conjunctive
cells with STM

Place cell

P1

Li

Li

P1

θi

θ1

θ1
′

mvt

Abs.
dir.

θ1
′

Fig. 1. Visual place cell from the merging of ‘what’ and
‘where’ information. Landmark angular variation induces a
decrease in the landmark recognition. Li, neuron associated
with the recognition of landmark i; P1, classical neuron
performing the visual place recognition from the conjunctive
(product) units; θi, azimuth of landmark i (here, the black star)
according to an absolute referential; θi′, landmark azimuth after a
movement shown by the vector mvt; STM, short-term memory.
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the coding of the direction on these maps would be similar to the one
used in the motor cortex (Georgopoulos, 1988) allowing direct
control of the action from those fields (Hasson and Gaussier, 2010).
Next, if we assume that the activity of some neurons on the field is
discretized and folded onto EC cells using a modulo projection, then
we can obtain grid cells (Gaussier et al., 2007) (as shown in Fig. 3A).
On a field of neurons indexed with the variable i from 1 to N, we

define a modulo projection (based on the mathematical modulo
operator) as a parallel projection of N neurons on a group of M
neurons. EveryM neurons, a folding is performed so that the neuron
j in the output group receives the projection of the activities of all the
neurons i such that i mod M=j, where mod is the modulo operation
and j is the remainder of the Euclidian division of i byM. In our case,
grid cell activity results from a projection of PI and should not be
seen as an interference model (Giocomo et al., 2011; Burgess et al.,

2007), even if the process is somehow similar to a spatial
interference. The difference in relative direction preference of two
neurons on the PI field defines the grid orientation whereas the
modulo value determines the grid spacing.

The drift of PI over time requires us to introduce a recalibration
procedure to allow spatial stabilization of the grid cells according to
the animal position in its environment (Gaussier et al., 2007). The
recalibration can be performed by visual place cells or from tactile
information such as that stemming from environmental boundaries
(Hardcastle et al., 2015). Robotics experiments (Jauffret et al.,
2015) confirm that the sharpness of grid maps is better if the
recalibration takes place in a corner of the arena rather than in the
middle of the arena because the walls stop the robot and provide a
more reliable positioning for the reset or recalibration of the PI field
(see Fig. 3B for an example of grid cells obtained from the
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Fig. 2. Robot place cells from vision (Gaussier et al., 2002). (A) Each box represents the contour level of one cell labelled ccmXX, where XX is the neuron
number. The cells react preferentially to their associated place in the room. (C,D) Two examples of robot view cells obtained in the same environment when
the visual field of view is reduced from 300 to 180 deg (Gaussier et al., 2002). The circle with an arrow represents the position and orientation of the robot
during the learning. All the other oriented bars represent the activity of the same cell for different positions while the robot is in the orientation of the bar. The length
of the bars is proportional to their discharge frequency.
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projection
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projection
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projection

Grid cells
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Attraction field Recalibration map
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Cell 2 Cell 3 Cell 4

