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Abstract

We study the superhedging prices and the associated superhedging strategies for
American options in a non-linear incomplete market model with default. The points of
view of the seller and of the buyer are presented. The underlying market model consists
of a risk-free asset and a risky asset driven by a Brownian motion and a compensated
default martingale. The portfolio processes follow non-linear dynamics with a non-
linear driver f. We give a dual representation of the seller’s (superhedging) price for
the American option associated with a completely irregular payoff (§;) (not necessarily
cadlag) in terms of the value of a non-linear mixed control /stopping problem. The dual
representation involves a suitable set of equivalent probability measures, which we call
f-martingale probability measures. We also provide two infinitesimal characterizations
of the seller’s price process: in terms of the minimal supersolution of a constrained
reflected BSDE and in terms of the minimal supersolution of an optional reflected
BSDE. Under some regularity assumptions on £, we also show a duality result for the
buyer’s price in terms of the value of a non-linear control/stopping game problem.

Key-words: American options, incomplete markets, non-linear pricing, constrained re-
flected BSDE, f-expectation, control problems with non-linear expectation, optimal stopping
with non-linear expectation, non-linear optional decomposition, pricing-hedging duality

1 Introduction

We consider a financial market with a default time ). The market contains one risky asset
whose price dynamics are driven by a one-dimensional Brownian motion and a compensated
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default martingale. We study the case of a market with imperfections which are encoded
in the non-linearity of the portfolio dynamics. Imperfections entering into this framework
include different borrowing and lending interest rates (cf. [28], [7]), different repo rates (cf.
[4]), the presence of a large investor (cf. [8], [2], [11]), among others. We note that our market
is incomplete in the sense that not every European contingent claim can be replicated by
a portfolio. In this framework, our paper [23] studies the problem of pricing and hedging
of European options (from the point of view of the seller and of the buyer). In the present
paper, we focus on the problem of pricing and hedging of American options from the point
of view of the seller and of the buyer.

We recall that in the case of a non-linear complete market, the seller’s (superhedging)
price of the American option with a cadlag payoff (&) is equal to the value of the optimal
stopping problem with non-linear f-evaluation/expectation, associated with the given payoff
(&) (cf. [14]). Moreover, the price process admits an infinitesimal characterization as the
solution of the reflected BSDE associated with driver f and obstacle (&): cf. [19] in the
Brownian case and for a continuous payoff (&;), and [36] (resp. [14]) in the case of Poisson
jumps (resp. a default jump) and a cadlag process (&). More recently, these results have
been generalized to the case of an irregular payoff (&) (not necessarily cadlag) in [20] and
21].

In the non-linear incomplete market of the present paper, we provide a dual formulation of
the seller’s (superhedging) price ug of the American option associated with an irregular pay-
off (&) (not necessarily cadlag) in terms of the value of a non-linear mixed control/stopping
problem. The dual representation involves a suitable set Q of equivalent probability mea-
sures, which we call f-martingale probability measures. More precisely, we show that wug is
equal to the supremum, over all f-martingale measures () € Q and over all stopping times
7, of the (f, @)-evaluation of &, at time 0, that is,

Uy = sup 55,0,7(57)- (1.1)
(Q,1)eQXT

In the case when f is linear and (&) is cadlag, our result reduces to the well-known dual
representation from the literature on linear incomplete markets (cf. [29]). We also provide
two types of infinitesimal characterizations of the (superhedging) price ug for the seller: in
terms of the minimal supersolution of a constrained reflected BSDE with default (associated
with the driver f and the obstacle (§)), and in terms of the minimal supersolution of an
optional reflected BSDE with default. We note that, even in the linear case (f linear), these
results are new, since in the literature, only the cadlag case has been studied. The treatment
of the non cadlag case requires the introduction of an additional non decreasing process
corresponding to the right-hand jumps of the price process. Using some specific techniques
of the control theory and the general theory of processes, we show that this process increases
only when the price is equal to the payoff. The proofs of the dual representation and of the
infinitesimal characterizations rely also on the non-linear optional decomposition of optional
(not necessarily cadlag) processes which are (f,Q)-strong supermartingales for all Q € Q
(cf. our result established in [23]).

Under some regularity assumptions on the payoff &, we also show a dual representation for



the buyer’s superhedging price at time 0, denoted by g, in terms of the value of a non-linear
control/stopping game problem, which can be written as

o = sup inf {4 (~&)} = inf sup{=EG (=)} (12)
We note that, contrary to the case of a European option (studied in [23]), the buyer’s price
is not equal to the opposite of the seller’s price of the American option associated with the
payoftf —£.

The rest of the paper is organized as follows: In Section 2, we introduce some notation
and definitions. In Section 3, we first present our market model (Subsection 3.1), we then
introduce the set Q of f-martingale probability measures (Subsection 3.2), we define the
the buyer’s and seller’s superhedging prices of the American option and we discuss no-
arbitrage issues (Subsection 3.3). In Section 4, we establish the duality result for the seller’s
superhedging price. For this, we first study the value Y of the associated non-linear mixed
control /stopping problem, which we write as the (essential) supremum of a family of reflected
BSDEs. We show in particular that Y is the smallest optional process which is an (f, Q)-
strong supermartingale for all () € Q, and which dominates the payoff process. We also
study the strict value Yt of our non-linear mixed control/stopping problem. We show, in
particular, that Y* can be aggregated by a cadlag adapted process. We then give the proof
of the dual representation of the seller’s superhedging price (1.1). In Section 5, we provide
the two infinitesimal characterizations of the seller’s superhedging price process. Section 6 is
devoted to the point of view of the buyer. We first study the value Y of the associated dual
problem, which we write as the (essential) infimum of a family of reflected BSDEs. Then,
under some regularity assumptions on the payoff, we prove the dual representation of the
buyer’s superhedging price (1.2). We also introduce and discuss the notion of buyer’s nearly
superhedging price. The Appendix contains some useful technical results and a discussion
on reflected BSDEs with a non positive jump at the default time.

2 Notation and definitions

Let (2,G, P) be a complete probability space equipped with two stochastic processes: a
unidimensional standard Brownian motion W and a jump process N defined by N; = 1y«
for all t € [0,7], where ¥ is a random variable which models a default time. We assume
that this default can appear after any fixed time, that is P(d > ¢) > 0 for all ¢ > 0. We
denote by G = {G,;,t > 0} the augmented filtration generated by W and N. We denote by
P the predictable o-algebra. We suppose that W is a G-Brownian motion. Let (A;) be the
predictable compensator of the nondecreasing process (N;). Note that (A¢ng) is then the
predictable compensator of (Nyxg) = (N;). By uniqueness of the predictable compensator,
Aipg = Ay, t > 0 a.s. We assume that A is absolutely continuous w.r.t. Lebesgue’s measure,
so that there exists a nonnegative process A, called the intensity process, such that A; =
fot Asds, t > 0. To simplify the presentation, we suppose that A is bounded. Since Ajpg = Ay,



A vanishes after 1. Let M be the compensated martingale given by

t
Mt = Nt — / )\Sds .
0

Let T > 0 be the terminal time. We define the following sets:
e 5% is the set of G-adapted RCLL processes ¢ such that E[supg,<p |¢:|*] < 400.

o A2 is the set of real-valued non decreasing RCLL G-predictable processes A with Ay = 0
and E(A%) < oo.

e M2 is the set of G-predictable processes Z such that || Z||* := E[fOT |Zt|2dt] < 00.

o H2 = L2(Qx[0,T], P, A dP@dt), equipped with the norm [|U7]|2 = E[fOT |Ut|2Atdt} <
0.

Note that, without loss of generality, we may assume that if U € H3, it vanishes after 1.

e We denote by T the set of stopping times 7 such that 7 € [0, 7] a.s.
e For S in T, we denote by Tg the set of stopping times 7 such that S <7 < T a.s.

As in [21], the notation S? stands for the vector space of R-valued optional (not necessarily
cadlag) processes ¢ such that ||¢]|2, := Eless sup,c7; |¢-|?] < oo. By Proposition 2.1 in [21],
the space S? endowed with the norm |[|-|s is a Banach space. We note that the space S? is
the sub-space of RCLL processes of S2.

Recall that in this setup, we have a martingale representation theorem with respect to
W and M (see [24], [30]).

We give the definition of a Ad-admissible driver:

Definition 2.1 (Driver, A-admissible driver). A function g is said to be a driver if
g:Ax[0,T] xR = R; (w,t,y,2,k) — glw, t,y,2,k) is PR B(R3)— measurable, and such
that g(.,0,0,0) € H2. A driver g is called a A-admissible driver if moreover there exists a
constant C > 0 such that dP ® dt-a.s. , for each (yi, z1,k1), (Yo, 22, k2),

|g(t7y1’217 kl) - g(t7y27z27 k2)| < C(|y1 - y2| + |Z1 - Z2| + \/)‘_t|k1 - k2|) (21)

A nonnegative constant C which satisfies this inequality is called a \-constant associated
with driver g.

By condition (2.1) and since A\; = 0 on |, T, g does not depend on k on |9, T].

Let g be a A-admissible driver. For all n € L?*(Gr), there exists a unique solution
(X(T,n),Z(T,n),K(T,n)) (denoted simply by (X,Z, K)) in S? x H? x H3 of the follow-
ing BSDE (see [11]):

—dXt = g(t, Xt, Zt, Kt)dt — thWt — thMt, XT =1. (22)
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We call g-conditional expectation, denoted by £9, the operator defined for each T" € [0, T']
and for each n € L*(Gr) by E7.(n) := X(T",n) a.s. for all t € [0,T"].
We introduce the following assumption :

Assumption 2.2. Assume that there exists a bounded map
Y x[0,T] x R 5 R (w,t,y, 2, k1, ko) = 475572 (w)
P @ B(RY)-measurable and satisfying dP ® dt-a.s. , for all (y,z, k1, ko) € R4,

g(t’ Yy, z, kl) - g(tv Yy, z, kQ) Z /ﬁl?z’kth(kjl - k?))‘ta (23)

and
PR s 1, (2.4)

Assumption 2.2 ensures the strict monotonicity of the operator £9 with respect to terminal
condition (see [11, Section 3.3]).

