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American options in a non-linear incomplete market
model with default

Miryana Grigorova ∗ Marie-Claire Quenez † Agnès Sulem ‡

February 19, 2019

Abstract

We study the superhedging prices and the associated superhedging strategies for
American options in a non-linear incomplete market model with default. The points of
view of the seller and of the buyer are presented. The underlying market model consists
of a risk-free asset and a risky asset driven by a Brownian motion and a compensated
default martingale. The portfolio processes follow non-linear dynamics with a non-
linear driver f . We give a dual representation of the seller’s (superhedging) price for
the American option associated with a completely irregular payoff (ξt) (not necessarily
càdlàg) in terms of the value of a non-linear mixed control/stopping problem. The dual
representation involves a suitable set of equivalent probability measures, which we call
f -martingale probability measures. We also provide two infinitesimal characterizations
of the seller’s price process: in terms of the minimal supersolution of a constrained
reflected BSDE and in terms of the minimal supersolution of an optional reflected
BSDE. Under some regularity assumptions on ξ, we also show a duality result for the
buyer’s price in terms of the value of a non-linear control/stopping game problem.

Key-words: American options, incomplete markets, non-linear pricing, constrained re-
flected BSDE, f -expectation, control problems with non-linear expectation, optimal stopping
with non-linear expectation, non-linear optional decomposition, pricing-hedging duality

1 Introduction

We consider a financial market with a default time ϑ. The market contains one risky asset
whose price dynamics are driven by a one-dimensional Brownian motion and a compensated
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Paris-Est, email: agnes.sulem@inria.fr

1



default martingale. We study the case of a market with imperfections which are encoded
in the non-linearity of the portfolio dynamics. Imperfections entering into this framework
include different borrowing and lending interest rates (cf. [28], [7]), different repo rates (cf.
[4]), the presence of a large investor (cf. [8], [2], [11]), among others. We note that our market
is incomplete in the sense that not every European contingent claim can be replicated by
a portfolio. In this framework, our paper [23] studies the problem of pricing and hedging
of European options (from the point of view of the seller and of the buyer). In the present
paper, we focus on the problem of pricing and hedging of American options from the point
of view of the seller and of the buyer.

We recall that in the case of a non-linear complete market, the seller’s (superhedging)
price of the American option with a càdlàg payoff (ξt) is equal to the value of the optimal
stopping problem with non-linear f -evaluation/expectation, associated with the given payoff
(ξt) (cf. [14]). Moreover, the price process admits an infinitesimal characterization as the
solution of the reflected BSDE associated with driver f and obstacle (ξt): cf. [19] in the
Brownian case and for a continuous payoff (ξt), and [36] (resp. [14]) in the case of Poisson
jumps (resp. a default jump) and a càdlàg process (ξt). More recently, these results have
been generalized to the case of an irregular payoff (ξt) (not necessarily càdlàg) in [20] and
[21].

In the non-linear incomplete market of the present paper, we provide a dual formulation of
the seller’s (superhedging) price u0 of the American option associated with an irregular pay-
off (ξt) (not necessarily càdlàg) in terms of the value of a non-linear mixed control/stopping
problem. The dual representation involves a suitable set Q of equivalent probability mea-
sures, which we call f -martingale probability measures. More precisely, we show that u0 is
equal to the supremum, over all f -martingale measures Q ∈ Q and over all stopping times
τ , of the (f,Q)-evaluation of ξτ at time 0, that is,

u0 = sup
(Q,τ)∈Q×T

EfQ,0,τ (ξτ ). (1.1)

In the case when f is linear and (ξt) is càdlàg, our result reduces to the well-known dual
representation from the literature on linear incomplete markets (cf. [29]). We also provide
two types of infinitesimal characterizations of the (superhedging) price u0 for the seller: in
terms of the minimal supersolution of a constrained reflected BSDE with default (associated
with the driver f and the obstacle (ξt)), and in terms of the minimal supersolution of an
optional reflected BSDE with default. We note that, even in the linear case (f linear), these
results are new, since in the literature, only the càdlàg case has been studied. The treatment
of the non càdlàg case requires the introduction of an additional non decreasing process
corresponding to the right-hand jumps of the price process. Using some specific techniques
of the control theory and the general theory of processes, we show that this process increases
only when the price is equal to the payoff. The proofs of the dual representation and of the
infinitesimal characterizations rely also on the non-linear optional decomposition of optional
(not necessarily càdlàg) processes which are (f,Q)-strong supermartingales for all Q ∈ Q
(cf. our result established in [23]).

Under some regularity assumptions on the payoff ξ, we also show a dual representation for
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the buyer’s superhedging price at time 0, denoted by ũ0, in terms of the value of a non-linear
control/stopping game problem, which can be written as

ũ0 = sup
τ∈T

inf
Q∈Q
{−EfQ,0,τ (−ξτ )} = inf

Q∈Q
sup
τ∈T
{−EfQ,0,τ (−ξτ )}. (1.2)

We note that, contrary to the case of a European option (studied in [23]), the buyer’s price
is not equal to the opposite of the seller’s price of the American option associated with the
payoff −ξ.

The rest of the paper is organized as follows: In Section 2, we introduce some notation
and definitions. In Section 3, we first present our market model (Subsection 3.1), we then
introduce the set Q of f -martingale probability measures (Subsection 3.2), we define the
the buyer’s and seller’s superhedging prices of the American option and we discuss no-
arbitrage issues (Subsection 3.3). In Section 4, we establish the duality result for the seller’s
superhedging price. For this, we first study the value Y of the associated non-linear mixed
control/stopping problem, which we write as the (essential) supremum of a family of reflected
BSDEs. We show in particular that Y is the smallest optional process which is an (f,Q)-
strong supermartingale for all Q ∈ Q, and which dominates the payoff process. We also
study the strict value Y + of our non-linear mixed control/stopping problem. We show, in
particular, that Y + can be aggregated by a càdlàg adapted process. We then give the proof
of the dual representation of the seller’s superhedging price (1.1). In Section 5, we provide
the two infinitesimal characterizations of the seller’s superhedging price process. Section 6 is
devoted to the point of view of the buyer. We first study the value Ỹ of the associated dual
problem, which we write as the (essential) infimum of a family of reflected BSDEs. Then,
under some regularity assumptions on the payoff, we prove the dual representation of the
buyer’s superhedging price (1.2). We also introduce and discuss the notion of buyer’s nearly
superhedging price. The Appendix contains some useful technical results and a discussion
on reflected BSDEs with a non positive jump at the default time.

2 Notation and definitions

Let (Ω,G, P ) be a complete probability space equipped with two stochastic processes: a
unidimensional standard Brownian motion W and a jump process N defined by Nt = 1ϑ≤t
for all t ∈ [0, T ], where ϑ is a random variable which models a default time. We assume
that this default can appear after any fixed time, that is P (ϑ ≥ t) > 0 for all t ≥ 0. We
denote by G = {Gt, t ≥ 0} the augmented filtration generated by W and N . We denote by
P the predictable σ-algebra. We suppose that W is a G-Brownian motion. Let (Λt) be the
predictable compensator of the nondecreasing process (Nt). Note that (Λt∧ϑ) is then the
predictable compensator of (Nt∧ϑ) = (Nt). By uniqueness of the predictable compensator,
Λt∧ϑ = Λt, t ≥ 0 a.s. We assume that Λ is absolutely continuous w.r.t. Lebesgue’s measure,
so that there exists a nonnegative process λ, called the intensity process, such that Λt =∫ t

0
λsds, t ≥ 0. To simplify the presentation, we suppose that λ is bounded. Since Λt∧ϑ = Λt,
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λ vanishes after ϑ. Let M be the compensated martingale given by

Mt := Nt −
∫ t

0

λsds .

Let T > 0 be the terminal time. We define the following sets:

• S2 is the set of G-adapted RCLL processes ϕ such that E[sup0≤t≤T |ϕt|2] < +∞.

• A2 is the set of real-valued non decreasing RCLL G-predictable processes A with A0 = 0
and E(A2

T ) <∞.

• H2 is the set of G-predictable processes Z such that ‖Z‖2 := E
[ ∫ T

0
|Zt|2dt

]
<∞ .

• H2
λ := L2(Ω×[0, T ],P , λt dP⊗dt), equipped with the norm ‖U‖2

λ := E
[ ∫ T

0
|Ut|2λtdt

]
<

∞ .

Note that, without loss of generality, we may assume that if U ∈ H2
λ, it vanishes after ϑ.

• We denote by T the set of stopping times τ such that τ ∈ [0, T ] a.s.

• For S in T , we denote by TS the set of stopping times τ such that S ≤ τ ≤ T a.s.

As in [21], the notation S2 stands for the vector space of R-valued optional (not necessarily
cadlag) processes φ such that |||φ|||2S2 := E[ess supτ∈T0 |φτ |

2] <∞. By Proposition 2.1 in [21],
the space S2 endowed with the norm |||·|||S2 is a Banach space. We note that the space S2 is
the sub-space of RCLL processes of S2.

Recall that in this setup, we have a martingale representation theorem with respect to
W and M (see [24], [30]).

We give the definition of a λ-admissible driver:

Definition 2.1 (Driver, λ-admissible driver). A function g is said to be a driver if
g : Ω× [0, T ]× R3 → R; (ω, t, y, z, k) 7→ g(ω, t, y, z, k) is P ⊗ B(R3)− measurable, and such
that g(., 0, 0, 0) ∈ H2. A driver g is called a λ-admissible driver if moreover there exists a
constant C ≥ 0 such that dP ⊗ dt-a.s. , for each (y1, z1, k1), (y2, z2, k2),

|g(t, y1, z1, k1)− g(t, y2, z2, k2)| ≤ C(|y1 − y2|+ |z1 − z2|+
√
λt|k1 − k2|). (2.1)

A nonnegative constant C which satisfies this inequality is called a λ-constant associated
with driver g.