Cell 7 Cell 8 Cell 9

Cell 2 Cell 5 Cell 8

Visual PCs
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C

Fig. 3. Robot grid cells from path integration and visual recalibration. (A) Architecture for path integration and building grid code. The input is a one-
dimensional path integration (PI) field. The activity of two neurons is discretized and projected with amodulo operator onto dorsal medial entorhinal cortex (dMEC)
cells to build grid cells. Recalibration of the PI field is performed thanks to the visual recognition of one specific place (usually in the corner of the environment for
better performances). Vi, activity of neuron φi on the PI field; EC, entorhinal cortex; PC, place cell; Pr, perirhinal; Ph, parahippocampal. (B) Example of grid cells
recorded in a robotic experiment. Blue arrows represent the place/action association used by the robot to come back to the home base in the hexagonal
environment. (C) The activity of nine grid cells associated with three resolutions or spacings and their respective auto-corellogram.
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projection of the discretized activity of a 1D PI field using a modulo
projection). From a spectrum of grid cells with different spatial
frequencies, it becomes possible to build place cells (Solstad et al.,
2006; Gaussier et al., 2007). Yet to obtain useful place recognition
for navigation, it is important to avoid the merging of too sharp grid
cells. As a matter of fact, the use of binary grid codes provides place
cells with a weak generalization property. If the contribution of each
grid is the same for the recognition of a place, this means that a
change in the smallest grid resolution has the same effect as a
change in the largest grid resolution, resulting in very poor
navigation (and generalization) capabilities. To overcome this
difficulty, a simple technical solution would be to smooth the grid
activity pattern using positive lateral interaction between the
neurons having the same grid spacing. Hence, there is a need to
control the size of the peak activity of grid cells to obtain a good
generalization. The need for both a competition mechanism, to learn
a sparse code, and positive lateral interactions (or at least a positive
effect of interaction), to allow better generalization capabilities, is
reminiscent of the properties of the attractor networks. Yet, there is
no particular constraint on the lateral interaction weights in terms of
regularity of the connectivity or homogeneity in the weight values
(e.g. to avoid bias in a given direction).
For these reasons, the grid cell system appears to be a better

candidate to represent and categorize the displacements than a
system for the computation of PI. This seems to be confirmed by the
recordings of grid-like neuronal activity during human spatial
navigation in a virtual environment (Jacobs et al., 2013) and in
functional magnetic resonance imaging studies (Doeller et al., 2010;
Stangl et al., 2018). It must be emphasized that in a multi-
compartment environment, where the open field is broken up by
barriers, the grid cell firing pattern is fragmented [the grid map is
reset when the animal enters a new alley (Derdikman et al., 2009)].
Moreover, grid cells mature more slowly than place cells (Langston
et al., 2010; Wills et al., 2010). This could support our initial
intuition of a PI performed outside the HS for our grid cell model in
the MEC (Gaussier et al., 2007).
Finally, it is interesting to note that grid cell firing is also observed

when animals are not moving and when people are performing
ocular saccades on a visual scene (Killian et al., 2012; Wilming
et al., 2018), a task with no obvious relationship to navigation and
PI. Some direction-sensitive cells may also relate to viewing
particular landmarks (Rolls and O’Mara, 1995; Rolls, 1999;
Ekstrom et al., 2003). In the next section, we examine whether
grid cells can be built from visual information only (without the
need of idiothetic information and PI).

Grid cells from still images
In the second section (‘Place cells from visual information’), ‘what’
and ‘where’ information were merged in the EC to obtain large
visual place fields, whereas in the third section (‘Grid cells from
path integration’), different projections of PI were merged after a
modulo operation to obtain grid fields. What would happen if the
modulo projection was applied to the azimuth or to the apparent
distance of different landmarks connected to the same conjunctive
cell used for building visual place cells?
We show here that simulated grid cell activity can be obtained

from visual information only (similar to Killian et al., 2012;
Wilming et al., 2018). For the sake of simplicity, we propose that the
modulo operation is only performed on the angular or distance
information related to some visual landmark (the ‘where’
information). If a cell learns at a given position the conjunction of
the modulo projection of two distinct landmark fields (see Fig. 4A),

it will be reactivated for all the angular positions associated with the
conjunctive cell [i.e. for all the angles θi such that
proj(θi)=proj(θlearned), where proj is a projection following the
modulo principle (see Fig. 4A) and θlearned is the azimuth associated
with the neuron activated for the learned position]. The places where
the two modulo patterns coincide correspond to grid activity as
shown in Fig. 4B–D.

First, we consider the minimal case of an environment with two
different landmarks (i.e. landmarks associated with the recognition
of different visual features) L1 and L2 located at the coordinates (0,0)
and (0,50) in a simulated environment. The azimuths are computed
from landmark angular positions relative to an absolute direction
obtained from idiothetic information (vestibular compass or even a
visual compass; Delarboulas et al., 2014) measured at the center of
the environment. We assume here that one conjunctive cell in the
EC has learned the landmark configuration at the center of the
environment [for the coordinates (25,25)]. Fig. 4C shows that grid
patterns are directly obtained from the conjunction of the modulo of
the azimuth (according to Eqn A1 in the Appendix). A high
thresholding of cell activity, in our case set to 0.995, is necessary for
contrast enhancement. Neurons with an activity level lower than the
average activity are set to zero and a high gain is applied so that the
maximum of activity is set to 1. Without this strong competition, all
neurons would be very active.