Definition 2.3. Let Y € S%. The process (Y;) is said to be a strong E9-supermartingale *
(resp. martingale) if . (Y;) <Y, (resp. =Y,) a.s. ono <7, for all 0,7 € Ty.

Note that, by the flow property of BSDEs, for each 7 € 7o and for each n € L*(G,), the
process £9,(n) is an £9-martingale.

3 Market model, f-martingale measures and super-
hedging prices

3.1 Market model M/

We now consider a financial market which consists of one risk-free asset, whose price process
SO = (S)g<i<r satisfies dSP = SPridt, and one risky asset with price process S which
admits a discontinuity at time ). Throughout the sequel, we consider that the price process
S = (St)o<t<r evolves according to the equation

dSt == St_ (/,l/tdt + O'tth + 5tht) (31)

All the processes o 1, i, 5 are supposed to be predictable (that is P-measurable), satis-
fying o, > 0 dP ® dt a.s. and 8y > —1 a.s., and such that o, \, 07!, 8 are bounded.

We consider an investor with an initial wealth equal to z, who can invest his/her wealth
in the two assets of the market. At each time ¢, the investor chooses the amount ¢, of wealth
invested in the risky asset. A process ¢ = (¢¢)o<i<r is called a portfolio strategy if it belongs
to H2. The value of the associated portfolio (also called wealth) at time ¢ is denoted by V"%
(or simply V}).

n the case where Y is moreover RCLL (that is, Y € S?), we often omit the term ”strong”.
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We assume now that the dynamics of the wealth is non-linear. More precisely, let z € R
be an initial wealth and let ¢ in H? be a portfolio strategy. We suppose that the associated
wealth process V¥ (or simply V}) satisfies the following (forward) dynamics:

—dV, = f(t, Vi, pror)dt — o0 dWy — i Srd My, (3.2)

with Vo = x, where f is a non-linear A-admissible driver which does not depend on k, such
that f(¢,0,0) = 0. 2
We recall the following lemma (cf. Lemma 3.1 in [23]).

Lemma 3.1. For each x € R and each ¢ in H?, the associated wealth process (V,"?) is an
&S -martingale.

We emphasize that for an arbitrary random variable n € L?, there does not necessarily
exist a pair of processes (X, ) such that (X, pi04, 1) is solution of the BSDE with default
jump associated with driver f and terminal condition 7, that is, such that (X, ¢) satisfies
the dynamics (3.2) with X7 = 7. In other terms, the market is incomplete.

In the sequel, we will often use the following change of variables which maps a process
o € H? to Z € H? defined by Z;, = ¢,0,. With this change of variables, the wealth process
V = V"% (for a given 2 € R) is the unique process satisfying

—d‘/; = f(t, ‘/t, Zt)dt — thWt — ZtO';lﬁtht, % = X. (33)
We recall that in the classical linear case, we have f(t,y,z) = —ry — z0;, where 0, :=

Mt — T
Ot '

3.2 f-martingale measures

We recall the notion of f-evaluation under @) (denoted by SCJ;), the notion of Eé—martingale,
and the notion of f-martingale measure (cf. [23]).

Let @ be a probability measure, equivalent to P. From the G-martingale representation
theorem (cf. [30], [25]), its density process ((;) satisfies

d¢e = (- (oudWy + 1dMy); (o = 1, (3.4)

where (a;) and (1) are predictable processes with vy,r > —1 a.s. By Girsanov’s theorem,
the process WtQ =W, — fot asds is a Brownian motion under (), and the process MtQ =
M, — f(f vsA\sds is a martingale under Q.

As in [23], we define the spaces S%, ]H% and ]I-]IZ2 , similarly to S? H? and H3, but under
probability @ instead of P.

%50 that E_JTT, (0) =0 for all 77 € [0, T].



Definition 3.2. We call f-evaluation under Q, or (f,Q)-evaluation in short, denoted by
55, the operator defined for each T' € [0,T] and for each n € L (Grr) by 85’“,(77) =X
for all t € [0,T"], where (X, Z, K) is the solution in Sf x Hg x H{, , of the BSDE under Q
associated with driver f, terminal time T' and terminal condition n, and driven by W% and
M€, that is ®

—dX, = f(t, X, Z)dt — Z,dWE — K, dMP;,  Xp =n.

We note that &, = &7.

Definition 3.3. Let Y € S3. The process (Yy) is said to be a (strong) Eé-martz'ngale, or an
(f, Q)-martingale, if Sfp,T(YT) =Y, as. ono <, forallo,m € Ty.

We now introduce the concept of f-martingale probability measure.

Definition 3.4. A probability measure ) equivalent to P is called an f-martingale proba-
bility measure if for all x € R and for all o € H? NHZ, the wealth process V% is a strong

Eé—martmgale, or in other terms an (f,Q)-martingale.

We note that P is an f-martingale probability measure (cf. Lemma 3.1).

As in [23], we denote by Q the set of f-martingale probability measures @) such that the
coefficients (oy) and (1) associated with its density with respect to P (see equation (3.4))
are bounded. We note that P € O.

We denote by V be the set of bounded predictable processes v such that vg,r > —1 a.s.,
which is equivalent to v, > —1 for all t € [0,7] \ydP ® dt-a.s. (cf. Remark 9 in [11]).

Proposition 3.5. (Characterization of Q) Let Q) be a probability measure equivalent to P,
such that the coefficients a and v of its density (3.4) with respect to P are bounded. The two
following assertions are equivalent:

(i) Q € Q, that is, Q is an f-martingale probability measure.

(ii) there exists v € V such that Q = Q¥, where Q¥ is the probability measure which admits
CY as density with respect to P on G, where ¥ satisfies

d¢} = ¢ (—vMBroy " AWy + 1 dMy); ¢ = 1. (3:5)

3.3 Superhedging prices and no-arbitrage

Let us consider an American option associated with maturity 7" and a payoff given by a
process (&) € S2.

The superhedging price for the seller of the American option at time 0, denoted by wuyg, is
classically defined as the minimal initial capital which enables the seller to be superhedged no
matter what the exercise time chosen by the buyer is. More precisely, we have the following
definition.

3We note that since we have a representation theorem for (Q, G)-martingales with respect to W< and
M@ (see e.g. Proposition 6 in the appendix of [11]), this BSDE admits a unique solution (X,Z, K) in
53 x Hp x HE, 5.



Definition 3.6. A superhedge for the seller against the American option with initial price
x € R is a portfolio strateqy ¢ € H? such that V"% > &, 0<t <T a.s.

For each = € R, we denote by A(x) the set of all superhedges for the seller associated
with initial price x.
The superhedging price for the seller of the American option at time 0 is thus defined by
up ;= inf{z € R, Jp € A(x)}. (3.6)
We now consider the American option from the point of view of the buyer.

Definition 3.7. A superhedge for the buyer against the American option with initial price
z € R is a pair (1,¢) of a stopping time T € T and a portfolio strateqy p € H? such that
V29 4+¢ >0 a.s.

For each z € R, we denote by B(z) the set of all superhedges for the buyer associated
with initial price z.

We now define the buyer’s price iy of the American option as the supremum of the initial
prices which allow the buyer to be superhedged, that is *

o =sup{z € R, 3(1,¢) € B(2)}. (3.7)

We now introduce the definitions of an arbitrage opportunity for the seller and for the
buyer of the American option.

Definition 3.8. Let z € R. Let y € R, and let ¢ in H?. We say that (y, ) is an arbitrage
opportunity for the seller of the American option with initial price x if

y<z and VY9 -6 >0 as foralTeT.

Definition 3.9. Let x € R. Lety € R, let 7 € T and let ¢ € H?. We say that (y,T, ) is
an arbitrage opportunity for the buyer of the American option with initial price x, if

y>x and V VP 4+£6 >0 as.

Proposition 3.10. Let x € R. There ezists an arbitrage opportunity for the seller (resp.
for the buyer) of the American option with price x if and only if x > uy (resp. x < 1yg).

The proof, which relies on the same arguments as those of the proof of Proposition 5.11
in [14] (see also [26]) is omitted.

Definition 3.11. A real number x is called an arbitrage-free price for the American option
if there exists no arbitrage opportunity, neither for the seller nor for the buyer.

By Propositions 3.10, we get

Proposition 3.12. Ifug < g, there does not exist any arbitrage-free price for the American
option. If ug > 1wy, the interval [tg, up] is the set of all arbitrage-free prices. We call it the
arbitrage-free interval for the American option.

4Note that ug, @9 € R. We shall see below that, under the assumption that || is smaller than or equal
to the value of a portfolio sufficiently integrable (cf. (4.1)), uo is finite (cf. Theorem 4.1), and that, under
this assumption and some regularity conditions on &, g is also finite (cf. Theorem 6.1).



4 Duality for the seller’s superhedging price

From now on, we assume that the payoff (&) is such that there exist z € R and ¢ € H?
satisfying

t t t

G < Vs / Fls, VE¥ o ab)ds + / s dW, + / BabsdM,, 0<t<T, as.
0 0 0

(4.1)

We will establish the following dual characterization of the seller’s superhedging price (in
terms of the f-martingale measures from Definition 3.4).

Theorem 4.1 (Duality for the seller’s superhedging price). Let (&) satisfy Assumption (4.1)
with ¢ € ﬂ,,ey]H%u. The superhedging price for the seller ug of the American option with
payoff (&) satisfies the equality

w=sup g (&)
(r,v)ET XV

Remark 4.2. In the linear case, this result reduces to the well-known dual representation of
the superhedging price for the seller of the American option in an incomplete (linear) market

(cf- [29]).

In order to prove Theorem 4.1, we will work under the primitive probability P, which
will allow us to solve the problem under weaker integrability conditions.
To this aim, we introduce a family of drivers (f*,v € V), which will be used in the sequel.

Definition 4.3 (Driver f” and £”-expectation). For v € V, we define

frw, tyy, 2, k) = fw, t,y, 2) + v(w) M\ (w) (k — ﬂt(w)ofl(w)z).

