M. Al-ayyoub, A. A. Khamaiseh, Y. Jararweh, and M. N. Al-kabi, A comprehensive survey of arabic sentiment analysis, Information Processing & Management, 2018.

L. Al-horaibi and M. B. Khan, Sentiment analysis of arabic tweets using semantic resources, International Journal of Computing & Information Sciences, vol.12, issue.2, p.149, 2016.

M. Al-kabi, M. Al-ayyoub, I. Alsmadi, and H. Wahsheh, A prototype for a standard arabic sentiment analysis corpus, Int. Arab J. Inf. Technol, vol.13, issue.1A, pp.163-170, 2016.

A. Al-shabi, A. Adel, N. Omar, and T. Al-moslmi, Cross-lingual sentiment classification from english to arabic using machine translation, International journal of advanced computer science and applications, vol.8, issue.12, pp.434-440, 2017.

A. M. Alayba, V. Palade, M. England, and R. Iqbal, A combined cnn and lstm model for arabic sentiment analysis, International Cross-Domain Conference for Machine Learning and Knowledge Extraction, pp.179-191, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02060041

S. S. Alotaibi and C. W. Anderson, Extending the knowledge of the arabic sentiment classification using a foreign external lexical source, Int. J. Nat. Lang. Comput, vol.5, issue.3, pp.1-11, 2016.

A. Barhoumi, Y. Estève, C. Aloulou, and L. Hadrich-belguith, Document embeddings for arabic sentiment analysis. Language Processing and Knowledge Management, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02042060

F. Benamara, C. Grouin, J. Karoui, V. Moriceau, and I. Robba, Analyse d'opinion et langage figuratif dans des tweets présentation et résultats du défi fouille de textes DEFT2017, Actes de DEFT, 2017.

N. Boudad, R. Faizi, R. Oulad-haj-thami, and R. Chiheb, Sentiment analysis in arabic: A review of the literature, Ain Shams Eng J, 2017.

D. Croce, G. Castellucci, and R. Basili, Injecting sentiment information in contextaware convolutional neural networks, 2016.

R. Duwairi, N. A. Ahmed, and S. Y. Al-rifai, Detecting sentiment embedded in arabic social media-a lexicon-based approach, Journal of Intelligent & Fuzzy Systems, vol.29, issue.1, pp.107-117, 2015.

S. R. El-beltagy, Weightednileulex: A scored arabic sentiment lexicon for improved sentiment analysis. Language Processing, Pattern Recognition and Intelligent Systems. Special Issue on Computational Linguistics, Speech& Image Processing for Arabic Language, 2017.

A. Elnagar, O. Einea, and L. Lulu, Comparative study of sentiment classification for automated translated latin reviews into arabic, 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), pp.443-448, 2017.

R. Eskander and O. Rambow, Slsa: A sentiment lexicon for standard arabic, Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pp.2545-2550, 2015.

I. Guellil, A. Adeel, F. Azouaou, and A. Hussain, Sentialg: Automated corpus annotation for algerian sentiment analysis, 2018.

H. S. Ibrahim, S. M. Abdou, and M. Gheith, Automatic expandable large-scale sentiment lexicon of modern standard arabic and colloquial, Arabic Computational Linguistics (ACLing), 2015 First International Conference on, pp.94-99, 2015.

Y. Kim, Convolutional neural networks for sentence classification, In: In EMNLP. Citeseer, 2014.

P. Koehn, H. Hoang, A. Birch, C. Callison-burch, M. Federico et al., Moses: Open source toolkit for statistical machine translation, Proceedings of the 45th annual meeting of the ACL on interactive poster and demonstration sessions, pp.177-180, 2007.

Q. Le and T. Mikolov, Distributed representations of sentences and documents, Proceedings of the 31st International Conference on International Conference on Machine Learning, vol.32, 2014.

A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng et al., Learning word vectors for sentiment analysis, Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies, vol.1, pp.142-150, 2011.

F. H. Mahyoub, M. A. Siddiqui, and M. Y. Dahab, Building an arabic sentiment lexicon using semi-supervised learning, Journal of King Saud University-Computer and Information Sciences, vol.26, issue.4, pp.417-424, 2014.

J. May, Proceedings of the 10th International Workshop on Semantic Evaluation (SemEval-2016), pp.1063-1073, 2016.

S. Mohammad, F. Bravo-marquez, M. Salameh, and S. Kiritchenko, Proceedings of The 12th International Workshop on Semantic Evaluation, pp.1-17, 2018.

S. M. Mohammad, M. Salameh, and S. Kiritchenko, How translation alters sentiment, Journal of Artificial Intelligence Research, vol.55, pp.95-130, 2016.

M. Nabil, M. Aly, and A. Atiya, Labr: A large scale arabic sentiment analysis benchmark, 2014.

P. Nakov, T. Zesch, and D. Cer, Proceedings of the 9th International Workshop on Semantic Evaluation, 2015.

B. Pang and L. Lee, Opinion mining and sentiment analysis, Foundations and Trends R in Information Retrieval, vol.2, issue.1-2, pp.1-135, 2008.

E. Refaee and V. Rieser, Benchmarking machine translated sentiment analysis for arabic tweets, Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pp.71-78, 2015.

S. Rosenthal, N. Farra, and P. Nakov, SemEval-2017 task 4: Sentiment analysis in Twitter, Proceedings of the 11th International Workshop on Semantic Evaluation. SemEval '17, 2017.

M. Salameh, S. Mohammad, and S. Kiritchenko, Sentiment after translation: A casestudy on arabic social media posts, Proceedings of the 2015 conference of the North American chapter of the association for computational linguistics: Human language technologies, pp.767-777, 2015.

L. C. Yu, J. Wang, K. R. Lai, and X. Zhang, Refining word embeddings for sentiment analysis, Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.534-539, 2017.

R. Zhang, H. Lee, and D. Radev, Dependency sensitive convolutional neural networks for modeling sentences and documents, Proceedings of NAACL-HLT, pp.1512-1521, 2016.