Fig. 4E shows the results with four different identifiable
landmarks located in the four corners of the visible environment.
The grid distribution is much more regular in this case. Using the
apparent size of the landmarks instead of their azimuth produces
slightly different results as the apparent size varies as the arc tangent
of the distance and induces non-homogeneous deformations (see
Appendix for more details).

Yet, to obtain hexagonal grid maps, several constraints must be
verified. (1) The ‘where’ information must be preserved when
animal’s displacements induces view changes. Either the
recognition of ‘what’ information has to be powerful enough to
be invariant to the animal’s displacements, or each piece of ‘where’
information has to be stored in an attractor network, allowing a
smooth update of the landmark heading when the animal is moving.
(2) The conjunctive cells merge the activity of few landmarks. If the
number of landmarks used to build one grid cell becomes too high
(for instance, using 30 landmarks), the probability of obtaining a
grid cell decreases because the landmarks allow a complete place
discrimination in spite of the folding (sharp place cells are obtained
instead of grid cells). (3) It is very important to merge landmarks
associated with very different orientations relative to the position
where the learning was triggered. The best results will be obtained
for an angular distance approximately 60 deg between two
landmarks. This value does not need to be precise, as shown in
our simulations (e.g. see Fig. 4E), but still the use of the cell activity
will be more relevant if the angular distance between the landmarks
allows a good differentiation of the grid pattern. If we suppose that
the ‘where’ information comes from an activity bump in the RSC or
the parietal cortex, its shape could be similar to that of HD cells. If
their activity covers 90 deg and we consider that a given conjunctive
cell tries to maximize the independence between its inputs, then two
landmarks with angular differences less than 45 deg will present an
overlap and will have a lower independence score for learning (so
their conjunction should not be selected for the learning of a grid
cell). However, an angular landmark distance of approximately
60 deg will present the best independence score. If a modulo
operator is used, then there will be coincidence for larger angular
differences. Hence, if we assume the cells are conjunctive cells
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using some kind of maximum of independence to build the modulo
operator and to select landmarks, then grid cell patterns should be
obtained. (4) To obtain effective grid activity, an important
thresholding needs to be performed as well as a strong
competition between the cells, especially if the bump activity on
the ‘where’ field is large, allowing high activity for a distant
azimuth, especially after the modulo projection.
Even if azimuth information seems more reliable than visual

distance information, integration of both types of information in
visual grid cells can provide more accurate discrimination
(conjunction of the landmark identity×azimuth×elevation). In the
brain, clearly the projection of the cortical areas coding for
the landmark identity or features could also be compressed using
the same folding mechanism proposed for azimuth and elevation
without changing the main properties at study here.

Discussion and conclusions
Our work supports the hypothesis that the EC is able to build
compact representations of cortical activity. Assuming that the HS
tries to detect spatio-temporal configurations of the brain activity, it
is important that the EC builds a compact code representing the
complex instantaneous configuration of the brain activity (including
sensory-motor activities, internal body state, emotions, motivations,
etc.). To differentiate a huge number of states presumably largely
superior to the number of neurons in the EC, each LEC or MEC
neuron must receive projections from a large number of cortical
neurons through the postrhinal and perirhinal cortices. If neighbor
neurons in the cortex code for neighbor states and are projected onto
the same EC neuron, then the capability to discriminate between
neighbor states in the hippocampus would be very poor. A modulo
projection (cyclic projection using a modulo operator) of cortical
information on a set of EC neurons minimizes the risk that the same
EC neuron will be activated from neighbor situations. More
precisely, the modulo projections using prime numbers are a good
way to build a hash code of the cortical activity. This projection
minimizes collisions similar to how a correspondence table, used in
computer science, represents a complex state (e.g. words in a
dictionary) with a short reference code. Although in computer
science, collisions are an important issue that need to be avoided, in
our model, local collisions can be accepted for states belonging to
different environments because other projections may provide away
to avoid confusion. The modulo projection could be explained by
biological self-organization mechanisms following the Turing
diffusion equation as proposed by McNaughton et al. (2006), by
the competition between cells in an attractor network (Giocomo
et al., 2011) or by the hexagonal tiling of place cells in a competitive