The mapping f* is a A-admissible driver ®.

The associated non-linear family of operators, denoted by ET" or, simply, £, is defined as
follows: for each T' < T and each 1 € L*(Gyv), we have EVp(n) := X, where (X¥, 2", K”)
is the unique solution in S* x H? x H3 of the BSDE

—dX} = (f(t, X}, Z)) + viM(K] — Bo; ' Z))) dt — ZYdW, — K} dMy; X7, = 1. (4.2)

Remark 4.4. By Proposition 3.5, for eachv € V, for allT' < T andn € L*(Gr)N L. (Grr),
we derive that the (f¥, P)-evaluation of n is equal to its (f, Q")-evaluation, that is,

KT'(U) = 5£v,-,T' (n)-

SSince v is a predictable process, f¥ is P ® B(R?)— measurable. As, moreover, v is bounded, f* is a
A-admissible driver.




4.1 Non-linear problem of control and stopping. The value family
(Y (S))-
Establishing the dual representation for the seller’s superheding price is based on the study

of the following non-linear problem of control and stopping.
For each S € T, let Y(S) be the Gg-measurable random variable defined by

Y(S):=ess sup &g, (&) (4.3)
(r)ETs XV

Remark 4.5. We note that for each S € T, T € Tg and each v € V, the random variable
&5, (&) depends on the control v only through the values of v on the interval [S,7]. For
each S € T, let Vg be the set of bounded predictable processes v defined on [S,T), such that
vy >—1,S<t<T,dP®dt-a.s. We thus have

Y(S)=ess sup E5.(&) as.
(T,v)ETsxVs '

Definition 4.6. We say that a family X = (X(5), S € T) is admissible if it satisfies the
following conditions

In order to facilitate the study of the non-linear problem of control and stopping (4.3),
we introduce the following auziliary non-linear optimal stopping problem: for v € V, for

SeT,

Y¥(S) = ess sup &4, (&) (4.4)

T€Ts

We know from [21] that the value family (Y”(S5))ser of the auxiliary optimal stopping
problem can be aggregated by an optional process (Y;")icio,r) € S? which is a strong £-
supermartingale.

From the definitions and Remark 4.5, we have, for all S € T,

Y (S) =esssup Yy = ess sup Y a.s. (4.5)

veV vEVs

Let us note also that Y (.S) > Yg a.s., as 0 € V. Moreover, since |&| < Vtmp, 0<t<Ta.s.
it follows that for all S € 7, 7 € Ts and v € V, €5 (&) < 6. (|&]) < €5, (V) = VY as.
Hence, taking the essential supremum over 7 € Tg and v € V in this inequality, we derive that
Y(S) < V&Y as. Since YO € S? and V*¥ € §?, it follows that Elesssupger Y (S)?] < 4oo0.

Lemma 4.7. (admissibility) The value family (Y (S))ser of the non-linear problem of control
and stopping is an admissible family, that is,
1. Forall S eT,Y(S) is areal-valued Gs-measurable random variable.

2. Forall S,8"eT,Y(S)=Y(Y) as. on{S =5}
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Proof. By definition (4.5), for each S € T, Y/(S) is Gs-measurable as the essential supremum
of Gs-measurable random variables. Let S, 5" € T be such that S = 5" a.s. We have Y¢ =YY
a.s. for all v € V. Hence, esssup, .y, Y& = esssup,y Y& a.s. From this, together with (4.5),
we get Y (S) = Y(5) a.s. The admissibility of the value family is thus proven. O

Proposition 4.8. (Maximizing sequence) Let S € T. There exists a sequence of controls
(V" )nen with v™ € Vs, for all n, such that the sequence (Y& )nen is non- decreasing and
satisfies:

Y(S) = lim 1YY as. (4.6)

n—oo
Proof. We show that the set {Y¥, v € Vg} is stable under pairwise maximization. Indeed, let
v,V € Vs. Set A:={Y¥ <Y¥}. Wehave A € Fg. Set 7 := v14+1'14.. Then & € Vs. We
have Y214 = esssup, ey, £5,(&)1a = esssup,er, EL-4(&14) = esssup,cr, EL14(614) =
esssup, ey, £6,(6-)1a = Y&l as. and similarly on A°. Tt follows that Y& = Y¥1, +
Y& 1,4 = Y&V YY as. The result of the proposition follows by a classical result on essential
suprema (cf. Neveu (1975)). O

Definition 4.9. (£9-(super)martingale family) Let g be a A\-admissible driver satisfying As-
sumption 2.2. Let (X(S), S € T) be an admissible family such that E[ess supger (X (S5))?] <
o0o. We say that (X(S), S € T) is an E9-supermartingale (resp. £9- submartingale, £9-
martingale) family if for all S,S" € T such that S > S  a.s., £ 5(X(9)) < (resp. >, =)
X(S') a.s.

Proposition 4.10. The family (Y (S)) satisfies the following properties: (Y (S)) is an E¥-
supermartingale family for allv € V and Y(S) > &s a.s. for all S € T. Moreover, (Y (S5))
is the smallest family satisfying these properties.

Proof. For all S € T, for all v € Vg, Y¥ > &g a.s. Hence, for all S € T, Y(5) > &
a.s. Let S8 € T be such that S > S  a.s. By Proposition 4.8, there exists a sequence
of controls (v"),en, With v, in Vg for all n, such that Y(S) = lim, ,o T Y& as. Let
v € V. By the continuity property of £” with respect to terminal condition, we have
&g (Y (S)) = limy, 00 €4 5(Yg™) as. For each n, we set 7' := v 1ljsr g(t) + v{' 1js5.1)(t). We
note that 7" € Vg; hence, f”" is l-admissible. We have f”" = f*1j5 g+ f*" 1)517. Moreover,
Yir =Yg (as f7" = f*" on [S,T), dt @ dP-a.e.). From these observations, we deduce

5 5(Yg") = &5 s(YS) < Ygr,

where the (last) inequality is due to the fact that Y7 is a strong £”"-supermartingale. We
thus get £4 (Y (5)) = TLIL% Eq5(Ysm) < liggg}f Yir <Y(S') as., where the last inequality
follows from (4.5). As v € V is arbitrary, we conclude that the family (Y(5)) is an £¥-
supermartingale family for all v € V.

Let us prove the second statement. Let (Y'(S),S € T) be an admissible family satisfying
the properties: (Y'(S)) is an £Y-supermartingale family for all v € V and Y'(S) > &g
a.s. for all S € T. Let v € V. By the properties of Y’, for all S € T, for all 7 € Tg,
Y'(S) > &, (Y'(1)) > &5.(&) as. By taking the essential supremum over 7 € Ts and
veV, weget Y'(S)>Y(9) as. O
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Corollary 4.11. There exists an r.u.s.c. process (Y;) € S* which aggregates the value
family (Y (S)) of the problem of control and stopping (4.3). The process (Y;) is a strong
EV-supermartingale for allv € V and Yy > &, for allt € [0,T], a.s. Moreover, the process
(Y;) is the smallest process in S? satisfying these properties.

Proof. The above Proposition 4.10 implies in particular that the value family (Y(5)) is a
strong E%supermartingale family. By Lemma A.1 in [23], there exists an r.u.s.c. process
(Y;) in S? aggregating the family (Y'(S)). The other properties of the aggregating process
(Y;) follow directly from Proposition 4.10. O

Corollary 4.12 (The right-continuous case). Assume moreover that the process (&) in
problem (4.3) is RCLL. Then, the process (Y;) is RCLL. Moreover, (Y;) is the smallest
RCLL process in S* satisfying the properties: for each v € V, (Y;) is a (strong) RCLL
EY-supermartingale greater than or equal to (&).

Proof.  This result follows directly from Corollary 4.11, together with Remark A.7 in [23].
O

4.2 The strict value family (Y *(5))

Let S be a stopping time in 75. We denote by Tgs+ the set of stopping times 6§ € 7T, with
6> Sas on{S<T}and § =T as. on {S =T} The strict value Y(S) (at time S) is
defined by

Y(S):=ess sup  Eg (&) (4.7)

(Tv)ETg+ XV

We note that (as for Y'(5)) the set V in the above problem can be replaced with the set Vg
without changing the value of the problem.

We note also that Y(S) = &r a.s. on {S =T1}.

Let S be a stopping time in 7y and let v € V. We introduce the following auziliary (strict)
optimal stopping problem (to be compared with (4.4)):

Y"H(S) == ess sup ¢, (&) (4.8)
T€7TS+

We know from [21] (cf. Proposition 9.1) that there exists a strong £”-supermartingale,
denoted by (Y;”"), which aggregates the value family (Y**(S)) of the above (strict) optimal

stopping problem. Note that we have
YH(S) =esssup Yo =esssup Yo~ as. (4.9)

vey veVs

Using the above representation and the same type of arguments as those used above
for the value family (Y(S))ser;, we show that the strict value family (Y(S))ser;, is an

admissible family, satisfying the integrability condition E[esssupges (Y (S))? < oo and
the following properties:
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Proposition 4.13. For each S € Ty, there exists a mazimizing sequence (V") = (v™(95)) € V&
for the optimal control problem from equation (4.9), that is, Yo = lim, o T Y&™" a.s.

Proposition 4.14. The family (Y (5))ser, is an E”-supermartingale family for each v € V.
As above, we deduce the following

Corollary 4.15. There exists a process (Y,7) € S* which aggregates the strict value family
(YT(S))sers- The process (Y1) is a strong EY-supermartingale for all v € V.

Moreover, the following result holds true. The result is based on the representation (4.9)
and on properties of the strict value process (Y,”) of the auxiliary optimal stopping problem
(4.8).

We recall that (V) denotes the process of right limits of the process (Y;). We recall also
that (Y;4) is well-defined as (Y;) is a strong £”-supermartingale, and hence, has right (and
left) limits.

We recall that (Y} ) denotes the process of right limits of the process (Y”).

Theorem 4.16. (i) The strict value process (Y,7) is right-continuous.