By condition (2.1) and since λt = 0 on ]ϑ, T ], g does not depend on k on ]ϑ, T ].
Let g be a λ-admissible driver. For all η ∈ L2(GT ), there exists a unique solution

(X(T, η), Z(T, η), K(T, η)) (denoted simply by (X,Z,K)) in S2 × H2 × H2
λ of the follow-

ing BSDE (see [11]):

−dXt = g(t,Xt, Zt, Kt)dt− ZtdWt −KtdMt; XT = η. (2.2)
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We call g-conditional expectation, denoted by Eg, the operator defined for each T ′ ∈ [0, T ]
and for each η ∈ L2(GT ′) by Egt,T ′(η) := Xt(T

′, η) a.s. for all t ∈ [0, T ′].
We introduce the following assumption :

Assumption 2.2. Assume that there exists a bounded map

γ : Ω× [0, T ]× R4 → R ; (ω, t, y, z, k1, k2) 7→ γy,z,k1,k2t (ω)

P ⊗ B(R4)-measurable and satisfying dP ⊗ dt-a.s. , for all (y, z, k1, k2) ∈ R4,

g(t, y, z, k1)− g(t, y, z, k2) ≥ γy,z,k1,k2t (k1 − k2)λt, (2.3)

and
γy,z,k1,k2t > −1. (2.4)

Assumption 2.2 ensures the strict monotonicity of the operator Eg with respect to terminal
condition (see [11, Section 3.3]).

Definition 2.3. Let Y ∈ S2. The process (Yt) is said to be a strong Eg-supermartingale 1

(resp. martingale) if Egσ,τ (Yτ ) ≤ Yσ (resp. = Yσ) a.s. on σ ≤ τ , for all σ, τ ∈ T0.

Note that, by the flow property of BSDEs, for each τ ∈ T0 and for each η ∈ L2(Gτ ), the
process Eg·,τ (η) is an Eg-martingale.

3 Market model, f-martingale measures and super-

hedging prices

3.1 Market model Mf

We now consider a financial market which consists of one risk-free asset, whose price process
S0 = (S0

t )0≤t≤T satisfies dS0
t = S0

t rtdt, and one risky asset with price process S which
admits a discontinuity at time ϑ. Throughout the sequel, we consider that the price process
S = (St)0≤t≤T evolves according to the equation

dSt = St−(µtdt+ σtdWt + βtdMt). (3.1)

All the processes σ r, µ, β are supposed to be predictable (that is P-measurable), satis-
fying σt > 0 dP ⊗ dt a.s. and βϑ > −1 a.s., and such that σ, λ, σ−1, β are bounded.

We consider an investor with an initial wealth equal to x, who can invest his/her wealth
in the two assets of the market. At each time t, the investor chooses the amount ϕt of wealth
invested in the risky asset. A process ϕ. = (ϕt)0≤t≤T is called a portfolio strategy if it belongs
to H2. The value of the associated portfolio (also called wealth) at time t is denoted by V x,ϕ

t

(or simply Vt).

1In the case where Y is moreover RCLL (that is, Y ∈ S2), we often omit the term ”strong”.
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We assume now that the dynamics of the wealth is non-linear. More precisely, let x ∈ R
be an initial wealth and let ϕ in H2 be a portfolio strategy. We suppose that the associated
wealth process V x,ϕ

t (or simply Vt) satisfies the following (forward) dynamics:

−dVt = f(t, Vt, ϕtσt)dt− ϕtσtdWt − ϕtβtdMt, (3.2)

with V0 = x, where f is a non-linear λ-admissible driver which does not depend on k, such
that f(t, 0, 0) = 0. 2

We recall the following lemma (cf. Lemma 3.1 in [23]).

Lemma 3.1. For each x ∈ R and each ϕ in H2, the associated wealth process (V x,ϕ
t ) is an

Ef -martingale.

We emphasize that for an arbitrary random variable η ∈ L2, there does not necessarily
exist a pair of processes (X,ϕ) such that (Xt, ϕtσt, ϕtβt) is solution of the BSDE with default
jump associated with driver f and terminal condition η, that is, such that (X,ϕ) satisfies
the dynamics (3.2) with XT = η. In other terms, the market is incomplete.

In the sequel, we will often use the following change of variables which maps a process
ϕ ∈ H2 to Z ∈ H2 defined by Zt = ϕtσt. With this change of variables, the wealth process
V = V x,ϕ

t (for a given x ∈ R) is the unique process satisfying

−dVt = f(t, Vt, Zt)dt− ZtdWt − Ztσ−1
t βtdMt, V0 = x. (3.3)

We recall that in the classical linear case, we have f(t, y, z) = −rty − zθt, where θt :=
µt − rt
σt

.

3.2 f-martingale measures

We recall the notion of f -evaluation under Q (denoted by EfQ), the notion of EfQ-martingale,
and the notion of f -martingale measure (cf. [23]).

Let Q be a probability measure, equivalent to P . From the G-martingale representation
theorem (cf. [30], [25]), its density process (ζt) satisfies

dζt = ζt−(αtdWt + νtdMt); ζ0 = 1, (3.4)

where (αt) and (νt) are predictable processes with νϑ∧T > −1 a.s. By Girsanov’s theorem,
the process WQ

t := Wt −
∫ t

0
αsds is a Brownian motion under Q, and the process MQ

t :=

Mt −
∫ t

0
νsλsds is a martingale under Q.

As in [23], we define the spaces S2
Q, H2

Q and H2
Q,λ similarly to S2,H2 and H2

λ, but under
probability Q instead of P .

2so that Ef·,T ′(0) = 0 for all T ′ ∈ [0, T ].
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Definition 3.2. We call f -evaluation under Q, or (f,Q)-evaluation in short, denoted by
EfQ, the operator defined for each T ′ ∈ [0, T ] and for each η ∈ L2

Q(GT ′) by EfQ,t,T ′(η) := Xt

for all t ∈ [0, T ′], where (X,Z,K) is the solution in S2
Q ×H2

Q ×H2
Q,λ of the BSDE under Q

associated with driver f , terminal time T ′ and terminal condition η, and driven by WQ and
MQ, that is 3

−dXt = f(t,Xt, Zt)dt− ZtdWQ
t −KtdM

Q
t ; XT ′ = η.

We note that EfP = Ef .

Definition 3.3. Let Y ∈ S2
Q. The process (Yt) is said to be a (strong) EfQ-martingale, or an

(f,Q)-martingale, if EfQ,σ,τ (Yτ ) = Yσ a.s. on σ ≤ τ , for all σ, τ ∈ T0.

We now introduce the concept of f -martingale probability measure.

Definition 3.4. A probability measure Q equivalent to P is called an f -martingale proba-
bility measure if for all x ∈ R and for all ϕ ∈ H2 ∩H2

Q, the wealth process V x,ϕ is a strong

EfQ-martingale, or in other terms an (f,Q)-martingale.

We note that P is an f -martingale probability measure (cf. Lemma 3.1).
As in [23], we denote by Q the set of f -martingale probability measures Q such that the

coefficients (αt) and (νt) associated with its density with respect to P (see equation (3.4))
are bounded. We note that P ∈ Q.

We denote by V be the set of bounded predictable processes ν such that νϑ∧T > −1 a.s.,
which is equivalent to νt > −1 for all t ∈ [0, T ] λtdP ⊗ dt-a.s. (cf. Remark 9 in [11]).

Proposition 3.5. (Characterization of Q) Let Q be a probability measure equivalent to P ,
such that the coefficients α and ν of its density (3.4) with respect to P are bounded. The two
following assertions are equivalent:
(i) Q ∈ Q, that is, Q is an f -martingale probability measure.
(ii) there exists ν ∈ V such that Q = Qν, where Qν is the probability measure which admits
ζνT as density with respect to P on GT , where ζν satisfies

dζνt = ζνt−(−νtλtβtσ−1
t dWt + νtdMt); ζ

ν
0 = 1. (3.5)

3.3 Superhedging prices and no-arbitrage

Let us consider an American option associated with maturity T and a payoff given by a
process (ξt) ∈ S2.

The superhedging price for the seller of the American option at time 0, denoted by u0, is
classically defined as the minimal initial capital which enables the seller to be superhedged no
matter what the exercise time chosen by the buyer is. More precisely, we have the following
definition.

3We note that since we have a representation theorem for (Q,G)-martingales with respect to WQ and
MQ (see e.g. Proposition 6 in the appendix of [11]), this BSDE admits a unique solution (X,Z,K) in
S2
Q ×H2

Q ×H2
Q,λ.
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Definition 3.6. A superhedge for the seller against the American option with initial price
x ∈ R is a portfolio strategy ϕ ∈ H2 such that V x,ϕ

t ≥ ξt, 0 ≤ t ≤ T a.s.

For each x ∈ R, we denote by A(x) the set of all superhedges for the seller associated
with initial price x.

The superhedging price for the seller of the American option at time 0 is thus defined by

u0 := inf{x ∈ R, ∃ϕ ∈ A(x)}. (3.6)

We now consider the American option from the point of view of the buyer.

Definition 3.7. A superhedge for the buyer against the American option with initial price
z ∈ R is a pair (τ, ϕ) of a stopping time τ ∈ T and a portfolio strategy ϕ ∈ H2 such that
V −z,ϕτ + ξτ ≥ 0 a.s.

For each z ∈ R, we denote by B(z) the set of all superhedges for the buyer associated
with initial price z.

We now define the buyer’s price ũ0 of the American option as the supremum of the initial
prices which allow the buyer to be superhedged, that is 4

ũ0 = sup{z ∈ R, ∃(τ, ϕ) ∈ B(z)}. (3.7)

We now introduce the definitions of an arbitrage opportunity for the seller and for the
buyer of the American option.

Definition 3.8. Let x ∈ R. Let y ∈ R, and let ϕ in H2. We say that (y, ϕ) is an arbitrage
opportunity for the seller of the American option with initial price x if

y < x and V y,ϕ
τ − ξτ ≥ 0 a.s. for all τ ∈ T .

Definition 3.9. Let x ∈ R. Let y ∈ R, let τ ∈ T and let ϕ ∈ H2. We say that (y, τ, ϕ) is
an arbitrage opportunity for the buyer of the American option with initial price x, if

y > x and V −y,ϕτ + ξτ ≥ 0 a.s.

Proposition 3.10. Let x ∈ R. There exists an arbitrage opportunity for the seller (resp.
for the buyer) of the American option with price x if and only if x > u0 (resp. x < ũ0).

The proof, which relies on the same arguments as those of the proof of Proposition 5.11
in [14] (see also [26]) is omitted.

Definition 3.11. A real number x is called an arbitrage-free price for the American option
if there exists no arbitrage opportunity, neither for the seller nor for the buyer.