structure [if the recruitment of visual place cells is performed when
the activity of the most activated place cell is below a given
threshold, then the result is a hexagonal tiling of the environment
(Gaussier et al., 2007) that could be used as a way to modulate EC
learning]. Another solution could be based on synaptic learning
rules using the hypothesis that neighboring neurons in the cortex
cannot project onto the same neuron in the EC, or that EC neurons
try to maximize the diversity of their inputs across their dendritic
tree. If the input comes from some cortical HD cells with bumps of
activity having a radius of approximately 60 deg, it would be
possible that selecting landmarks with as little as possible overlap
on the conjunctive cells would end in triangular grid activity of
approximately 60 deg. Hence, it looks as if several different
mechanisms could contribute alone or in mixed way to explain the
necessary properties of the modulo mapping necessary in our
model.

Starting from homing behaviors and detour problems in
navigation (Gaussier et al., 2000), we conclude as others (Spiers
and Gilbert, 2015) that ‘path integration’ or ‘dead reckoning’
(Etienne and Jeffery, 2004) may (Worsley et al., 2001; Wolbers
et al., 2007; Stangl et al., 2018) or may not (Shrager et al., 2008;
Kim et al., 2013) involve hippocampal–parahippocampal structures,
and that this involvement perhaps depends on the distance navigated
(Gaussier et al., 2007; Arnold et al., 2014). Our different studies, as
well as work on insect modeling (Stone et al., 2017; Schwarz et al.,
2017; Goldschmidt et al., 2017), support the hypothesis that PI can
be obtained without the need of EC grid cells. HD cells or any kind
of internal compass associated with local memories (to support
temporal integration) can be used to perform PI in different brain
structures [different kinds of reset/preset and different time
constants are sufficient to explain many different cells found in
the RSC and the parietal cortex (P.G. and J.L.K., unpublished
data)]. Grid cells from PI can be explained from the projection of the
discretized activity of a 1D field presumably located in the RSC
without the need of a two-dimensional attractor network in the EC
(Gaussier et al., 2007; P.G. and J.L.K., unpublished data). Some EC
cells would be dedicated to representing in a concise way different
cortical PI vectors thanks to a modulo projection. Yet, the PI
mechanism required recalibration based on recognition of some
specific places or boundaries/corners in the environment. This
could explain why the disruption of the MEC seems to induce an
incapacity to perform PI (Gil et al., 2018) and why young rats can
recognize places and navigate correctly despite their immature grid
cells (Bjerknes et al., 2018). Indeed, our model suggests that grid-
like activity in the MEC is not necessary to build place cells, but
place cells are important for the recalibration of PI.

Applying the modulo projection to the ‘where’ information in an
image (i.e. relative azimuth and elevation) can explain other forms
of grid activity found in the human brain (Killian et al., 2012, 2015;
Killian and Buffalo, 2018). Our results on grid cells also bear a
relation with results from Krupic et al. (2015) showing that grid cell
symmetry is shaped by environmental geometry. In the same way,
non-spatial information would also take advantage of the modulo
projection and conjunctive cells could maximize the independence
between input codes. They could correspond to some stripe activity
or some grid activity in complex sensory space, explaining why the
activity of these neurons is not easy to decode or associate with a
specific situation. From our model, we predict that the activities
related to non-spatial modalities should also provide some periodic
folding. Projection of tactile information at the cortical level could
generate interesting grid patterns. For audio information, or the
perception of time, the information being mainly unidimensional,