(ii) For all S € To, Y4 = Ysi a.s. (in other words, the strict value process (Y;") coincides
with the process of right limits (Yiy)).

(iii) For all S € Ty, Ys = Y5 V&g a.s.
We have the following intermediary result:

Proposition 4.17. For all S € 7Ty,

E[Y{] = sup E[Yg ™).

vey

Proof.  From the representation (4.9), we deduce E[Y{] = E[esssup,,cy, Y& ] > sup, o, E[YS .
We now show the converse inequality. By Proposition 4.13, there exists a sequence (v,) =
(va(S)) in V2 such that Y = lim, .o T Y&, We thus have E[Y] = E[lim, 00 T
Yo" = lim, e T E[Ye™™], where we have used dominated convergence to exchange
limit and expectation. For all n, we have E[Y{" "] < sup,o, E[Y&].6 We conclude that
E[Yq] < sup,cy, E[Ys"]. The proposition is thus proved. O

We are now ready to prove Theorem 4.16.

Proof of Theorem 4.16.  To prove statement (i), we first show that the process (Y;") is
right-lowersemicontinuous along stopping times in expectation. Let S € Ty, let (S,) be
a non-increasing sequence of stopping times in 7g with lim | S, = S a.s. By Proposi-
tion 4.17, we have E[YJ] = sup,y ]E[Y;f], for all n € N. Hence, liminf, . E[Yg ] =

6Indeed, each process v € Vg can be seen as a process 7 in V by setting # = v on [S,7] and 7 = 0 on

[0,95).
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lim inf,, o0 sup,ep E[YS "] > sup,ep liminf, o E[YS ). Now, for all v € V), the process
(Y") is right-continuous (cf. Theorem 9.2 in [21]), hence right-continuous along stopping
times (cf. [9]); by dominated convergence, we thus have lim inf,,_o E[Y¢ "] = lim,, o E[Y§ "] =
E[Y§""]. This, together with the above computation, gives lim inf,,_,o E[Yg ] > sup, ), E[Y3""] =
E[YS], where the last equality holds due to Proposition 4.17. We conclude that the pro-
cess (Y;") is right-lowersemicontinuous along stopping times in expectation. On the other
hand, we know already that the process (V") is right-uppersemicontinuous along stopping
times, and hence right-uppersemicontinuous along stopping times in expectation (due to its
integrability). Hence, (Y,") is right-continuous along stopping times in expectation. We
deduce that (V;") is right-continuous (cf. e.g. [10]). We now show (ii). Let S € 7o. One
inequality, namely the inequality Ys, > Y a.s., follows from the right-continuity of (Y;"),
established in (i). Indeed, let (S,) be a non-increasing sequence of stopping times in Tg+
with lim | S, = S a.s. We know that Y, > Y " a.s., for all 7 € 7. Hence, Yg, > YSfL a.s., for
all n. By taking the limit when n — oo and by using the right-continuity of (Y;"), we get

Ys;y > YS a.s. For the converse inequality, we first show
E3sn(Ys,) < Y4 as. for all n. (4.10)

To prove this, we fix n and we take (77, 1) € Tg, XV an optimizing sequence for the problem
with value Yg,, i.e. Y, =lim, o €5 . (&;,). We have

Sn,Tp
£, (Vs,) = €, (I €7 (€,)) = lim €06 (€ (&) as,  (11)

where we have used the continuity property of Eg on () with respect to the terminal condition
(recall that here n is fixed). We set 7} := 1} I~} (hence, 7y = 0 on {t < S, }). We note
that 7 € V. Using the definition of 7 and the consistency property of £-expectations, we
get €95, (€5 . (&) = &5, (&,) < Yg as. (where for the inequality we have used that
7, € Ts+). From this, together with equation (4.11), we derive the desired inequality (4.10).
From (4.10) and using the continuity of £-expectations with respect to the terminal time and
the terminal condition, we derive Yg" > lim, o €& gn(Ys,) = €45(Yss) = Yoy as. Hence,
Y{ > Yo a.s., which, together with the previously shown converse inequality, proves the
equality.

We now show (iii). Using successively statement (ii), relation (4.9), Theorem 9.2 (iii) in [21],
and relation (4.5), we get

Ysi VE&s =Y V& = esssup <Y§"+ Vv fs) =esssupYy =Yg as.
vey vey

4.3 Proof of the dual representation

We will now provide a dual representation for the seller’s superhedging price ug in terms of

the value (at time 0) of the non-linear problem of control and stopping studied above. We

also give a superhedging strategy for the seller. From this result, we will deduce the dual

representation (in terms of the f-martingale probability measures) stated in Theorem 4.1.
To this aim, we first give the following lemma.
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Lemma 4.18. (£/-optional decomposition of the value process Y ) There exists a unique
7 € W2, a unique C € C? and a unique nondecreasing optional RCLL process h, with hg = 0
and E[h%] < oo such that

t t
Y, =Y, —/ f(s, Y, Zs)ds—l—/ o Z (o dW,+ BedM) —hy—Ci—, 0<t<T as. (4.12)
0 0

Proof. By Corollary 4.11, the value process Y is the smallest process in S?, which is a
strong E¥-supermartingale for all v € V such that Y; > &, for all t € [0, T, a.s. The desired
result then follows from the non-linear optional decomposition of strong £”-supermartingales
for all v € V (cf. Theorem B.4 in [23]). O

Theorem 4.19. The superhedging price ug of the American option is equal to the value Yy
(at time 0) of the non-linear problem of control and stopping (4.3), that is

up = sup &, (&) (4.13)
(r,w)ET XV

Moreover, the portfolio strategy ¢* := o~'Z, where the process Z is the one from the E'-
optional decomposition of the value process Y from Lemma 4.18, is a superhedging strategy
for the seller, that is, ¢* € A(uyg).

Proof. Let H be the set of initial capitals which allow the seller to be “superhedged”, that
is H={x €R:3p e A(z)}. From the definition of uy (see (3.6)), we have ug = inf H. We
first show that
up > sup & (&) (4.14)
(Tv)ET XV

Let x € H. There thus exists ¢ € A(x), which implies that for each 7 € T, we have V% > £,
a.s. Let v € V. By taking the £Y-evaluation in the above inequality, using the monotonicity
of &” and the £”-martingale property of the wealth process V%, we obtain x = &j (V,¥) >
&y -(&;). By arbitrariness of 7 € T and v € V, we get © > sup, ,)e7«y & (&), which holds
for all x € H. By taking the infimum over = € H, we obtain the desired inequality (4.14).
Since, by definition of Yy, we have Yy = sup(, , erxy & -(§7), the inequality (4.14) can be
written ug > Yj.

We now show the converse inequality, that is, Yy > ug. Since ug = inf H, it is sufficient
to show that the portfolio strategy ¢* := 0717 is a superhedging strategy for the seller
associated with the initial capital Y, that is, satisfies

¢" € A(Yo). (4.15)

We consider the portfolio associated with the initial capital Y and the strategy *. By
(3.2)-(3.3), the value of this portfolio (V;"*¥") satisfies the following forward equation:

t t
VtYo,w* —Y, — / F(s, VXo#" Z)ds _|_/ o, Z (0 dW, + BdM,), 0 <t <T as. (4.16)
0 0
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Moreover, by the optional £/-decomposition of the value process (Y;) (cf. Lemma 4.18),
the process (Y;) satisfies the forward SDE (4.12). Since (h;) and (C;-) are nondecreasing, by
the comparison result for forward differential equations, we thus get V;YO"p* >Y,0<t<T
a.s. Hence, since Y; > &, we get VtYO’w > &, 0 <t < T as., which implies the desired
property (4.15). We thus derive that Yy € H, and hence that Yy > wg. Since Yy < wy,
we deduce the equality Yy = ug. Moreover, by (4.15), we derive that ¢* € A(ug), which
completes the proof. O

Remark 4.20. From a financial point of view, the process (hy) from equation (4.12) can be
interpreted as the cumulative amount the seller withdraws from the hedging portfolio up to
time t. More precisely, for each time t, the seller can withdraw the amount dh, from his/her
portfolio between t and t + dt. In particular, at time 19, the seller can withdraw the amount
Ahy from his/her portfolio, which, by equation (4.12), is equal to

Ahﬁ = 5190'51279 - AY@ a.s.

The term Byoy' Zy = B}y represents the jump at the default time ¥ of the amount invested
in the risky asset S (which is equal to the jump of the value of the portfolio). Note that in
this case, the value of the hedging portfolio, denoted by (V;YO’“D*’}Z), taking into account these
withdrawals, satisfies

AV = — (VIO o) )dt + 0 (00dW + BudMy) — dhy; Vi =Yy,
We thus have V;"0#" = V;0#"0,

Proof of Theorem 4.1: The proof follows from the previous theorem 4.19 and from Remark
4.4. Indeed, under the additional integrability condition ¢ € ﬂyeyHéy on the process ¢ from
Assumption (4.1), by Remark 4.4, the above dual representation of the superhedging price can
be written in terms of the f-martingale probability measures (characterized in Proposition
3.5), that is

Up =  Sup 551/,0,7 (&),
(T,w)ET XV

which ends the proof of Theorem 4.1. O

5 Infinitesimal characterizations of the seller’s super-
hedging price process

We now introduce the seller’s (superhedging) price of the American option at each time/stopping
time S € T. We first define, for each initial wealth X € L?*(Gg), a superhedging strategy as a

portfolio strategy ¢ € H? such that VtS’X’“’ > & for all t € [0,7T] a.s., where V%% denotes
the wealth process associated with initial time S and initial condition X. Let Ag(X) be the
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set of all superhedging strategies associated with initial time S and initial wealth X. The
seller’s (superhedging) price at time S is defined by the random variable

u(S) = essinf{X € L*(Gs), Jp € As(X)}.

Using Lemma 4.18 and similar arguments to those used in the proof of Theorem 4.19, one
can show that for each S € T, we have u(S) = Ys a.s. We call (V;) the seller’s (superhedging)
price process of the American option.