By Propositions 3.10, we get

Proposition 3.12. If u0 < ũ0, there does not exist any arbitrage-free price for the American
option. If u0 ≥ ũ0, the interval [ũ0, u0] is the set of all arbitrage-free prices. We call it the
arbitrage-free interval for the American option.

4Note that u0, ũ0 ∈ R. We shall see below that, under the assumption that |ξt| is smaller than or equal
to the value of a portfolio sufficiently integrable (cf. (4.1)), u0 is finite (cf. Theorem 4.1), and that, under
this assumption and some regularity conditions on ξ, ũ0 is also finite (cf. Theorem 6.1).
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4 Duality for the seller’s superhedging price

From now on, we assume that the payoff (ξt) is such that there exist x ∈ R and ψ ∈ H2

satisfying

|ξt| ≤ V x,ψ
t = x−

∫ t

0

f(s, V x,ψ
s , σsψs)ds+

∫ t

0

ψsσsdWs +

∫ t

0

βsψsdMs, 0 ≤ t ≤ T, a.s.

(4.1)
We will establish the following dual characterization of the seller’s superhedging price (in

terms of the f -martingale measures from Definition 3.4).

Theorem 4.1 (Duality for the seller’s superhedging price). Let (ξt) satisfy Assumption (4.1)
with ψ ∈ ∩ν∈VH2

Qν . The superhedging price for the seller u0 of the American option with
payoff (ξt) satisfies the equality

u0 = sup
(τ,ν)∈T ×V

EfQν ,0,τ (ξτ ).

Remark 4.2. In the linear case, this result reduces to the well-known dual representation of
the superhedging price for the seller of the American option in an incomplete (linear) market
(cf. [29]).

In order to prove Theorem 4.1, we will work under the primitive probability P , which
will allow us to solve the problem under weaker integrability conditions.
To this aim, we introduce a family of drivers (f ν , ν ∈ V), which will be used in the sequel.

Definition 4.3 (Driver f ν and Eν-expectation). For ν ∈ V, we define

f ν(ω, t, y, z, k) := f(ω, t, y, z) + νt(ω)λt(ω)
(
k − βt(ω)σ−1

t (ω)z
)
.

The mapping f ν is a λ-admissible driver 5.
The associated non-linear family of operators, denoted by Efν or, simply, Eν, is defined as
follows: for each T ′ ≤ T and each η ∈ L2(GT ′), we have Eν·,T ′(η) := Xν

· , where (Xν , Zν , Kν)
is the unique solution in S2 ×H2 ×H2

λ of the BSDE

−dXν
t =

(
f(t,Xν

t , Z
ν
t ) + νtλt(K

ν
t − βtσ−1

t Zν
t )
)
dt− Zν

t dWt −Kν
t dMt; X

ν
T ′ = η. (4.2)

Remark 4.4. By Proposition 3.5, for each ν ∈ V, for all T ′ ≤ T and η ∈ L2(GT ′)∩L2
Qν (GT ′),

we derive that the (f ν , P )-evaluation of η is equal to its (f,Qν)-evaluation, that is,

Eν·,T ′(η) = EfQν ,·,T ′(η).

5Since ν is a predictable process, fν is P ⊗ B(R3)− measurable. As, moreover, ν is bounded, fν is a
λ-admissible driver.
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4.1 Non-linear problem of control and stopping. The value family
(Y(S)).

Establishing the dual representation for the seller’s superheding price is based on the study
of the following non-linear problem of control and stopping.
For each S ∈ T , let Y (S) be the GS-measurable random variable defined by

Y (S) := ess sup
(τ,ν)∈TS×V

EνS,τ (ξτ ). (4.3)

Remark 4.5. We note that for each S ∈ T , τ ∈ TS and each ν ∈ V, the random variable
EνS,τ (ξτ ) depends on the control ν only through the values of ν on the interval [S, τ ]. For
each S ∈ T , let VS be the set of bounded predictable processes ν defined on [S, T ], such that
νt > −1, S ≤ t ≤ T, dP ⊗ dt-a.s. We thus have

Y (S) = ess sup
(τ,ν)∈TS×VS

EνS,τ (ξτ ) a.s.

Definition 4.6. We say that a family X = (X(S), S ∈ T ) is admissible if it satisfies the
following conditions

In order to facilitate the study of the non-linear problem of control and stopping (4.3),
we introduce the following auxiliary non-linear optimal stopping problem: for ν ∈ V , for
S ∈ T ,

Y ν(S) = ess sup
τ∈TS
EνS,τ (ξτ ) (4.4)

We know from [21] that the value family (Y ν(S))S∈T of the auxiliary optimal stopping
problem can be aggregated by an optional process (Y ν

t )t∈[0,T ] ∈ S2 which is a strong Eν-
supermartingale.
From the definitions and Remark 4.5, we have, for all S ∈ T ,

Y (S) = ess sup
ν∈V

Y ν
S = ess sup

ν∈VS
Y ν
S a.s. (4.5)

Let us note also that Y (S) ≥ Y 0
S a.s., as 0 ∈ V . Moreover, since |ξt| ≤ V x,ψ

t , 0 ≤ t ≤ T a.s.
it follows that for all S ∈ T , τ ∈ TS and ν ∈ V , EνS,τ (ξτ ) ≤ EνS,τ (|ξτ |) ≤ EνS,τ (V x,ψ

τ ) = V x,ψ
S a.s.

Hence, taking the essential supremum over τ ∈ TS and ν ∈ V in this inequality, we derive that
Y (S) ≤ V x,ψ

S a.s. Since Y 0 ∈ S2 and V x,ψ ∈ S2, it follows that E[ess supS∈T Y (S)2] < +∞.

Lemma 4.7. (admissibility) The value family (Y (S))S∈T of the non-linear problem of control
and stopping is an admissible family, that is,
1. For all S ∈ T , Y (S) is a real-valued GS-measurable random variable.
2. For all S, S ′ ∈ T , Y (S) = Y (S ′) a.s. on {S = S ′}.
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Proof. By definition (4.5), for each S ∈ T , Y (S) is GS-measurable as the essential supremum
of GS-measurable random variables. Let S, S ′ ∈ T be such that S = S ′ a.s. We have Y ν

S = Y ν
S′

a.s. for all ν ∈ V . Hence, ess supν∈V Y
ν
S = ess supν∈V Y

ν
S′ a.s. From this, together with (4.5),

we get Y (S) = Y (S ′) a.s. The admissibility of the value family is thus proven.

Proposition 4.8. (Maximizing sequence) Let S ∈ T . There exists a sequence of controls
(νn)n∈N with νn ∈ VS, for all n, such that the sequence (Y νn

S )n∈N is non- decreasing and
satisfies:

Y (S) = lim
n→∞

↑ Y νn

S a.s. (4.6)

Proof. We show that the set {Y ν
S , ν ∈ VS} is stable under pairwise maximization. Indeed, let

ν, ν ′ ∈ VS. Set A := {Y ν′
S ≤ Y ν

S }. We have A ∈ FS. Set ν̃ := ν1A+ν ′1Ac . Then ν̃ ∈ VS. We

have Y ν̃
S 1A = ess supτ∈TS E

ν̃
S,τ (ξτ )1A = ess supτ∈TS E

f ν̃1A
S,τ̃ (ξτ̃1A) = ess supτ∈TS E

fν1A
S,τ (ξτ1A) =

ess supτ∈TS E
ν
S,τ (ξτ )1A = Y ν

S 1A a.s. and similarly on Ac. It follows that Y ν̃
S = Y ν

S 1A +

Y ν′
S 1Ac = Y ν

S ∨ Y ν′
S a.s. The result of the proposition follows by a classical result on essential

suprema (cf. Neveu (1975)).

Definition 4.9. (Eg-(super)martingale family) Let g be a λ-admissible driver satisfying As-
sumption 2.2. Let (X(S), S ∈ T ) be an admissible family such that E[ess supS∈T (X(S))2] <
∞. We say that (X(S), S ∈ T ) is an Eg-supermartingale (resp. Eg- submartingale, Eg-
martingale) family if for all S, S

′ ∈ T such that S ≥ S
′

a.s., EgS′,S(X(S)) ≤ (resp. ≥, =)

X(S
′
) a.s.

Proposition 4.10. The family (Y (S)) satisfies the following properties: (Y (S)) is an Eν-
supermartingale family for all ν ∈ V and Y (S) ≥ ξS a.s. for all S ∈ T . Moreover, (Y (S))
is the smallest family satisfying these properties.

Proof. For all S ∈ T , for all ν ∈ VS, Y ν
S ≥ ξS a.s. Hence, for all S ∈ T , Y (S) ≥ ξS

a.s. Let S, S ′ ∈ T be such that S ≥ S
′

a.s. By Proposition 4.8, there exists a sequence
of controls (νn)n∈N, with νn in VS for all n, such that Y (S) = limn→∞ ↑ Y νn

S a.s. Let
ν ∈ V . By the continuity property of Eν with respect to terminal condition, we have
EνS′,S(Y (S)) = limn→∞ EνS′,S(Y νn

S ) a.s. For each n, we set ν̃nt := νt1]S′,S](t) + νnt 1]S,T ](t). We
note that ν̃n ∈ VS′ ; hence, f ν̃

n
is λ-admissible. We have f ν̃

n
= f ν1]S′,S]+f

νn1]S,T ]. Moreover,
Y νn
S = Y ν̃n

S (as f ν̃
n

= f ν
n

on [S, T ], dt⊗ dP -a.e.). From these observations, we deduce

EνS′,S(Y νn
S ) = E ν̃nS′,S(Y ν̃n

S ) ≤ Y ν̃n
S′ ,

where the (last) inequality is due to the fact that Y ν̃n is a strong E ν̃n-supermartingale. We
thus get EνS′,S(Y (S)) = lim

n→∞
EνS′,S(Y νn

S ) ≤ lim inf
n→∞

Y ν̃n
S′ ≤ Y (S ′) a.s. , where the last inequality

follows from (4.5). As ν ∈ V is arbitrary, we conclude that the family (Y (S)) is an Eν-
supermartingale family for all ν ∈ V .