Fig. 4. Building grid cells from visual information. (A) Neural network
architecture for building grid cells based on the merging of at least two different
fields (i.e. two azimuths, distance, etc.). θ and Ψ: discretized field showing the
azimuth of landmark L1 and L2, respectively; θmod 5 andΨmod 5: projections
of θ and Ψ, respectively, with a modulo of 5. (B) Visual grid cells obtained from
the conjunction of two landmark×azimuth couples with a modulo projection on
the azimuth field. P, current position of the animal. (C,D) Activity of two visual
grid cells according to the position of the simulated animal in a square
environment (size 50×50 in simulation units). The activity is displayed after
thresholding and contrast enhancement of the conjunction of two
landmark×azimuth couples with a modulo projection on the azimuth field.
(C) Modulo=180/20 and (D) modulo=180/30. (E) Visual grid cells obtained
from the conjunction of four landmark×azimuth couples with a modulo
projection on the azimuth field 180/30 and threshold=0.9. (F) Visual grid cell
obtained from the conjunction of two landmark×visual distance couples with a
modulo projection on the distance field size/6. Neuron threshold is 0.995.
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the modulo folding should induce some stripe-like activity where
the same neuron would be activated for increasing delays (perhaps
non-periodic because the time perception is not linear with the clock
time). Even some trace of temporal activities (if discretized) could
activate periodically the same EC conjunctive cell.
To obtain grid patterns as predicted by our model, several

constraints need to be verified. For visual grid cells, the competition
in the EC superficial layer (EC2) has to be strong enough to help
isolate the maxima associated with the grid activity. Yet, if the
number of coherent landmark azimuths or distances used by a given
conjunctive cell is too large, our simulations show that this cell
becomes a place cell because a high response can only be obtained
for a single location. This is not a strong constraint if we suppose
that the time window for the temporal integration on conjunctive
cells in the dMEC is limited or that information related to visual
local views is merged before it reaches the EC, so that the EC
receives only a limited number of signatures characterizing the
visual environment (conjunction of visual signatures distant of an
angle of ∼60 deg). Next, because the modulo value controls the
scale of the grid, the modulo value should be related to the position
on the dorso-ventral axis of the EC. More work needs to be
performed to determine whether the √2 scale variation found by
Stensola et al. (2012) in the field spacing of grid cells could be
related to the distance integration properties on the PI fields (leaky
integrators) used as input. Our robotic experiments show that the
projections of visual information without the modulo operator
produce place cells or view cells with large fields. The modulo
operator could help in building precise place recognition, and this
would be useful for the hippocampus to recognize transitions from

one location to another. Yet this modulo mapping can induce the
loss of a priori generalization capabilities to neighbor locations and
the incapacity to perform a shortcut or a detour to reach a goal when
starting from a place never visited but belonging to a known visual
environment. If the projection on the ventral MEC is not performed
using a modulo projection or with a very large modulo, then the
ventral MEC could code for the large visual place cells used in our
robots for visual navigation in an open environment (large place
cells allow some competition mechanism to find a shortcut and
reach a homing location from a long distance). These cells could
correspond to those found previously (Quirk et al., 1992; Song et al.,
2012) or the unclassified MEC cells (Savelli et al., 2008).

Finally, in this paper, we focused only on the feedforward
integration of information coming from associative cortical areas
onto the EC with the hippocampus proper as a merging output to
obtain state categorization. In previous work (Gaussier et al., 2002;
Banquet et al., 2005), we proposed that the hippocampus learned to
predict transitions between places or any state characterizing the
current behavior (and its timing) for the building of cognitive
graphs. In the fronto-parietal network, the feedback loop from
neurons in CA1 to the subiculum and the deep layers of EC (EC5/6)
can be used as a way to predict the next states (see Fig. 5). Our
modulo projection model could take advantage of any feedback
from the hippocampal activity to stabilize the grid activity. Because
our model shows that grid cells may be obtained from different
modalities, we face the issue of the alignment of these different
grids. In navigation tasks, if grid cells are primarily obtained from
the modulo projection of a discretized PI code (or landmarks) built
outside the HS (presumably in the RSC), maintaining the alignment
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of the grid pattern when one goes from one environment to another
and then back again requires recalibrating the PI and/or the head
orientation always in the same way as in the original environment.
Assuming the recognition of specific places or transitions between
places is performed in the hippocampus proper, impairment at the
hippocampal level should suppress the coherent recalibration of the
different PI fields inducing drift in the grid patterns from one
experiment to the next, as shown by Stangl et al. (2018) for
Alzheimer’s disease.
However, this PI outside the HS does not suppress the capabilities