Definition 5.1. Let £ € S®.. A process Y’ € S? is said to be a supersolution of the constrained
reflected BSDE with driver f and obstacle & if there exists a process (Z', K', A’,C") € H? x
H3 x A% x C* such that

—dY! = f(tY!, ZD)dt + dA, + dC)_ — Z1dW, — KldM,; (5.1)
Yi=¢&r as. and Y/ >¢& forallt €[0,T] a.s.;
(Y= &) (CL—CL_) =0 a.s. for all T € To;
A+ / (K — B0 Z)Ads € A2 and  (K! — B0 Z)N < 0, ¢ € [0,T], dP ® dt — ace.;
0
(5.4)

Remark 5.2. This definition can be extended to the case of a general driver g (which may
depend also on k).

Equation (5.3) is referred to as Skorokhod condition for the process C".

Remark 5.3. The process A’ can be uniquely decomposed as the sum of two nondecreasing
processes B’ and B belonging to A* with dB] L dB;,” such that B’ satisfies the Skorokhod
condition, that is

/t(Ys'_ —&-)dB. =0 as. (5.5)
0

Note that the processes B and B are given by B, = [} Ly —¢,_ydA; and B, = Ly e ydA;
for all t € [0,T]. It follows that Y’ € S? is a supersolution of the constrained reflected
BSDE with driver f and obstacle & if and only if there exists a process (Z',K',B',B,C") €
H? x Hi x A? x A? x C? such that

—dY] = f(t,Y/, Z))dt + dB, + dB, + dC!_ — ZdW, — K|dM,; (5.6)
Yi=¢&r as.  and Y]/ > & forallt €[0,T] a.s.;
(Y —&)(CL—CL ) =0 a.s. for all T € To;

t
/ (Y. —&-)dB.=0 a.s. and dB; Ll dBy, (5.9)
0

"in the sense of Definition 2.3 from [12]
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and such that the constraints (5.4) hold, with A’ replaced by B' + B.

In the particular case when B =0, since B' satisfies the Skorokhod condition, the process
(Y',Z'K', B',C") is thus a solution ® of the reflected BSDE (with irregular obstacle (&;)),
here with the additional constraints (5.4). Thus, when passing from the notion of a solution
of the reflected BSDE to the notion of a supersolution of the reflected BSDE, there appears
an additional nondecreasing predictable process B, which increases only when Y= > &-.

Theorem 5.4. (Infinitesimal characterization 1) The seller’s price process (Yy) is a super-
solution of the constrained reflected BSDE associated with driver f and obstacle & from
Definition 5.1, that is, there exists a unique process (Z, K, A,C) € H? x H3 x A% x C? such
that (Y, Z, K, A, C) satisfies Definition 5.1. Moreover, it is the minimal one, that is, if (V)
is another supersolution, then Y, >Y; for allt € [0,T] a.s.

Moreover, the portfolio strateqy ¢* := o~'Z is a superhedging strategy for the seller, that
is, ©* € Aluyp).

Remark 5.5. Suppose here that there is no default in the market. In this case, the filtration
G s the one associated with the Brownian motion W, and in the dynamics of the price
process (S;) and of the wealth process (V;), M = 0 and = 0. Hence, the market is
complete, and we have V = {0}. From this observation, we derive that for each S € T,
Vs =Yg = esssup,er, £9.(&7) a.s. By Theorem 6.7 in [22], (Y;) is thus the solution of the
reflected BSDE associated with driver f and irreqular obstacle (). In other words, there
exists (Z, K, B,C) € H? x H3 x A% x C? such that equations (5.6) to (5.9) hold with B = 0.

Proof.  Since Y is the value process, we have Yr = &r a.s. and Y; > & for all t € [0,7] a.s.
Moreover, by Corollary 4.11, the value process Y is a strong £”-supermartingale for all v € V.
Hence, by the non-linear predictable decomposition (cf. Proposition B.1 in [23]), there exists
a unique process (Z, K, A, C) € H? xH3 x .A? x C? such that equation (5.1) and the conditions
(5.4) hold. We now show that the process C satisfies the Skorokhod condition (5.3). Let
7 € To. By Theorem 4.16 (iii), we have Y, = Y, V&, a.s.. Hence, ALY, = 1gy, ¢ yAL Y, ass.
On the other hand, since (Y, Z, K, A, C) satisfies equation (5.1), we have AC, = —A_, Y, a.s.
We conclude that AC; = 1y, —¢ }AC; a.s. Hence, the Skorokhod condition (5.3) is satisfied.

It remains to show that (Y;) is the minimal supersolution of the constrained reflected
BSDE from Definition 5.1. Let Y’ be another supersolution of this constrained reflected
BSDE and let (Z’, K, A, C") be the associated process (from the definition of a supersolu-
tion). We have Y/ > ¢, for all t € [0,T] a.s. Let now v € V. Let A be the process defined
by

t
Ay = A — / (K. — Bso ' Z v heds, 0<t<T.
0

Since v € V, we have v, + 1 > 0 dP ® dt-a.s. This together with the second condition from
(5.4) imply that (K| — B0, ' Z)M(1 + 1) < 0 dP ® dt-a.s. Then, using the first condition

8in the sense from Definition 2.3 in [22], which, in the case of a right-continuous obstacle, corresponds to
the well-known notion of a solution of a reflected BSDE)
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from (5.4) (and the definition of A"), we obtain that the process A" is nondecreasing. On
the other hand, since (Y’, Z', K', A’, C") satisfies the dynamics from Definition 5.1, we have

—dY] = (f(t,Y}, Z)) + (K| — Bio; " Z))rp\y) dt + dAY 4+ dC)_ — ZldW, — K,dM,.

Hence, by the £9-Mertens decomposition of strong £9-supermartingales, applied with the
driver g := f¥ (cf. Theorem 5.1 in [20], or Theorem 7.1 in [21]), we derive that the process
Y’ is a strong £- supermartingale. Since this holds for all v € V, we derive from Corollary
4.11 that Y/ > Y;, for all t € [0,T] a.s. O

Remark 5.6. This result can be extended to any A-admissible driver (depending also on k).

Definition 5.7. Let £ € S®. A process Y' € S? is called a supersolution of the optional
reflected BSDE associated with driver f and obstacle £ if there exist Z' € H?, C' € C? and
a nondecreasing optional RCLL process b, with hyy = 0 and E[(h/;)?] < oo such that

—dY! = f(t,Y], Z)dt — Z'o; N od Wy + BudM,) + dC!- + b
Yi=¢& and Y/ >¢ forallt €]0,T] as.;
(Y- &) (CL—CL_) =0 a.s. forall T € T.

Remark 5.8. We call the above equation an optional reflected BSDFE because the associated
non decreasing right-continuous process is optional but not necessarily predictable contrary
the reflected BSDFEs considered in the literature.

Note also that when the obstacle & is right-continuous, the purely discontinuous non
decreasing process C' (corresponding to the right-jumps of Y') is equal to 0.

From the non-linear optional decomposition (cf. Theorem B.4 in [23]), together with the
equivalence of the non-linear predictable and the non-optional decompositions (cf. Proposi-
tion B.5. in [23]), we derive the following result:

Theorem 5.9. (Infinitesimal characterization II) The seller’s superhedging price (Y;) of
the American option is a supersolution of the optional reflected BSDE from Definition 5.7.
Moreover, it is the minimal one, that is, if (Y/) is another supersolution, then Y, >'Y; for
allt € [0,T] a.s.

6 Duality for the buyer’s superhedging price

Theorem 6.1 (Duality for the buyer’s superhedging price). Let (&) € S* be such that As-
sumption (4.1) is satisfied with 1 € ﬂyey]}]%y. Suppose moreover that (&) is right-continuous
and left-uppersemicontinuous along stopping times. The superhedging price for the buyer
of the American option satisfies

- _of . _ : _ef _
uo—iggigg{ 5Qu,o,7( &)} Eg?ilellf){ EQV,O,T( &)}
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Again, to prove Theorem 6.1, we will work under the primitive probability measure P.

We define f(t,w,y,2) == —f(t,w, —y, —2).

Let v € V. We denote by /" or £ the non-linear conditional expectation associated
with the A-admissible driver

f(ty, 2. k) = f(t,y, 2) + vide(k — Bioy '2).

Hence, for each 7" < T and each 1) € L?(Grv), we have £(n) = X¥ a.s., where (X¥, 27, K")
be the unique solution in S? x H? x H? of the BSDE associated with driver f¥, terminal time
T" and terminal condition 7.

Remark 6.2. Let v €V and T" <T. Note that for alln € L*(G7), we have
EVri(n) = =&V (—=n), since f¥(t,y, 2, k) = —fr(t, —y, —z, —k).
Let n € L*(Grr) N Ly (Grv). By Remark 4.4, E%(1) = 5£V7,,T, (n). We thus have

Er(n) = —ELu (=)

For each S € T, we define the Fg-measurable random variable Y (S) as follows:

Y (S) :=ess inf ess sup égT(fT) a.s. (6.1)

veVs T€Ts

6.1 First properties of the value family Y

Let us first show that Elesssup, . Y?(7)] < oc.

As 0 € V, we have Y(S) > esssup,er, £2.(&) = Y as., where () is the first co-
ordinate of the solution of the reflected BSDE associated with driver f and lower obstacle
(&). Now, since |&] < VY 0<t<T as., weget that forall S € T, 7 € Tg and v € V,

E5, (&) = =E6.(=&) > €5 (&) > &5 (VY) = — V& a.s. Hence, taking the essential

supremum over 7 € Tg and then the essential infimum over v € V in this inequality, we
obtain Y'(S) > —VIY as. i
Since Y? € S? and V¥ € 52, it follows that Elesssupger Y (9)?%] < +o00.

Using the characterization of the solution of a reflected BSDE with lower obstacle in
terms of an optimal stopping problem with g-expectations (see Theorem 4.2 in [20] when
(&) is right-u.s.c. payoff ), we can rewrite the value function of our problem as follows

Y(S) =ess inf Y = ess inf Y 2
(S) ess inf Y = ess inf ¥y, (6.2)

where Y is the solution of the reflected BSDE associated with driver f, obstacle (&)o<t<T
and terminal condition &7.