Let us prove the second statement. Let (Y ′(S), S ∈ T ) be an admissible family satisfying
the properties: (Y ′(S)) is an Eν-supermartingale family for all ν ∈ V and Y ′(S) ≥ ξS
a.s. for all S ∈ T . Let ν ∈ V . By the properties of Y ′, for all S ∈ T , for all τ ∈ TS,
Y ′(S) ≥ EνS,τ (Y ′(τ)) ≥ EνS,τ (ξτ ) a.s. By taking the essential supremum over τ ∈ TS and
ν ∈ V , we get Y ′(S) ≥ Y (S) a.s.
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Corollary 4.11. There exists an r.u.s.c. process (Yt) ∈ S2 which aggregates the value
family (Y (S)) of the problem of control and stopping (4.3). The process (Yt) is a strong
Eν-supermartingale for all ν ∈ V and Yt ≥ ξt, for all t ∈ [0, T ], a.s. Moreover, the process
(Yt) is the smallest process in S2 satisfying these properties.

Proof. The above Proposition 4.10 implies in particular that the value family (Y (S)) is a
strong E0-supermartingale family. By Lemma A.1 in [23], there exists an r.u.s.c. process
(Yt) in S2 aggregating the family (Y (S)). The other properties of the aggregating process
(Yt) follow directly from Proposition 4.10.

Corollary 4.12 (The right-continuous case). Assume moreover that the process (ξt) in
problem (4.3) is RCLL. Then, the process (Yt) is RCLL. Moreover, (Yt) is the smallest
RCLL process in S2 satisfying the properties: for each ν ∈ V, (Yt) is a (strong) RCLL
Eν-supermartingale greater than or equal to (ξt).

Proof. This result follows directly from Corollary 4.11, together with Remark A.7 in [23].
�

4.2 The strict value family (Y +(S))

Let S be a stopping time in T0. We denote by TS+ the set of stopping times θ ∈ T0 with
θ > S a.s. on {S < T} and θ = T a.s. on {S = T}. The strict value Y +(S) (at time S) is
defined by

Y +(S) := ess sup
(τ,ν)∈TS+×V

EνS,τ (ξτ ). (4.7)

We note that (as for Y (S)) the set V in the above problem can be replaced with the set VS
without changing the value of the problem.
We note also that Y +(S) = ξT a.s. on {S = T}.
Let S be a stopping time in T0 and let ν ∈ V . We introduce the following auxiliary (strict)
optimal stopping problem (to be compared with (4.4)):

Y ν,+(S) := ess sup
τ∈TS+

EνS,τ (ξτ ). (4.8)

We know from [21] (cf. Proposition 9.1) that there exists a strong Eν-supermartingale,
denoted by (Y ν,+

t ), which aggregates the value family (Y ν,+(S)) of the above (strict) optimal
stopping problem. Note that we have

Y +(S) = ess sup
ν∈V

Y ν,+
S = ess sup

ν∈VS
Y ν,+
S a.s. (4.9)

Using the above representation and the same type of arguments as those used above
for the value family (Y (S))S∈T0 , we show that the strict value family (Y +(S))S∈T0 is an
admissible family, satisfying the integrability condition E[ess supS∈T0(Y

+(S))2] < ∞ and
the following properties:
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Proposition 4.13. For each S ∈ T0, there exists a maximizing sequence (νn) = (νn(S)) ∈ VnS
for the optimal control problem from equation (4.9), that is, Y +

S = limn→∞ ↑ Y νn,+
S a.s.

Proposition 4.14. The family (Y +(S))S∈T0 is an Eν-supermartingale family for each ν ∈ V.

As above, we deduce the following

Corollary 4.15. There exists a process (Y +
t ) ∈ S2 which aggregates the strict value family

(Y +(S))S∈T0. The process (Y +
t ) is a strong Eν-supermartingale for all ν ∈ V.

Moreover, the following result holds true. The result is based on the representation (4.9)
and on properties of the strict value process (Y ν,+

t ) of the auxiliary optimal stopping problem
(4.8).
We recall that (Yt+) denotes the process of right limits of the process (Yt). We recall also
that (Yt+) is well-defined as (Yt) is a strong Eν-supermartingale, and hence, has right (and
left) limits.

We recall that (Y ν
t+) denotes the process of right limits of the process (Y ν

t ).

Theorem 4.16. (i) The strict value process (Y +
t ) is right-continuous.

(ii) For all S ∈ T0, Y +
S = YS+ a.s. (in other words, the strict value process (Y +

t ) coincides
with the process of right limits (Yt+)).

(iii) For all S ∈ T0, YS = YS+ ∨ ξS a.s.

We have the following intermediary result:

Proposition 4.17. For all S ∈ T0,

E[Y +
S ] = sup

ν∈V
E[Y ν,+

S ].

Proof. From the representation (4.9), we deduce E[Y +
S ] = E[ess supν∈V Y

ν,+
S ] ≥ supν∈V E[Y ν,+

S ].
We now show the converse inequality. By Proposition 4.13, there exists a sequence (νn) =
(νn(S)) in VnS such that Y +

S = limn→∞ ↑ Y νn,+
S . We thus have E[Y +

S ] = E[limn→∞ ↑
Y νn,+
S ] = limn→∞ ↑ E[Y νn,+

S ], where we have used dominated convergence to exchange
limit and expectation. For all n, we have E[Y νn,+

S ] ≤ supν∈V E[Y ν,+
S ].6 We conclude that

E[Y +
S ] ≤ supν∈V E[Y ν,+

S ]. The proposition is thus proved. �

We are now ready to prove Theorem 4.16.
Proof of Theorem 4.16. To prove statement (i), we first show that the process (Y +

t ) is
right-lowersemicontinuous along stopping times in expectation. Let S ∈ T0, let (Sn) be
a non-increasing sequence of stopping times in TS with lim ↓ Sn = S a.s. By Proposi-
tion 4.17, we have E[Y +

Sn
] = supν∈V E[Y ν,+

Sn
], for all n ∈ N. Hence, lim infn→∞ E[Y +

Sn
] =

6Indeed, each process ν ∈ VS can be seen as a process ν̃ in V by setting ν̃ = ν on [S, T ] and ν̃ = 0 on
[0, S).
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lim infn→∞ supν∈V E[Y ν,+
Sn

] ≥ supν∈V lim infn→∞ E[Y ν,+
Sn

]. Now, for all ν ∈ V , the process
(Y ν,+) is right-continuous (cf. Theorem 9.2 in [21]), hence right-continuous along stopping
times (cf. [9]); by dominated convergence, we thus have lim infn→∞ E[Y ν,+

Sn
] = limn→∞ E[Y ν,+

Sn
] =

E[Y ν,+
S ]. This, together with the above computation, gives lim infn→∞ E[Y +

Sn
] ≥ supν∈V E[Y ν,+

S ] =
E[Y +

S ], where the last equality holds due to Proposition 4.17. We conclude that the pro-
cess (Y +

t ) is right-lowersemicontinuous along stopping times in expectation. On the other
hand, we know already that the process (Y +

t ) is right-uppersemicontinuous along stopping
times, and hence right-uppersemicontinuous along stopping times in expectation (due to its
integrability). Hence, (Y +

t ) is right-continuous along stopping times in expectation. We
deduce that (Y +

t ) is right-continuous (cf. e.g. [10]). We now show (ii). Let S ∈ T0. One
inequality, namely the inequality YS+ ≥ Y +

S a.s., follows from the right-continuity of (Y +
t ),

established in (i). Indeed, let (Sn) be a non-increasing sequence of stopping times in TS+

with lim ↓ Sn = S a.s. We know that Yτ ≥ Y +
τ a.s., for all τ ∈ T0. Hence, YSn ≥ Y +

Sn
a.s., for

all n. By taking the limit when n → ∞ and by using the right-continuity of (Y +
t ), we get

YS+ ≥ Y +
S a.s. For the converse inequality, we first show

E0
S,Sn(YSn) ≤ Y +

S a.s. for all n. (4.10)

To prove this, we fix n and we take (τ p, νp) ∈ TSn×V an optimizing sequence for the problem
with value YSn , i.e. YSn = limp→∞ Eν

p

Sn,τp
(ξτp). We have

E0
S,Sn(YSn) = E0

S,Sn( lim
p→∞
EνpSn,τp(ξτp)) = lim

p→∞
E0
S,Sn(EνpSn,τp(ξτp)) a.s., (4.11)

where we have used the continuity property of E0
S,Sn(·) with respect to the terminal condition

(recall that here n is fixed). We set ν̄pt := νpt I{t>Sn} (hence, ν̄pt = 0 on {t ≤ Sn}). We note
that ν̄ ∈ V . Using the definition of ν̄ and the consistency property of E-expectations, we
get E0

S,Sn
(EνpSn,τp(ξτp)) = E ν̄S,τp(ξτp) ≤ Y +

S a.s. (where for the inequality we have used that
τp ∈ TS+). From this, together with equation (4.11), we derive the desired inequality (4.10).
From (4.10) and using the continuity of E-expectations with respect to the terminal time and
the terminal condition, we derive Y +

S ≥ limn→∞ E0
S,Sn(YSn) = E0

S,S(YS+) = YS+ a.s. Hence,
Y +
S ≥ YS+ a.s., which, together with the previously shown converse inequality, proves the

equality.
We now show (iii). Using successively statement (ii), relation (4.9), Theorem 9.2 (iii) in [21],
and relation (4.5), we get

YS+ ∨ ξS = Y +
S ∨ ξS = ess sup

ν∈V

(
Y ν,+
S ∨ ξS

)
= ess sup

ν∈V
Y ν
S = YS a.s. �

4.3 Proof of the dual representation

We will now provide a dual representation for the seller’s superhedging price u0 in terms of
the value (at time 0) of the non-linear problem of control and stopping studied above. We
also give a superhedging strategy for the seller. From this result, we will deduce the dual
representation (in terms of the f -martingale probability measures) stated in Theorem 4.1.

To this aim, we first give the following lemma.
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Lemma 4.18. (Ef -optional decomposition of the value process Y ) There exists a unique
Z ∈ H2, a unique C ∈ C2 and a unique nondecreasing optional RCLL process h, with h0 = 0
and E[h2

T ] <∞ such that

Yt = Y0−
∫ t

0

f(s, Ys, Zs)ds+

∫ t

0

σ−1
s Zs(σsdWs +βsdMs)−ht−Ct− , 0 ≤ t ≤ T a.s. (4.12)

Proof. By Corollary 4.11, the value process Y is the smallest process in S2, which is a
strong Eν-supermartingale for all ν ∈ V such that Yt ≥ ξt, for all t ∈ [0, T ], a.s. The desired
result then follows from the non-linear optional decomposition of strong Eν-supermartingales
for all ν ∈ V (cf. Theorem B.4 in [23]). �

Theorem 4.19. The superhedging price u0 of the American option is equal to the value Y0

(at time 0) of the non-linear problem of control and stopping (4.3), that is

u0 = sup
(τ,ν)∈T ×V

Eν0,τ (ξτ ). (4.13)

Moreover, the portfolio strategy ϕ∗ := σ−1Z, where the process Z is the one from the Ef -
optional decomposition of the value process Y from Lemma 4.18, is a superhedging strategy
for the seller, that is, ϕ∗ ∈ A(u0).