of the hippocampal loop to maintain and update grid patterns in the
EC. As seen on Fig. 5, movement integration activity coming from
the subiculum and its thalamic input the anterodorsal nucleus of the
thalamus (where HD cells are found) can be easily associated with
the transition between ‘important’ places to build conjunctive
grid×HD cells (Sargolini et al., 2006). It would be interesting to
classify CA1 neurons as ‘transitions cells’ instead of classical ‘place
cells’ because one transition can trigger a unique action whereas a
place cell can be associated with multiple actions. Hence, while
selecting an action from a winning place cell is not direct because
several actions may be associated with the same place, a unique
action will be associated with a winning transition (Gaussier et al.,
2002; Banquet et al., 2005; Hirel et al., 2013). Moreover, the
transitions should predict the future state of the system and can be
very useful for self-assessment [novelty detection, detection of
deadlock, etc. (Jauffret et al., 2013)] and the building of a cognitive
map in the fronto-parietal network. As a result, the hippocampus
can be seen as a predictor of complex spatio-temporal and
multimodal events allowing the detection of novelty and the
coding of future transitions (and timing).
Results showing the importance of theta oscillations (Brandon

et al., 2011; Koenig et al., 2011) and the excitatory drive from the
hippocampus (Bonnevie et al., 2013) or the existence of grid cells
without theta oscillations in the EC of bats (Yartsev et al., 2011)
could be interpreted in light of the hippocampal loop and the
interaction between the hippocampus and the septum (Hasselmo
and Schnell, 1994; Hasselmo, 2006). Our model would be also
consistent with Sanders et al.’s (2015) questioning whether PI
occurs in the EC and their proposal about mind-travel in the
hippocampus (see also Gorchetchnikov and Grossberg, 2007;
Mhatre et al., 2012; Grossberg and Pilly, 2014). The formation of
grid cells from an extra-hippocampal PI does not exclude the
capacity of the EC to combine their ‘stripe cells’ (note that the
proposed ‘stripe cells’ could correspond to the result of the modulo
projection of the discretized activity of our one-dimensional PI field
in a given direction (Gaussier et al., 2007)] to form grid cells and/or
to use the hippocampal loop to predict the evolution of the grid
pattern, especially if we suppose that EC neurons learn the
correlations between different input signals. One important point
in the future will be to determine which pathway(s) control the
formation of the grid cells and their shape. It is likely that some
pathways are very important for the maturation and organization of
grid cells and that other sources of information could provide
sufficient information to maintain the grid patterns (and to exploit
them) in the absence of the first ones. These are very challenging
questions both for cognitive sciences and for the development of
robust navigation systems.

Appendix
In the simulations, the animal is located according to its (x,y)
floating-point coordinates, its head direction and instantaneous
speed (mass and other inertial constraints are neglected because

navigation issues are not our main topic in this paper). There is no
discretization for the agent location. The landmarks are recognized
by a group of neurons. The output of these neurons can be
represented by a vector L such that Li is the recognition level of the
neuron i. We assume either a sequential exploration of the
landmarks or a simultaneous access to fields of neurons
associated with azimuths or some reference point. At each time
step, a landmark can be recognized and the gaze direction can be
coded in the azimuth field for horizontal information [see
Giovannangeli et al. (2006) for more detail of the neural network
taking into account both azimuth and site information to recognize a
place in navigation tasks in robots]. The vertical position of the
landmark could be associated with an apparent distance field. To
avoid writing the discretized equation of the neural fields and its
projection, we can use the variable θ to represent both the angle and
the neuron associated with this angle and the same for its modulo. In
this case, the activity of one grid cell at position p can be written as
follows:

Gð pÞ ¼
Yn
i¼1

1� hi ðui modmiÞ �W
umi
i

���
���

� �
; ðA1Þ

where W
umi
i represents the ith link associated with θi after the

modulo operation with mi, and hi is a scaling factor defining the
maximum decrease of the conjunction according to the variation of
projection after the modulo operator. In a more general form, the
grid cell equation can also be written as follows:

Gk1;k2;...;knð pÞ ¼
Ykn
k¼k1

XNk

i¼1

fkðFkð p; iÞ � ððimodmkÞ ¼ WkÞÞ;

ðA2Þ

where i is the index of the neuron on the Fk field, the kth input field,
and Fk ( p,i) is the activity of the neuron i on the field when the
animal is at position p. Each field is composed of Nk neurons (the
size of the field). mk is the value of the modulo operator applied on
the projection of the field, and fk() is a function representing the
activity bump on the input field k.

Place cell and not grid cell activity
If the number of landmarks used increases, the probability of
obtaining grid cells decreases. Yet, place discrimination increases
owing to the increase of independent information. In the following
example (Fig. S1), with 10 random landmarks located on the four
different sides of the environment, we have still some kind of grid or
wave activity. However, with 30 random landmarks, there is a peak
of activity at the center of the arena: the location used to build the
code. We can also obtain cells that look like place cells with modulo
π/4 when using 30 ‘landmarks’ randomly distributed around the
simulated room (see Fig. S2). In this case, the ‘place field’ is much
larger because of the choice of a higher value for the modulo.

Visual grid cells from apparent landmark size
Distances can be obtained from the apparent size of a given
landmark in the camera image. This apparent size corresponds to the
elevation of the landmark. Hence, for a landmark of height h located
at a distance d from the animal, the visual angle is φ=arctan(h/d ).
This information has to be scaled according to the number of
neurons or pixels in the vertical dimension of the camera. In our
case, for the sake of comparison, we consider that an angle of π/2
corresponds to the maximal distance dmax to allow comparisons
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between azimuth and apparent size (or elevation). The visual
distance is computed as dv=dmax·(φ/2π), where φ is the elevation. In
our case, we simulate a room of 5×5 m with dmax=2√5 and visual
landmark of size d=1 m.We see the activity decreases less than from
classical distance. With a threshold of 0.995, there are still plenty of
activated locations.
For comparison purposes, in the following simulations, the

distance is used explicitly as it can be provided by a regular PI
starting from each landmark. With two landmarks in the corners and
amodulo value equal to the size of the environment divided by 6, we
have still grid cells has shown in Fig. S3A,B. With 30 landmarks
and a modulo equal to the size of the environment divided by 10, the
grid pattern disappears as with the apparent size information
(Fig. S3C,D). With four landmarks taken at the corners, we obtain
quite regular grid cells, as shown Fig. S4. The activity pattern looks
very regular because of the specific geometrical properties of this
configuration. The distortions are not visible in this case.
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a) b)

c) d)

Figure S1: Visual grid cells obtained from the conjunction of respectively 10 (a)
and 30 (b) random landmarks x azimuths couples with a modulo projection on
the azimuth field π/30 and threshold=0. (c) and (d) again 10 and 30 landmarks
with a threshold of 0.995.
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Figure S2: Large visual place cells obtained from the conjunction of 30 random
landmarks x azimuths couples with a modulo projection on the azimuth field
π/4 and threshold=0.

a) b)

c) d)

Figure S3: a) and b) Grid cells obtained from the conjunction of 2 landmarks
x distance couples with a modulo projection on the distance field size/6 with
threshold=0. and 0.95 respectively. c) and d) Grid cells obtained from the con-
junction of 30 random landmarks x distance couples with a modulo projection
on the distance field size/10 with increasing threshold=0. and 0.98
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Figure S4: Visual place cells obtained from the conjonction of 4 landmarks
x distance couples with a modulo projection on the distance field size/6 with
threshold=0. and 0.98
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