Proposition 6.3. (Minimizing sequence) Let S € T. There exists a sequence of controls
(V" )nen with v™ € Vg, for all n, such that the sequence (?é’n)neN 1S mom-increasing and
satisfies:

Y(S) = lim | YY" as. (6.3)
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Proof. Same proof as for Y. We show that the set {Y/S” ,v € Vg} is stable under pair-
wise maximization. The result of the proposition follows by a classical result on essential
suprema/infima (cf. Neveu (1975)). O

Proposition 6.4. (Aggregation) Let (§;) € S? (without any reqularity assumption). There
exists an r.u.s.c. process (Y;) € S* which aggregates the value family (Y (S)) of the problem
of control and stopping (6.1).

The proof of the proposition uses the following lemma.

Lemma 6.5. For all S € 7y, .
ElY = inf E[Y
7(9)] = inf {72,
Proof.  From the representation (6.2), we deduce E[Y (S)] = E[ess inf ¢ Y¥] < inf ey, E[Y].

We now show the converse inequality. By Proposition 6.3, there exists a sequence of con-
trols (v,) = (va(S5)) in Vg such that Y(S) = lim, o } Y&*. We thus have E[Y(S)] =

E[lim, 00 | ?S”"] = lim,,o | E[Y§"], where we have used dom1nate~d convergence to ex-
change limit and expectation. For all n, we have E[Y"] > inf,cy E[Yg].We conclude that
E[Y (S)] > inf,ey E[Y¥]. The proposition is thus proved. O

We now prove Proposition 6.4.

Proof.  To prove the result, we first show that the family (}7(5 )) is right-uppersemicontinuous
along stopping times in expectation. Let S € 7o, let (S,) be a non-increasing sequence of
stopping times in 7s with lim | S, = S a.s. By the previous Lemma 6.5, we have E[Y(S )| =
inf, ey E[YS |, for all n € N. Hence, limsup,_,. E[Y(S,)] = limsup,,_,., inf ey E[YS ] <
inf, ey limsup,,_, ., ]E[YS ] <inf,cp E[lim sup,,_, 375 |, where we have used Fatou’s lemma to
obtain the last inequality. Now, for all v € V, the process (Y”) right-uppersemicontinuous
along stopping times, so limsup,,_, . YS < Y¥. Using this and the above computations,
we get lim supnﬁooE[?(Sn)] < inf,ey E[limsup,,_, ?S”n] < inf,ey E[Y¥] = E[Y(S)], where
the (last) equality is due to Lemma 6.5. We conclude that the family (Y(S)) is right-
uppersemicontinuous along stopping times in expectation. Hence, the family (?(S)) is right-
uppersemicontinuous along stopping times (cf. Theorem 12 in [9]). By Corollary 11 in [9],
there exists a unique r.u.s.c. optional process (f/t) which aggregates the family. The process
(Y;) is in S, due to the fact that Elesssupger Y (S)?] < +00. O

Remark 6.6. Due to the above aggregation result (Proposition 6.4), we can replace f/(S)
by Ys in the representation (6.2) and in Proposition 6.5.

6.2 Proof of the dual representation for the buyer’s superhedging
price

We now define the backward semigroup of operators Y9¢ = <Yf§“’)o <ieprp Associated with

a reflected BSDE with driver g and obstacle £ (see e.g. [5] and [13]). Recall that this notion
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of stochastic backward semigroup was first introduced by Peng [32] and applied to study the
dynamic programming principle for stochastic control problems.

Let g be a \-admissible driver. Let (&) € S2.
For each 7" € [0,T] and each n € L*(Fz), we define

Y5 (n) =Y, 0<t<T (6.4)

where (Y})o<t<7 corresponds to the first component of the solution of the reflected BSDE
associated with terminal time 7", driver g and (lower) obstacle (& 1,77 +n1li—7/). Note that
(Y;) can be extended to the whole interval [0, 7] by setting Y; = n for all ¢t € [T, T]. °

More generally, for each stopping time 6 € T and each n € L?(Fy), we define Yf;f(n) =
Y., where Y. is the first component of the solution of the reflected BSDE associated with
terminal time 7', terminal condition 7, driver gl,<p, and obstacle (§1:<g + nli>p).

For each v € V, we consider the backward semigroup of operators Y€ = (Y{ VTF) To
abbreviate the notation, we denote it by Y = (Yf :ﬁ,)
Note that Y}* = Y::%(ST), for all t € [0, 7], a.s.

Proposition 6.7. (Dynamic Programming Principle) The value process (Y;) satisfies the
following Dynamic Programming Principle: for all S, S" in Ty such that S < S’ a.s., we
have

Yy = ess inf YZJ’&S,(?S/) a.s. (6.5)

veVg

Proof. Let S, S" € T be such that S < S’ a.s. By Proposition 6.3, there exists a sequence of
controls (v"),en, with v, in Vg for all n, such that Yo =lim, o | f/s’v’,n a.s. Let v € Vg.
By the continuity property of Reflected BSDEs with respect to the terminal condition (cf.
last assertion of Lemma 7.1), we have Yg:%,(f{g/) = Yg’fg,(limnﬁoo YE") = limy, e Ygg,(ﬁ;,ﬂ
a.s. For each n, we set 7 := v 1i5,97(t) + v/ Lig q(t). We have f7" = f"1j5.97 + " 1191y
and }75,” = }7517," We deduce

Yg’fg, (Yir) = YZSEI (Vi) =V as.,

where the last equality follows the flow (or semi-group) property of reflected BSDEs. We
thus get . ) 3

Y5 (V) = lim Y& (V) = lim Y§" > Y as., where the (last) inequality follows from
(6.2). As v € Vg is arbitrary, we derive essinf, ¢y, Yg’fg,(f/gz) > Ys as.

We now prove the converse inequality. Let v € Vg. By the flow property of reflected
BSDEs, we have Y = Yg%,(f/é’,) a.s. On the other hand, Y& > Y a.s. (cf. property (6.2)).
From this, by the comparison theorem for reflected BSDEs (cf. ), we deduce Ygg,(ffs”,) >
Yg’fg,(f/gl) a.s. Hence, Y = Yg’fg, (Y&) > Yg’g,(f{g/) a.s. By taking the essential infimum

9Recall that, by the flow property for reflected BSDEs, the family of operators Y9¢ = (Ytg’ ’751,
satisfies a semi-group property.

)ogth/gT

22



over v € Vg, we get essinf,cp, f/s’f > essinf,cpg Yg”iw,()}gl) a.s. But, Yy = ess inf, ey, Y/S” a.s.
(cf. (6.2)). Hence, Ys > essinf,cy, Yg’fg,(ffgf) a.s., which is the desired inequality. As both
inequalities hold, we have the equality (6.5). The proof is complete. O

We recall that, by Proposition 6.4, the value process (}7,5) is right upper-semicontinuous
(without any regularity assumption on the process (§;)).
Let (&) be the right-u.s.c. process defined by

& :=limsup&,, forall te [0, T[Y. (6.6)

slt,s>t

We now show that if the process (&) is right-lowersemicontinuous (right-l.s.c.), then (V) is
also right-l.s.c., hence right-continuous.

Proposition 6.8 (The case when () is right-lowersemicontinuous). Let (&) € S?. Suppose
that (&) is right-l.s.c. (which is satisfied if, for example, the process & is right-limited and
right-l.s.c."!). Then, the value process (Y;) of the problem of control and stopping (6.1) is
right-l.s.c.

Proof. Let S € 7o, let (S,) be a non-increasing sequence of stopping times in 7g with
lim, 00 S, = S a.s. and for alln € N, S, > S a.s. on {S < T}, and such that 11m7HJroo an
exists a.s. Since 0 € Vg, by the dynamic programming principle, we have Yy < Y (an)
a.s. Hence, by the continuity property of Reflected BSDEs with respect to the pair terminal
time-terminal condition '? (cf. Lemma 7.1 ), we thus get

Yy < lim Y (ffsn) = YSS( lim Ys,) = lim Ys, as.

n—00 n—00 n—-+00

By Proposition 2 of Dellacherie and Lenglart [9], the process Y is thus right-lowersemicontinuous.
The proof is thus complete. O

Remark 6.9. The above proof also shows the following property: Let S € T. If (&) is right-
l.s.c. at S (which is satisfied if, for evample, the process £ is right-limited and right-l.s.c. at
S), then, the value process (Y;) is right-l.s.c at S.

ONote that & = max(ét,ft), where (ét) denotes the right upper-semicontinuous envelope of the process
(&), defined by & := lim SUD, |y oo &s, for all £ € [0, 77 in [15, page 133]. Note also that (&) is a right-u.s.c.
progressive process.

UIndeed, in this case, we have & = max(&+,&;). Moreover, the right-1.s.c. property of £ is equivalent to
the condition &+ > &, which is equivalent to & = &+

12We note that the conditions from Lemma 7.1 are satisfied here, that is, the condition (7. 1), which is
written here as the condition lim,,_, . YS > 53, holds: indeed, since Y is right-u.s.c., we have Yg,k > § s,
a.s. for all n; hence, lim,_ ., }N’Sn > liminf,, o 55 > €5 a.s., where we have used the assumption of
right-lowersemicontinuity of ¢ for the last inequality.
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Lemma 6.10. Let (&) be a process in S*. We define the following stopping times:
= inf{t € [0,7] : V; = &} (6.7)

For e > 0, 7. .= inf{t € [0,T7] : Y, <&+ e} (6.8)

We note that 7¢ < T a.s.

(i) If (&) is left-uppersemicontinuous along stopping times at 7, then, for all v € V, the
value process (Y;) is a strong £ -submartingale on [0, 7).

(ii) Foralle > 0, for allv € V, the value process (Y;) is a strong ¥ -submartingale on, [0, 7.].