Proof. Let H be the set of initial capitals which allow the seller to be “superhedged”, that
is H = {x ∈ R : ∃ϕ ∈ A(x)}. From the definition of u0 (see (3.6)), we have u0 = infH. We
first show that

u0 ≥ sup
(τ,ν)∈T ×V

Eν0,τ (ξτ ). (4.14)

Let x ∈ H. There thus exists ϕ ∈ A(x), which implies that for each τ ∈ T , we have V x,ϕ
τ ≥ ξτ

a.s. Let ν ∈ V . By taking the Eν-evaluation in the above inequality, using the monotonicity
of Eν and the Eν-martingale property of the wealth process V x,ϕ, we obtain x = Eν0,τ (V x,ϕ

τ ) ≥
Eν0,τ (ξτ ). By arbitrariness of τ ∈ T and ν ∈ V , we get x ≥ sup(τ,ν)∈T ×V Eν0,τ (ξτ ), which holds
for all x ∈ H. By taking the infimum over x ∈ H, we obtain the desired inequality (4.14).
Since, by definition of Y0, we have Y0 = sup(τ,ν)∈T ×V Eν0,τ (ξτ ), the inequality (4.14) can be
written u0 ≥ Y0.

We now show the converse inequality, that is, Y0 ≥ u0. Since u0 = infH, it is sufficient
to show that the portfolio strategy ϕ∗ := σ−1Z is a superhedging strategy for the seller
associated with the initial capital Y0, that is, satisfies

ϕ∗ ∈ A(Y0). (4.15)

We consider the portfolio associated with the initial capital Y0 and the strategy ϕ∗. By
(3.2)-(3.3), the value of this portfolio (V Y0,ϕ∗

t ) satisfies the following forward equation:

V Y0,ϕ∗

t = Y0 −
∫ t

0

f(s, V Y0,ϕ∗

s , Zs)ds+

∫ t

0

σ−1
s Zs(σsdWs + βsdMs), 0 ≤ t ≤ T a.s. (4.16)
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Moreover, by the optional Ef -decomposition of the value process (Yt) (cf. Lemma 4.18),
the process (Yt) satisfies the forward SDE (4.12). Since (ht) and (Ct−) are nondecreasing, by
the comparison result for forward differential equations, we thus get V Y0,ϕ∗

t ≥ Yt, 0 ≤ t ≤ T
a.s. Hence, since Yt ≥ ξt, we get V Y0,ϕ∗

t ≥ ξt, 0 ≤ t ≤ T a.s. , which implies the desired
property (4.15). We thus derive that Y0 ∈ H, and hence that Y0 ≥ u0. Since Y0 ≤ u0,
we deduce the equality Y0 = u0. Moreover, by (4.15), we derive that ϕ∗ ∈ A(u0), which
completes the proof.

Remark 4.20. From a financial point of view, the process (ht) from equation (4.12) can be
interpreted as the cumulative amount the seller withdraws from the hedging portfolio up to
time t. More precisely, for each time t, the seller can withdraw the amount dht from his/her
portfolio between t and t + dt. In particular, at time ϑ, the seller can withdraw the amount
∆hϑ from his/her portfolio, which, by equation (4.12), is equal to

∆hϑ = βϑσ
−1
ϑ Zϑ −∆Yϑ a.s.

The term βϑσ
−1
ϑ Zϑ = βϑϕ

∗
ϑ represents the jump at the default time ϑ of the amount invested

in the risky asset S (which is equal to the jump of the value of the portfolio). Note that in
this case, the value of the hedging portfolio, denoted by (V Y0,ϕ∗,h

t ), taking into account these
withdrawals, satisfies

dV Y0,ϕ∗,h
t = −f(t, V Y0,ϕ∗,h

t , σtϕ
∗
t )dt+ ϕ∗t (σtdWt + βtdMt)− dht; V Y0,ϕ∗,h

0 = Y0.

We thus have V Y0,ϕ∗

t = V Y0,ϕ∗,0
t .

Proof of Theorem 4.1: The proof follows from the previous theorem 4.19 and from Remark
4.4. Indeed, under the additional integrability condition ψ ∈ ∩ν∈VH2

Qν on the process ψ from
Assumption (4.1), by Remark 4.4, the above dual representation of the superhedging price can
be written in terms of the f -martingale probability measures (characterized in Proposition
3.5), that is

u0 = sup
(τ,ν)∈T ×V

EfQν ,0,τ (ξτ ),

which ends the proof of Theorem 4.1. �

5 Infinitesimal characterizations of the seller’s super-

hedging price process

We now introduce the seller’s (superhedging) price of the American option at each time/stopping
time S ∈ T . We first define, for each initial wealth X ∈ L2(GS), a superhedging strategy as a
portfolio strategy ϕ ∈ H2 such that V S,X,ϕ

t ≥ ξt for all t ∈ [0, T ] a.s. , where V S,X,ϕ denotes
the wealth process associated with initial time S and initial condition X. Let AS(X) be the
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set of all superhedging strategies associated with initial time S and initial wealth X. The
seller’s (superhedging) price at time S is defined by the random variable

u(S) := ess inf{X ∈ L2(GS), ∃ϕ ∈ AS(X)}.

Using Lemma 4.18 and similar arguments to those used in the proof of Theorem 4.19, one
can show that for each S ∈ T , we have u(S) = YS a.s. We call (Yt) the seller’s (superhedging)
price process of the American option.

Definition 5.1. Let ξ ∈ S2. A process Y ′ ∈ S2 is said to be a supersolution of the constrained
reflected BSDE with driver f and obstacle ξ if there exists a process (Z ′, K ′, A′, C ′) ∈ H2 ×
H2
λ ×A2 × C2 such that

− dY ′t = f(t, Y ′t , Z
′
t)dt+ dA′t + dC ′t− − Z ′tdWt −K ′tdMt; (5.1)

Y ′T = ξT a.s. and Y ′t ≥ ξt for all t ∈ [0, T ] a.s. ; (5.2)

(Y ′τ − ξτ )(C ′τ − C ′τ−) = 0 a.s. for all τ ∈ T0; (5.3)

A′· +

∫ ·
0

(K ′s − βsσ−1
s Z ′s)λsds ∈ A2 and (K ′t − βtσ−1

t Z ′t)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. ;

(5.4)

Remark 5.2. This definition can be extended to the case of a general driver g (which may
depend also on k).

Equation (5.3) is referred to as Skorokhod condition for the process C ′.

Remark 5.3. The process A′ can be uniquely decomposed as the sum of two nondecreasing
processes B′ and B̂ belonging to A2 with dB′t ⊥ dB̂t,

7 such that B′ satisfies the Skorokhod
condition, that is ∫ t

0

(Y ′s− − ξs−)dB′s = 0 a.s. (5.5)

Note that the processes B′ and B̂ are given by B′t =
∫ t

0
1{Y ′

s−
=ξs−}dA

′
s and B̂t =

∫ t
0

1{Y ′
s−
>ξs−}dA

′
s

for all t ∈ [0, T ]. It follows that Y ′ ∈ S2 is a supersolution of the constrained reflected
BSDE with driver f and obstacle ξ if and only if there exists a process (Z ′, K ′, B′, B̂, C ′) ∈
H2 ×H2

λ ×A2 ×A2 × C2 such that

− dY ′t = f(t, Y ′t , Z
′
t)dt+ dB′t + dB̂t + dC ′t− − Z ′tdWt −K ′tdMt; (5.6)

Y ′T = ξT a.s. and Y ′t ≥ ξt for all t ∈ [0, T ] a.s. ; (5.7)

(Y ′τ − ξτ )(C ′τ − C ′τ−) = 0 a.s. for all τ ∈ T0; (5.8)∫ t

0

(Y ′s− − ξs−)dB′s = 0 a.s. and dB̂t ⊥ dB′t, (5.9)

7in the sense of Definition 2.3 from [12]
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and such that the constraints (5.4) hold, with A′ replaced by B′ + B̂.
In the particular case when B̂ = 0, since B′ satisfies the Skorokhod condition, the process
(Y ′, Z ′, K ′, B′, C ′) is thus a solution 8 of the reflected BSDE (with irregular obstacle (ξt)),
here with the additional constraints (5.4). Thus, when passing from the notion of a solution
of the reflected BSDE to the notion of a supersolution of the reflected BSDE, there appears
an additional nondecreasing predictable process B̂, which increases only when Y ′t− > ξt−.

Theorem 5.4. (Infinitesimal characterization I) The seller’s price process (Yt) is a super-
solution of the constrained reflected BSDE associated with driver f and obstacle ξ from
Definition 5.1, that is, there exists a unique process (Z,K,A,C) ∈ H2 ×H2

λ ×A2 ×C2 such
that (Y, Z,K,A,C) satisfies Definition 5.1. Moreover, it is the minimal one, that is, if (Y ′t )
is another supersolution, then Y ′t ≥ Yt for all t ∈ [0, T ] a.s.

Moreover, the portfolio strategy ϕ∗ := σ−1Z is a superhedging strategy for the seller, that
is, ϕ∗ ∈ A(u0).

Remark 5.5. Suppose here that there is no default in the market. In this case, the filtration
G is the one associated with the Brownian motion W , and in the dynamics of the price
process (St) and of the wealth process (Vt), M = 0 and β = 0. Hence, the market is
complete, and we have V = {0}. From this observation, we derive that for each S ∈ T ,
YS = Y 0

S = ess supτ∈TS E
0
S,τ (ξτ ) a.s. By Theorem 6.7 in [22], (Yt) is thus the solution of the

reflected BSDE associated with driver f and irregular obstacle (ξt). In other words, there
exists (Z,K,B,C) ∈ H2×H2

λ×A2×C2 such that equations (5.6) to (5.9) hold with B̂ = 0.

Proof. Since Y is the value process, we have YT = ξT a.s. and Yt ≥ ξt for all t ∈ [0, T ] a.s.
Moreover, by Corollary 4.11, the value process Y is a strong Eν-supermartingale for all ν ∈ V .
Hence, by the non-linear predictable decomposition (cf. Proposition B.1 in [23]), there exists
a unique process (Z,K,A,C) ∈ H2×H2

λ×A2×C2 such that equation (5.1) and the conditions
(5.4) hold. We now show that the process C satisfies the Skorokhod condition (5.3). Let
τ ∈ T0. By Theorem 4.16 (iii), we have Yτ = Yτ+∨ξτ a.s.. Hence, ∆+Yτ = 1{Yτ=ξτ}∆+Yτ a.s.
On the other hand, since (Y, Z,K,A,C) satisfies equation (5.1), we have ∆Cτ = −∆+Yτ a.s.
We conclude that ∆Cτ = 1{Yτ=ξτ}∆Cτ a.s. Hence, the Skorokhod condition (5.3) is satisfied.

It remains to show that (Yt) is the minimal supersolution of the constrained reflected
BSDE from Definition 5.1. Let Y ′ be another supersolution of this constrained reflected
BSDE and let (Z ′, K ′, A′, C ′) be the associated process (from the definition of a supersolu-
tion). We have Y ′t ≥ ξt for all t ∈ [0, T ] a.s. Let now ν ∈ V . Let A

′ν be the process defined
by

A
′ν
t := A′t −

∫ t

0

(K ′s − βsσ−1
s Z ′s)νsλsds, 0 ≤ t ≤ T.

Since ν ∈ V , we have νt + 1 > 0 dP ⊗ dt-a.s. This together with the second condition from
(5.4) imply that (K ′t − βtσ−1

t Z ′t)λt(1 + νt) ≤ 0 dP ⊗ dt-a.s. Then, using the first condition

8in the sense from Definition 2.3 in [22], which, in the case of a right-continuous obstacle, corresponds to
the well-known notion of a solution of a reflected BSDE)
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from (5.4) (and the definition of A
′ν), we obtain that the process A

′ν is nondecreasing. On
the other hand, since (Y ′, Z ′, K ′, A′, C ′) satisfies the dynamics from Definition 5.1, we have

−dY ′t =
(
f(t, Y ′t , Z

′
t) + (K ′t − βtσ−1

t Z ′t)νtλt
)
dt+ dA

′ν
t + dC ′t− − Z ′tdWt −K ′tdMt.

Hence, by the Eg-Mertens decomposition of strong Eg-supermartingales, applied with the
driver g := f ν (cf. Theorem 5.1 in [20], or Theorem 7.1 in [21]), we derive that the process
Y ′ is a strong Eν- supermartingale. Since this holds for all ν ∈ V , we derive from Corollary
4.11 that Y ′t ≥ Yt, for all t ∈ [0, T ] a.s. �

Remark 5.6. This result can be extended to any λ-admissible driver (depending also on k).

Definition 5.7. Let ξ ∈ S2. A process Y ′ ∈ S2 is called a supersolution of the optional
reflected BSDE associated with driver f and obstacle ξ if there exist Z ′ ∈ H2, C ′ ∈ C2 and
a nondecreasing optional RCLL process h′, with h′0 = 0 and E[(h′T )2] <∞ such that

− dY ′t = f(t, Y ′t , Z
′
t)dt− Z ′tσ−1

t (σtdWt + βtdMt) + dC ′t− + dh′t;

Y ′T = ξT and Y ′t ≥ ξt for all t ∈ [0, T ] a.s. ;

(Y ′τ − ξτ )(C ′τ − C ′τ−) = 0 a.s. for all τ ∈ T0.

Remark 5.8. We call the above equation an optional reflected BSDE because the associated
non decreasing right-continuous process is optional but not necessarily predictable contrary
the reflected BSDEs considered in the literature.

Note also that when the obstacle ξ is right-continuous, the purely discontinuous non
decreasing process C ′ (corresponding to the right-jumps of Y ′) is equal to 0.

From the non-linear optional decomposition (cf. Theorem B.4 in [23]), together with the
equivalence of the non-linear predictable and the non-optional decompositions (cf. Proposi-
tion B.5. in [23]), we derive the following result:

Theorem 5.9. (Infinitesimal characterization II) The seller’s superhedging price (Yt) of
the American option is a supersolution of the optional reflected BSDE from Definition 5.7.
Moreover, it is the minimal one, that is, if (Y ′t ) is another supersolution, then Y ′t ≥ Yt for
all t ∈ [0, T ] a.s.

6 Duality for the buyer’s superhedging price

Theorem 6.1 (Duality for the buyer’s superhedging price). Let (ξt) ∈ S2 be such that As-
sumption (4.1) is satisfied with ψ ∈ ∩ν∈VH2

Qν . Suppose moreover that (ξt) is right-continuous
and left-uppersemicontinuous along stopping times. The superhedging price for the buyer ũ0

of the American option satisfies

ũ0 = inf
ν∈V

sup
τ∈T
{−EfQν ,0,τ (−ξτ )} = sup

τ∈T
inf
ν∈V
{−EfQν ,0,τ (−ξτ )}.
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Again, to prove Theorem 6.1, we will work under the primitive probability measure P .
We define f̃(t, ω, y, z) := −f(t, ω,−y,−z).

Let ν ∈ V . We denote by E f̃ν or Ẽν the non-linear conditional expectation associated
with the λ-admissible driver

f̃ ν(t, y, z, k) := f̃(t, y, z) + νtλt(k − βtσ−1
t z).

Hence, for each T ′ ≤ T and each η ∈ L2(GT ′), we have Ẽν.,T ′(η) = X̃ν a.s., where (X̃ν , Z̃ν , K̃ν)

be the unique solution in S2×H2×H2
λ of the BSDE associated with driver f̃ ν , terminal time

T ′ and terminal condition η.

Remark 6.2. Let ν ∈ V and T ′ ≤ T . Note that for all η ∈ L2(GT ′), we have
Ẽν·,T ′(η) = −Eν·,T ′(−η), since f̃ ν(t, y, z, k) = −f ν(t,−y,−z,−k).

Let η ∈ L2(GT ′) ∩ L2
Qν (GT ′). By Remark 4.4, Eν·,T ′(η) = EfQν ,·,T ′(η). We thus have

Ẽν·,T ′(η) = −EfQν ,·,T ′(−η).

For each S ∈ T , we define the FS-measurable random variable Ỹ (S) as follows:

Ỹ (S) := ess inf
ν∈VS

ess sup
τ∈TS
ẼνS,τ (ξτ ) a.s. (6.1)

6.1 First properties of the value family Ỹ

Let us first show that E[ess supτ∈T Ỹ
2(τ)] <∞.

As 0 ∈ V , we have Ỹ (S) ≥ ess supτ∈TS E
0
S,τ (ξτ ) = Ỹ 0

S a.s., where (Ỹ 0
t ) is the first co-

ordinate of the solution of the reflected BSDE associated with driver f̃ and lower obstacle
(ξt). Now, since |ξt| ≤ V x,ψ

t , 0 ≤ t ≤ T a.s., we get that for all S ∈ T , τ ∈ TS and ν ∈ V ,
ẼνS,τ (ξτ ) = −EνS,τ (−ξτ ) ≥ −EνS,τ (|ξτ |) ≥ −EνS,τ (V x,ψ

τ ) = −V x,ψ
S a.s. Hence, taking the essential

supremum over τ ∈ TS and then the essential infimum over ν ∈ V in this inequality, we
obtain Ỹ (S) ≥ −V x,ψ

S a.s.
Since Ỹ 0 ∈ S2 and V x,ψ ∈ S2, it follows that E[ess supS∈T Ỹ (S)2] < +∞.

Using the characterization of the solution of a reflected BSDE with lower obstacle in
terms of an optimal stopping problem with g-expectations (see Theorem 4.2 in [20] when
(ξt) is right-u.s.c. payoff ), we can rewrite the value function of our problem as follows

Ỹ (S) = ess inf
ν∈VS

Ỹ ν
S = ess inf

ν∈V
Ỹ ν
S , (6.2)

where Ỹ ν is the solution of the reflected BSDE associated with driver f̃ ν , obstacle (ξt)0≤t<T
and terminal condition ξT .

Proposition 6.3. (Minimizing sequence) Let S ∈ T . There exists a sequence of controls
(νn)n∈N with νn ∈ VS, for all n, such that the sequence (Ỹ νn

S )n∈N is non-increasing and
satisfies:

Ỹ (S) = lim
n→∞

↓ Ỹ νn

S a.s. (6.3)
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Proof. Same proof as for Y . We show that the set {Ỹ ν
S , ν ∈ VS} is stable under pair-

wise maximization. The result of the proposition follows by a classical result on essential
suprema/infima (cf. Neveu (1975)).

Proposition 6.4. (Aggregation) Let (ξt) ∈ S2 (without any regularity assumption). There
exists an r.u.s.c. process (Ỹt) ∈ S2 which aggregates the value family (Ỹ (S)) of the problem
of control and stopping (6.1).

The proof of the proposition uses the following lemma.

Lemma 6.5. For all S ∈ T0,
E[Ỹ (S)] = inf

ν∈V
E[Ỹ ν

S ].