Proof. ~ We show (). Let v € V. Let S,7 in T be such that 0 < S <7 <7 a.s. We show
that £ ST( ) > Ys. By the representation (6.2) and Proposition 6.3, there exists a minimizing
sequence for YT, that is, there exists v? := z/p( ) € V. such that Y. = limy, oo YT”p.
Hence, EST( 7)) = 5’S’T(hmp_>oo V') = limy e SST(YVP) where we have used the continuity
property of the non-linear expectation 5”() with respect to terminal condition. For all
p e N, weset 7} = 1]Iysry + vellj<ry. We have 7 € V. We thus get lim,, ., £ (V") =
lim,, o0 Egi(Y”p) > essinf,ey Eg‘ (Y*). Putting together the above computations gives

gST( +) > ess inf 5“7 (Y. (6.9)

ney T

For all i € V, we set 7 := inf{t € [0,T] : Y} = &}. We notice that, for all p € V, 7 < 7#
a.s.; this follows from the definitions of 7 and 7# and from the fact that & < Y; < f/t“ for
all t a.s. By Lemma 4.1 in [21], for all € V, the process (Y;") is a strong E¥-martingale
n [0,7#]; hence, also a strong £¥-martingale on [0,7] (as ¥ < 7# a.s.). Hence, for all
poeV éf; (Y#) = Y (recall that 0 < S < 7 < 7 a.s.) Using this and (6.9), we get
SST( ) > essinf,ey Y& = Y, where the (last) equality is due to the representation (6.2).
Property (i) is thus proved.
Let us show (ii). Let € > 0. Let S, 7 in T be such that 0 < § <7 < 7. a.s. By exactly the
same arguments as in part (i), we get

557( +) > ess inf 5“7 (Y. (6.10)

ney T

For all ;1 € V, we set 7# := inf{t € [0,T] : Y}* < & +e}. We note that, for all u € V, 7. < 7
a.s. By Lemma 4.1 in [21], for all ;1 € V, the process (Y}) is a strong £*-martingale on
[0, 7#]; hence, also a strong E-martingale on [0,7.] (as 7. < 7/ a.s.). From this and (6.10),
we conclude as in part (i). O

We will now give a dual representation for the buyer’s superhedging price g in terms of
the value (at time 0) of the non-linear problem of control and stopping studied above. We
also give a superhedge for the buyer. From this result, we will deduce the dual representation
(in terms of the f-martingale probability measures) stated in Theorem 6.1.
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Theorem 6.11 (Buyer’s superhedging price). Let (&) € S%.
Suppose that (&) is right-continuous and left-u.s.c. along stopping times.
The buyer’s price ug of the American option satisfies

Uy = inf sup 807(57) (6.11)

veV reT

Let 7 := inf{t € [0,T] : Y; = &}. There exists a portfolio strateqy ¢ € H? such that (7,p) is
a superhedge for the buyer, that is, such that (7,) € B(uy).

Remark 6.12. This result still holds under the following (weaker) local assumptions:

(i) the processes Y and € are respectively right-l.s.c. and right-u.s.c. at 7 (which, by Propo-
sition 6.9, is satisfied if, for example, & is right-continuous at 7). !

(ii) € is left-u.s.c. along stopping times at 7.1

Proof. Tt is sufficient to show that @ = Y and that there exists (7, @) € B(Yp).
Let S be the set of initial prices which allow the buyer to be “superhedged”, that is § =
{r e R:3(7,¢) € B(z)}. Note that iy = sup S.

Let us first show that @y < Yy. Let € S. By definition of S, there exists (6, ) € B(x),
that is, such that V, ™% > —&; a.s. Let v € V. By taking the £”-evaluation in the above
inequality, using the monotonicity of £ and the £”-martingale property of the process V=%,
we derive that —z = &7, (V; %) > &fy(—&) = —5&9(59), where the last equality follows
from the first assertion of Remark 6.2. We deduce z < supTeTc‘:’(’i (&), Since v € V is

arbitrary, we get
v < inf sup & (&) = Y,
veV reT
which holds for any = € S. By taking the supremum over z € S, we get @y < Yp.
Let us now show that YO < 1. To this aim, we prove that YO € S, that is, there exists a
portfolio strategy ¢ € H? such that

(7, %) € B(Yo). (6.12)

Since ¢ is left-u.s.c. along stopping times at 7, by the first assertion from Lemma 6.10,
the process (Y}AT) is a strong & -submartingale for all v € V. This together with the ﬁrst
assertion from Remark 6.2 implies that (—Yj,7) is a strong £”-supermartingale for all v € V.

By the optional £/-decomposition of strong £”-supermartingale for each v € V (cf. The-
orem B.4 in [23]), there exists a unique pair (Z,C) € H? x C? and a unique nondecreasing

optional RCLL process h, with hy = 0 and E[h%] < oo such that

t t
—Y, =Y, — / f(s, =Yy, Z,)ds +/ Zo (o, dW, + BedM,) —hy — Cy—, 0 <t < 7 as.
0 0
(6.13)

13Indeed, these assumptions are sufficient to ensure the inequality (6.16).
4Indeed, this assumption is sufficient to apply the first assertion from Lemma 6.10, which is used in the
proof.
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We now consider the portfolio associated with the initial capital —Y; and the strategy
¢ =017 (6.14)

By (3.2)-(3.3), the value of the portfolio process (V[%’S‘s) satisfies:
o 3 t o t
VY =y —/ f(s,v;YW,Zs)ds+/ Zyo; N o, dW, + BodM,), 0 <t <T. (6.15)
0 0

By (6.13) and (6.15) and the comparison result for forward differential equations, we get
-Y, < V;_YO’@, 0 <t <7 as. We thus have V%_YO’“Z’ +Y->0 as.

Now, since & is right-continuous, by Proposition 6.8, Y is right-ls.c. (and even right-
continuous). Hence, by the definition of 7 (and since ¢ is right-u.s.c.), we get

Y; <& as. (6.16)

We thus conclude that o
Vi 46 >0 as,

which implies the desired property (6.12). We thus have Yy < @p. It follows that @y = Yp.
By (6.12), we get (7, @) € B(iy), which completes the proof. O

Remark 6.13. We emphasize that the superhedging portfolio strategy ¢ is given by (6.14)
via the optional decomposition (6.13) of Y on [0, 7].

Proof of Theorem 6.1: The proof follows from the previous Theorem 6.11 and from
Remark 6.2. We note first that, since (&) is supposed to be right-continuous and left-
uppersemicontinuous along stopping times, it follows that ¢ = £, and the assumptions of
Theorem 6.11 hold.

Under the additional integrability condition i € ﬂyevHQQU on the process 1 from As-
sumption (4.1), by Remark 6.2, the dual representation (6.11) can be written in terms of the
f-martingale probability measures, that is

iip = inf —&L, (=€,
T i‘évi‘;l?{ ovor (=&}

The fact that the infimum and the supremum can be interchanged follows from Proposition
6.19 (shown under weaker regularity assumptions on £). The proof of Theorem 6.1 is thus
complete. O

6.3 Buyer’s nearly superhedging price

We now consider the case when £ does not satisfy any regularity assumption on the left.
We introduce the definition of an e-superhedge for the buyer:
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Definition 6.14. For each initial price z and for each € > 0, an -superhedge for the buyer
against the American option is a pair (T, p) of a stopping time T € T and a portfolio strategy
o € H? such that

V7Y > ¢ —e  as.

For each z € R and each € > 0, we denote by B.(z) the set of all e~ superhedges for the
buyer associated with initial price z.

We introduce the nearly superhedging price ug of the American option for the buyer as
the supremum of the initial prices which allow the buyer to be e—superhedged for all € > 0,
that is,

up =sup{z € R, Ve > 0,3(7,¢) € B(2)}. (6.17)

Theorem 6.15 (Buyer’s nearly superhedging price). Let (&) € S* supposed to be right-
continuous. The buyer’s nearly superhedging price ug of the American option satisfies

= inf bt - 6.18

= inf sup 0 (6)- (6.18)

For each e > 0, let 7. := inf{t € [0,T] : Y; < &+¢}. There exists a portfolio strategy ¢ € H?

such that, for each € > 0, the pair (7., ) is an e-superhedge for the buyer (associated with
the initial price g ).

Remark 6.16. We note that when & is left-u.s.c. along stopping times at 7, the buyer’s
nearly superhedging price is equal to the buyer’s superhedging price.

Remark 6.17. The result from Theorem 6.15 still holds under the following (weaker) local
assumptions: the processes Y and & are respectively right-l.s.c.and right-u.s.c. at T, for
a sequence (g,) tending to 0 (which, by Proposition 6.9, is satisfied if, for example, £ is
right-continuous at 7., for all n).*s

Proof.  Let us first show that @y < Y.

Let z € R be such that, for each € > 0, there exists (7, %) € B.(2).

Fix now ¢ > 0. By definition of B.(z), there exists (7., %) € T x H? such that V_#¢" >
—&,. —e as. Let v € V. By taking the £”-evaluation in the above inequality, using the
monotonicity of £ and the £“-martingale property of the process V~*%", we derive that

= & (V) 2 & (). (6.19)

Now, by Lemma 7.3, we get
OTE( 57'5) OTE( 67'5 ) [ fo Ty S)dSH ] CTeE[HO Tg] = CT& a.s.,

where the inequality and the last equality follow from the fact that the process f,(-) is
uniformly bounded by the Lispchitz constant C' of f, and the fact that, since v € V, the
process Hj . is a nonnegative martingale. We thus have

50 Tg( §TE - é\) < €CT 07'5( §TE) - BCTE: + g(l)/,’rg (67'5)7 (620)

5Indeed, these assumptions are sufficient to ensure the inequality (6.21) at 7., for all n.
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where the last equality follows from Remark 6.2. )
Using (6.19), we deduce z < e“Te + & (&) < e“Te+sup, 7 & (&). Since this inequality
holds for all € > 0, we get z < sup,.s g’(’]’ +(&). As v €V is arbitrary, we deduce

< inf sup &Y (&) =Y,
# < infsup 5 (6r)

Using the definition of @y as a supremum (cf. (6.17)), we get @y < Y.