Proof. From the representation (6.2), we deduce E[Ỹ (S)] = E[ess infν∈V Ỹ
ν
S ] ≤ infν∈V E[Y ν

S ].
We now show the converse inequality. By Proposition 6.3, there exists a sequence of con-
trols (νn) = (νn(S)) in VnS such that Ỹ (S) = limn→∞ ↓ Ỹ νn

S . We thus have E[Ỹ (S)] =
E[limn→∞ ↓ Ỹ νn

S ] = limn→∞ ↓ E[Ỹ νn
S ], where we have used dominated convergence to ex-

change limit and expectation. For all n, we have E[Ỹ νn
S ] ≥ infν∈V E[Ỹ ν

S ].We conclude that
E[Ỹ (S)] ≥ infν∈V E[Ỹ ν

S ]. The proposition is thus proved. �

We now prove Proposition 6.4.
Proof. To prove the result, we first show that the family (Ỹ (S)) is right-uppersemicontinuous
along stopping times in expectation. Let S ∈ T0, let (Sn) be a non-increasing sequence of
stopping times in TS with lim ↓ Sn = S a.s. By the previous Lemma 6.5, we have E[Ỹ (Sn)] =
infν∈V E[Ỹ ν

Sn
], for all n ∈ N. Hence, lim supn→∞ E[Ỹ (Sn)] = lim supn→∞ infν∈V E[Ỹ ν

Sn
] ≤

infν∈V lim supn→∞ E[Ỹ ν
Sn

] ≤ infν∈V E[lim supn→∞ Ỹ
ν
Sn

], where we have used Fatou’s lemma to

obtain the last inequality. Now, for all ν ∈ V , the process (Ỹ ν
t ) right-uppersemicontinuous

along stopping times, so lim supn→∞ Ỹ
ν
Sn
≤ Ỹ ν

S . Using this and the above computations,

we get lim supn→∞ E[Ỹ (Sn)] ≤ infν∈V E[lim supn→∞ Ỹ
ν
Sn

] ≤ infν∈V E[Ỹ ν
S ] = E[Ỹ (S)], where

the (last) equality is due to Lemma 6.5. We conclude that the family (Ỹ (S)) is right-
uppersemicontinuous along stopping times in expectation. Hence, the family (Ỹ (S)) is right-
uppersemicontinuous along stopping times (cf. Theorem 12 in [9]). By Corollary 11 in [9],
there exists a unique r.u.s.c. optional process (Ỹt) which aggregates the family. The process
(Ỹt) is in S2, due to the fact that E[ess supS∈T Ỹ (S)2] < +∞. �

Remark 6.6. Due to the above aggregation result (Proposition 6.4), we can replace Ỹ (S)
by ỸS in the representation (6.2) and in Proposition 6.3.

6.2 Proof of the dual representation for the buyer’s superhedging
price

We now define the backward semigroup of operators Yg,ξ =
(
Yg,ξ
t,T ′

)
0≤t≤T ′≤T associated with

a reflected BSDE with driver g and obstacle ξ (see e.g. [5] and [13]). Recall that this notion
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of stochastic backward semigroup was first introduced by Peng [32] and applied to study the
dynamic programming principle for stochastic control problems.

Let g be a λ-admissible driver. Let (ξt) ∈ S2.
For each T ′ ∈ [0, T ] and each η ∈ L2(FT ′), we define

Yg,ξ
t,T ′(η) := Yt, 0 ≤ t ≤ T ′, (6.4)

where (Yt)0≤t≤T ′ corresponds to the first component of the solution of the reflected BSDE
associated with terminal time T ′, driver g and (lower) obstacle (ξt1t<T ′ + η1t=T ′). Note that
(Yt) can be extended to the whole interval [0, T ] by setting Yt = η for all t ∈ [T ′, T ]. 9

More generally, for each stopping time θ ∈ T and each η ∈ L2(Fθ), we define Yg,ξ
·,θ (η) :=

Y·, where Y· is the first component of the solution of the reflected BSDE associated with
terminal time T , terminal condition η, driver g1t≤θ, and obstacle (ξt1t<θ + η1t≥θ).

For each ν ∈ V , we consider the backward semigroup of operators Yf̃ν ,ξ =
(
Yf̃ν ,ξ
t,T ′

)
. To

abbreviate the notation, we denote it by Yν,ξ =
(
Yν,ξ
t,T ′

)
.

Note that Ỹ ν
t = Yν,ξ

t,T(ξT), for all t ∈ [0, T ], a.s.

Proposition 6.7. (Dynamic Programming Principle) The value process (Ỹt) satisfies the
following Dynamic Programming Principle: for all S, S ′ in T0 such that S ≤ S ′ a.s., we
have

ỸS = ess inf
ν∈VS

Yν,ξ
S,S′(ỸS′) a.s. (6.5)

Proof. Let S, S ′ ∈ T be such that S ≤ S ′ a.s. By Proposition 6.3, there exists a sequence of
controls (νn)n∈N, with νn in VS′ for all n, such that ỸS′ = limn→∞ ↓ Ỹ νn

S′ a.s. Let ν ∈ VS.
By the continuity property of Reflected BSDEs with respect to the terminal condition (cf.
last assertion of Lemma 7.1), we have Yν,ξ

S,S′(ỸS′) = Yν,ξ
S,S′(limn→∞ Ỹ

νn

S′ ) = limn→∞Yν,ξ
S,S′(Ỹ

νn
S′ )

a.s. For each n, we set ν̄nt := νt1]S,S′](t) + νnt 1]S′,T ](t). We have f̃ ν̄
n

= f̃ ν1]S,S′] + f̃ ν
n
1]S′,T ]

and Ỹ νn
S′ = Ỹ ν̄n

S′ . We deduce

Yν,ξ
S,S′(Ỹ

νn
S′ ) = Yν̄n,ξ

S,S′(Ỹ
ν̄n
S′ ) = Ỹ ν̄n

S a.s.,

where the last equality follows the flow (or semi-group) property of reflected BSDEs. We
thus get
Yν,ξ
S,S′(ỸS′) = lim

n→∞
Yν,ξ
S,S′(Ỹ

νn
S′ ) = lim

n→∞
Ỹ ν̄n
S ≥ ỸS a.s. , where the (last) inequality follows from

(6.2). As ν ∈ VS is arbitrary, we derive ess infν∈VS Yν,ξ
S,S′(ỸS′) ≥ ỸS a.s.

We now prove the converse inequality. Let ν ∈ VS. By the flow property of reflected
BSDEs, we have Ỹ ν

S = Yν,ξ
S,S′(Ỹ

ν
S′) a.s. On the other hand, Ỹ ν

S′ ≥ ỸS′ a.s. (cf. property (6.2)).

From this, by the comparison theorem for reflected BSDEs (cf. ), we deduce Yν,ξ
S,S′(Ỹ

ν
S′) ≥

Yν,ξ
S,S′(ỸS′) a.s. Hence, Ỹ ν

S = Yν,ξ
S,S′(Ỹ

ν
S′) ≥ Yν,ξ

S,S′(ỸS′) a.s. By taking the essential infimum

9Recall that, by the flow property for reflected BSDEs, the family of operators Yg,ξ =
(
Yg,ξ
t,T ′

)
0≤t≤T ′≤T

satisfies a semi-group property.
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over ν ∈ VS, we get ess infν∈VS Ỹ
ν
S ≥ ess infν∈VS Yν,ξ

S,S′(ỸS′) a.s. But, ỸS = ess infν∈VS Ỹ
ν
S a.s.

(cf. (6.2)). Hence, ỸS ≥ ess infν∈VS Yν,ξ
S,S′(ỸS′) a.s., which is the desired inequality. As both

inequalities hold, we have the equality (6.5). The proof is complete.

We recall that, by Proposition 6.4, the value process (Ỹt) is right upper-semicontinuous
(without any regularity assumption on the process (ξt)).

Let (ξ̄t) be the right-u.s.c. process defined by

ξ̄t := lim sup
s↓t,s≥t

ξs, for all t ∈ [0, T [10. (6.6)

We now show that if the process (ξ̄t) is right-lowersemicontinuous (right-l.s.c.), then (Ỹt) is
also right-l.s.c., hence right-continuous.

Proposition 6.8 (The case when (ξ̄t) is right-lowersemicontinuous). Let (ξt) ∈ S2. Suppose
that (ξ̄t) is right-l.s.c. (which is satisfied if, for example, the process ξ is right-limited and
right-l.s.c.11). Then, the value process (Ỹt) of the problem of control and stopping (6.1) is
right-l.s.c.

Proof. Let S ∈ T0, let (Sn) be a non-increasing sequence of stopping times in TS with
limn→+∞ Sn = S a.s. and for all n ∈ N, Sn > S a.s. on {S < T}, and such that limn→+∞ ỸSn
exists a.s. Since 0 ∈ VS, by the dynamic programming principle, we have ỸS ≤ Y0,ξ

S,Sn
(ỸSn)

a.s. Hence, by the continuity property of Reflected BSDEs with respect to the pair terminal
time-terminal condition 12 (cf. Lemma 7.1 ), we thus get

ỸS ≤ lim
n→∞

Y0,ξ
S,Sn

(ỸSn) = Y0,ξ
S,S( lim

n→∞
ỸSn) = lim

n→+∞
ỸSn a.s.

By Proposition 2 of Dellacherie and Lenglart [9], the process Ỹ is thus right-lowersemicontinuous.
The proof is thus complete. �

Remark 6.9. The above proof also shows the following property: Let S ∈ T . If (ξ̄t) is right-
l.s.c. at S (which is satisfied if, for example, the process ξ is right-limited and right-l.s.c. at
S), then, the value process (Ỹt) is right-l.s.c at S.

10Note that ξ̄t = max(ξ̂t, ξt), where (ξ̂t) denotes the right upper-semicontinuous envelope of the process

(ξt), defined by ξ̂t := lim sups↓t,s>t ξs, for all t ∈ [0, T [ in [15, page 133]. Note also that (ξ̄t) is a right-u.s.c.
progressive process.

11Indeed, in this case, we have ξ̄t = max(ξt+ , ξt). Moreover, the right-l.s.c. property of ξ is equivalent to
the condition ξt+ ≥ ξt, which is equivalent to ξ̄t = ξt+

12We note that the conditions from Lemma 7.1 are satisfied here, that is, the condition (7.1), which is
written here as the condition limn→∞ ỸSn ≥ ξ̄S , holds: indeed, since Ỹ is right-u.s.c., we have ỸSn ≥ ξ̄Sn

a.s. for all n; hence, limn→∞ ỸSn ≥ lim infn→∞ ξ̄Sn ≥ ξ̄S a.s., where we have used the assumption of
right-lowersemicontinuity of ξ̄ for the last inequality.
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Lemma 6.10. Let (ξt) be a process in S2. We define the following stopping times:

τ̃ := inf{t ∈ [0, T ] : Ỹt = ξt} (6.7)

For ε > 0, τ̃ε := inf{t ∈ [0, T ] : Ỹt ≤ ξt + ε} (6.8)

We note that τ̃ ε ≤ τ̃ a.s.

(i) If (ξt) is left-uppersemicontinuous along stopping times at τ̃ , then, for all ν ∈ V, the
value process (Ỹt) is a strong Ẽν-submartingale on [0, τ̃ ].