We now show that Yy < @g. Let ¢ > 0. By the second assertion of Lemma 6.10, the pro-
cess (Yinz ) is a strong £”-submartingale for all v € V. This together with the first assertion
from Remark 6.2 implies that (— EN/MTE) is a strong £”-supermartingale for all v € V. By the
optional £/-decomposition of strong £¥- supermartingale for each v € V (see Theorem B.4
in [23] applied to the right-continuous process —Y) there exists a unique process 7 € H?
and a unique nondecreasing optional RCLL process h with ho = 0 and E[hQ] < oo such
that (6.13) holds on [0, 7.]. Moreover, the wealth V— 0.2 associated with the initial capital
—Y; and the strategy ¢ := ¢~'Z is the solution of the forward differential equation (6.15).
By the comparison result for forward differential equations, it follows that —Y; < Vi Y, 2,
0<t< 1. as.

Now, since ¢ is right-continuous, by Proposition 6.8, Y is right-ls.c. (and even right-
continuous). Hence, by the definition of 7. (and the right-uppersemicontinuity of &), we
get

Vi <& +e as (6.21)

We thus obtain the inequality Vg%’“a > —f@; > =& —c€ as.
Hence, for each € > 0, the pair (7, @) is an e-superhedge for the buyer associated with the
initial price Yp, that is

(7, ¢) € B=(Yp). (6.22)
Using the definition of @, we get Yy < @g. It follows that @, = Y;. By (6.22), we derive that
for each € > 0, (7, p) € B.(up), which completes the proof. O

Remark 6.18. In the complete case, Theorem 6.15 still holds without the assumption that
(&) is right-l.s.c. Indeed, in this case, @ = {P} and Y = Y°, where Y is the solution of
the reflected BSDE associated with driver f lower obstacle & and terminal time T, which,
by the Skorokhod condition, implies that YO - YQ =0 a.s. on the set {YO > &} This

allows us to obtain the inequality (6.21) even if YO is not right-l.s.c. at 7. (see the proof of
Lemma 4.1 in [20] for details).

We now show that the operations of infimum and supremum in the dual representation
(6.11) (resp. (6.18)) of the buyer’s superhedging (resp. nearly superhedging) price can be
interchanged.
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Proposition 6.19. Let (&) € S?, supposed to be right-continuous.'® We have
inf sup 50 &) = sup 1nf 80 (&),

veV reT
Proof. ~ We clearly have the inequality sup, s inf,cp c‘:’é’ﬁ(&) <inf,cysup,cr é(’iT(fT).
It remains to show the converse inequality, that is

Y, < sup inf 507(57) (6.23)

reT VeV
By Lemma 6.10 (i), for all ¢ > 0, for all v € V, the value process (Y}) is a strong -
submartingale on [0,7.], where 7. is defined by (6.8). Hence, Y, < 56’ (Yz). Recall that

Vi <& +eas. (cf. (6.21)). By the same arguments as those used in the proof of Theorem
6.15 to show the estimate (6.20), we derive that for all v € V,

Yo <& (V) <& (6 +e) < e“Te+ &L (&) (6.24)
By taking the infimum over v € V', we obtain
Yy < e“Te+inf £. (&) < e“Te + sup inf £ (&)
vey F reT VEV

Since this inequality holds for all € > 0, we get the inequality (6.23). The proof is thus
complete. 0

7 Appendix

In this Appendix, we provide some useful results.

We first show that the non-linear operator Y¢¢ induced by the reflected BSDE with
driver g and obstacle (& );<r, defined by (6.4), simply denoted by Y, is continuous with
respect to the terminal condition. Moreover, for each § € Ty and each n € L?(Gy), Y9 is
continuous with respect to the pair terminal time-terminal condition at the point (6, 7) under
an additional assumption on (§;) and 7 on a right neighborhood of 6.

Lemma 7.1. Let g be a A-admissible driver satisfying Assumption 2.3. Let (&) € S*. Let
(&) be the right-u.s.c. process defined by & := lim SUp, ¢ &s, for allt € [0,T1.

Let (0™)nen be a non increasing sequence of stopping times in Ty, converging a.s. to 0. Let
(N )nen be a sequence of random variables such that Elsup,(n™)?] < +oo, and for each n,
n"™ is Gen-measurable. Suppose that the sequence (n") converges a.s. to an Gyg-measurable
random variable n. We also assume the following condition:

& <n as. (7.1)

Then, for each S € To, iy 100 Y9 (0") = Y 4(n) a.s.
When for each n, 6, = 0 a.s. , the result still holds without any assumption on (&).

16Note that this result still holds under the assumptions from Remark 6.12 or those from Remark 6.17.
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Remark 7.2. We note that the condition (7.1) is necessary in general to ensure this conti-
nuity property of the reflected operator Y9,

When the obstacle (&) is right-u.s.c., the condition (7.1) reduces to & < n a.s.

When the obstacle (&) is right-continuous, we recover the continuity result shown in [13] (cf.
[13, Lemma A.6]).

Proof.  In the particular case when for each n, 6, = 0 a.s., the result follows from the a
priori estimates for reflected BSDEs with irregular obstacles (cf. Theorem 5.5 in [21]), which
do not require any additional assumption on (&).
Let us now consider the general case. Using the same arguments as those used in the proof
of Lemma A.6 in [13], we show that liminf,, Yg:gn (n™) > n a.s.

It thus remains to show that lim sup,,_, . Yg:gn (n™) < n a.s. By the monotonicity property
of reflected BSDEs with respect to the obstacle, for each n € N, we have Yg:gn (n™) <

Yg:gn(n”) a.s., since £ < €. Let € > 0. Let n € N. Recall that Yf’ei(n") is the solution of the
reflected BSDE associated with terminal time 6,, and the obstacle (&1,-, +7"1;>g, ), Which
is right-u.s.c. (since (&) is right-u.s.c.). Hence, by Theorem 4.2 in [20], there exists 75 € Ty
such that

Yg,gn (n") < ggﬂ'ﬁ/\@n (gni 1;eco, + U”lr;;zan) +¢e as. (7.2)

Now, by the right-uppersemicontinuity of £ and the condition (7.1), we have lim sup,, . ET;L A
£y < 1 a.s., which implies that lim supnﬁoo(gnel 1.ccp, +1"1ic>g,) < 1 as. Hence, using the
Fatou property for BSDEs with respect to the pair terminal time-terminal condition (cf. e.g.
Lemma A.5 in [13]), we derive that

lim sup &F . rp (& Lrg <, + 0" 1egz0,) < EJ(n) =1 as.

n—oo

Hence, by (7.2), we get limsup,, Yg,’gn(n”) < n+e¢ as. The desired result follows. O

We state the following result which provides, for each v € V, a useful representation of
the difference of the solutions of two BSDEs associated with the driver f” in terms of the
spread between the difference of the terminal conditions.

Lemma 7.3. Let n; and no € L*(Gr). Let v € V. Fori = 1,2, let (X', Z', K*) be the
solution in S* x H? x HY of the BSDE associated with driver f* (defined in Definition
4.3), terminal time T and terminal condition n;. Let X, == X} — X? ; Z, := Z} — 7?2 ;
_ X, zh — X2 7! _

Ky = K!—K2. Let f,(s) :== UGRSS S)f fs, X, Z) if Xo- #0, and 0 otherwise, and

X
X2, zZhH - X2 . 72 _
flo X S)Z s X, Z) if Zy # 0, and 0 otherwise. We have

let f.(s) :=

X, = Blel WO H, gy — ) | G), 0<E< T, as.
where Hy . is solution of the following SDE
dH; s = H,; 5 [(fz(s) — VB0 )W, + I/des] ;o Hyp =1 (7.3)
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Proof. = By a classical "linearization procedure” (as the one used at the beginning of the
proof of Theorem 3 in [11]), we derive the desired result. O

A result on reflected BSDEs with a non positive jump at the default time ¥:
Let V be the set of bounded predictable processes v such that v, > 0 dP ® dt-a.e.
Let g be a A-admissible driver and let (d;) be a bounded predictable process.

For each v € V, we define

g’ (w,t,y, 2, k) = glw, t,y,z, k) + l/t(w))\t(w)(k — 6t(w)z)

Note that ¢” is a A-admissible driver. For each S € T, the value Y'(S5) at time S is defined
by

Y(S):=ess sup &5 (&), (7.4)
(T,v)ETs XV

where ¥ = £9". By the same arguments as before (cf. the proof of Corollary 4.11), there
exists an r.u.s.c. process (Y;) € S? which aggregates the value family (Y'(S)), which is a
strong £”-supermartingale for all v € V and Y; > &, for all t € [0,T], a.s. Moreover, the
process (Y;) is the smallest process in S? satisfying these properties.

By similar arguments as those used in the proof of Theorem 5.4, it can be shown that
the value process (Y;) is a supersolution of the constrained reflected BSDE from Definition
5.1 with f replaced by ¢ and the constraints (5.4) replaced by the constraint (7.6) hereafter.
We thus have the following result.

Proposition 7.4. There exists a unique process (Z, K, A, C') € H? x H3 x A? x C? such that

—dY, = g(t, Y, Ze, K)dt + dA, + dCs — ZydW, — KydM; (7.5)
Yr==¢&ras. and Y, >& forallt €[0,T] a.s.;

(Y, —&)(Cr — C.2) =0 a.s. for all T € To;

(K, — 8:Z)M <0, t € [0,T], dP ® dt — a.e. (7.6)

In other words, the value process (Y;) is a supersolution of the above constrained reflected
BSDE. Moreover, it is the minimal one, that is, if (Y]) is another supersolution, then Y} >'Y,;
forallt € [0,7T] a.s.

Note that when § = 0, the constraint (7.6) means that the jump of the process (X;) at the
default time 1 is non-positive. In the case when 6 = 0 and the obstacle is right-continuous,
our result gives the existence of a minimal supersolution of the reflected BSDE with driver g,
obstacle ¢ and with non positive jumps, which correponds to a result shown in [6] by using a
penalization approach. Moreover, our result provides a dual representation (with non linear
expectation) of this minimal supersolution.
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