(ii) For all ε > 0, for all ν ∈ V, the value process (Ỹt) is a strong Ẽν-submartingale on [0, τ̃ε].

Proof. We show (i). Let ν ∈ V . Let S, τ in T be such that 0 ≤ S ≤ τ ≤ τ̃ a.s. We show
that ẼνS,τ (Ỹτ ) ≥ ỸS. By the representation (6.2) and Proposition 6.3, there exists a minimizing

sequence for Ỹτ , that is, there exists νp := νp(τ) ∈ Vτ such that Ỹτ = limp→∞ ↓ Ỹ νp

τ .
Hence, ẼνS,τ (Ỹτ ) = ẼνS,τ (limp→∞ Ỹ

νp

τ ) = limp→∞ ẼνS,τ (Ỹ νp

τ ), where we have used the continuity

property of the non-linear expectation Ẽν(·) with respect to terminal condition. For all
p ∈ N, we set ν̄pt := νpt I{t>τ} + νtI{t≤τ}. We have ν̄p ∈ V . We thus get limp→∞ ẼνS,τ (Ỹ νp

τ ) =

limp→∞ Ẽ ν̄
p

S,τ (Ỹ
ν̄p

τ ) ≥ ess infµ∈V ẼµS,τ (Ỹ µ
τ ). Putting together the above computations gives

ẼνS,τ (Ỹτ ) ≥ ess inf
µ∈V
ẼµS,τ (Ỹ

µ
τ ). (6.9)

For all µ ∈ V , we set τµ := inf{t ∈ [0, T ] : Ỹ µ
t = ξt}. We notice that, for all µ ∈ V , τ̃ ≤ τµ

a.s.; this follows from the definitions of τ̃ and τµ and from the fact that ξt ≤ Ỹt ≤ Ỹ µ
t for

all t a.s. By Lemma 4.1 in [21], for all µ ∈ V , the process (Ỹ µ
t ) is a strong Ẽµ-martingale

on [0, τµ]; hence, also a strong Ẽµ-martingale on [0, τ̃ ] (as τ̃ ≤ τµ a.s.). Hence, for all
µ ∈ V , ẼµS,τ (Ỹ µ

τ ) = Ỹ µ
S (recall that 0 ≤ S ≤ τ ≤ τ̃ a.s.) Using this and (6.9), we get

ẼνS,τ (Ỹτ ) ≥ ess infµ∈V Ỹ
µ
S = ỸS, where the (last) equality is due to the representation (6.2).

Property (i) is thus proved.
Let us show (ii). Let ε > 0. Let S, τ in T be such that 0 ≤ S ≤ τ ≤ τ̃ε a.s. By exactly the
same arguments as in part (i), we get

ẼνS,τ (Ỹτ ) ≥ ess inf
µ∈V
ẼµS,τ (Ỹ

µ
τ ). (6.10)

For all µ ∈ V , we set τµε := inf{t ∈ [0, T ] : Ỹ µ
t ≤ ξt + ε}. We note that, for all µ ∈ V , τ̃ε ≤ τµε

a.s. By Lemma 4.1 in [21], for all µ ∈ V , the process (Ỹ µ
t ) is a strong Ẽµ-martingale on

[0, τµε ]; hence, also a strong Ẽµ-martingale on [0, τ̃ε] (as τ̃ε ≤ τµε a.s.). From this and (6.10),
we conclude as in part (i). �

We will now give a dual representation for the buyer’s superhedging price ũ0 in terms of
the value (at time 0) of the non-linear problem of control and stopping studied above. We
also give a superhedge for the buyer. From this result, we will deduce the dual representation
(in terms of the f -martingale probability measures) stated in Theorem 6.1.
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Theorem 6.11 (Buyer’s superhedging price). Let (ξt) ∈ S2.
Suppose that (ξt) is right-continuous and left-u.s.c. along stopping times.
The buyer’s price ũ0 of the American option satisfies

ũ0 = inf
ν∈V

sup
τ∈T
Ẽν0,τ (ξτ ). (6.11)

Let τ̃ := inf{t ∈ [0, T ] : Ỹt = ξt}. There exists a portfolio strategy ϕ̃ ∈ H2 such that (τ̃ , ϕ̃) is
a superhedge for the buyer, that is, such that (τ̃ , ϕ̃) ∈ B(ũ0).

Remark 6.12. This result still holds under the following (weaker) local assumptions:
(i) the processes Ỹ and ξ are respectively right-l.s.c. and right-u.s.c. at τ̃ (which, by Propo-
sition 6.9, is satisfied if, for example, ξ is right-continuous at τ̃). 13

(ii) ξ is left-u.s.c. along stopping times at τ̃ .14

Proof. It is sufficient to show that ũ0 = Ỹ0 and that there exists (τ̃ , ϕ̃) ∈ B(Ỹ0).
Let S be the set of initial prices which allow the buyer to be “superhedged”, that is S =
{x ∈ R : ∃(τ, ϕ) ∈ B(x)}. Note that ũ0 = supS.

Let us first show that ũ0 ≤ Ỹ0. Let x ∈ S. By definition of S, there exists (θ, ϕ) ∈ B(x),
that is, such that V −x,ϕθ ≥ −ξθ a.s. Let ν ∈ V . By taking the Eν-evaluation in the above
inequality, using the monotonicity of Eν and the Eν-martingale property of the process V −x,ϕ,
we derive that −x = Eν0,θ(V

−x,ϕ
θ ) ≥ Eν0,θ(−ξθ) = −Ẽν0,θ(ξθ), where the last equality follows

from the first assertion of Remark 6.2. We deduce x ≤ supτ∈T Ẽν0,τ (ξτ ). Since ν ∈ V is
arbitrary, we get

x ≤ inf
ν∈V

sup
τ∈T
Ẽν0,τ (ξτ ) = Ỹ0,

which holds for any x ∈ S. By taking the supremum over x ∈ S, we get ũ0 ≤ Ỹ0.
Let us now show that Ỹ0 ≤ ũ0. To this aim, we prove that Ỹ0 ∈ S, that is, there exists a

portfolio strategy ϕ̃ ∈ H2 such that

(τ̃ , ϕ̃) ∈ B(Ỹ0). (6.12)

Since ξ is left-u.s.c. along stopping times at τ̃ , by the first assertion from Lemma 6.10,
the process (Ỹt∧τ̃ ) is a strong Ẽν-submartingale for all ν ∈ V . This together with the first
assertion from Remark 6.2 implies that (−Ỹt∧τ̃ ) is a strong Eν-supermartingale for all ν ∈ V .

By the optional Ef -decomposition of strong Eν-supermartingale for each ν ∈ V (cf. The-
orem B.4 in [23]), there exists a unique pair (Z̃, C̃) ∈ H2 × C2 and a unique nondecreasing
optional RCLL process h̃, with h̃0 = 0 and E[h̃2

T ] <∞ such that

−Ỹt = −Ỹ0 −
∫ t

0

f(s,−Ỹs, Z̃s)ds+

∫ t

0

Z̃sσ
−1
s (σsdWs + βsdMs)− h̃t − C̃t− , 0 ≤ t ≤ τ̃ a.s.

(6.13)

13Indeed, these assumptions are sufficient to ensure the inequality (6.16).
14Indeed, this assumption is sufficient to apply the first assertion from Lemma 6.10, which is used in the

proof.
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We now consider the portfolio associated with the initial capital −Ỹ0 and the strategy

ϕ̃ := σ−1Z̃. (6.14)

By (3.2)-(3.3), the value of the portfolio process (V −Ỹ0,ϕ̃t ) satisfies:

V −Ỹ0,ϕ̃t = −Ỹ0 −
∫ t

0

f(s, V −Ỹ0,ϕ̃s , Z̃s)ds+

∫ t

0

Z̃sσ
−1
s (σsdWs + βsdMs), 0 ≤ t ≤ T. (6.15)

By (6.13) and (6.15) and the comparison result for forward differential equations, we get

−Ỹt ≤ V −Ỹ0,ϕ̃t , 0 ≤ t ≤ τ̃ a.s. We thus have V −Ỹ0,ϕ̃τ̃ + Ỹτ̃ ≥ 0 a.s.
Now, since ξ is right-continuous, by Proposition 6.8, Ỹ is right-l.s.c. (and even right-
continuous). Hence, by the definition of τ̃ (and since ξ is right-u.s.c.), we get

Ỹτ̃ ≤ ξτ̃ a.s. (6.16)

We thus conclude that
V −Ỹ0,ϕ̃τ̃ + ξτ̃ ≥ 0 a.s.,

which implies the desired property (6.12). We thus have Ỹ0 ≤ ũ0. It follows that ũ0 = Ỹ0.
By (6.12), we get (τ̃ , ϕ̃) ∈ B(ũ0), which completes the proof. �

Remark 6.13. We emphasize that the superhedging portfolio strategy ϕ̃ is given by (6.14)
via the optional decomposition (6.13) of Ỹ on [0, τ̃ ].

Proof of Theorem 6.1: The proof follows from the previous Theorem 6.11 and from
Remark 6.2. We note first that, since (ξt) is supposed to be right-continuous and left-
uppersemicontinuous along stopping times, it follows that ξ̄ = ξ, and the assumptions of
Theorem 6.11 hold.

Under the additional integrability condition ψ ∈ ∩ν∈VH2
Qν on the process ψ from As-

sumption (4.1), by Remark 6.2, the dual representation (6.11) can be written in terms of the
f -martingale probability measures, that is

ũ0 = inf
ν∈V

sup
τ∈T
{−EfQν ,0,τ (−ξτ )}.

The fact that the infimum and the supremum can be interchanged follows from Proposition
6.19 (shown under weaker regularity assumptions on ξ). The proof of Theorem 6.1 is thus
complete. �

6.3 Buyer’s nearly superhedging price

We now consider the case when ξ does not satisfy any regularity assumption on the left.
We introduce the definition of an ε-superhedge for the buyer:

26



Definition 6.14. For each initial price z and for each ε > 0, an ε–superhedge for the buyer
against the American option is a pair (τ, ϕ) of a stopping time τ ∈ T and a portfolio strategy
ϕ ∈ H2 such that

V −z,ϕτ ≥ −ξτ − ε a.s.

For each z ∈ R and each ε > 0 , we denote by Bε(z) the set of all ε– superhedges for the
buyer associated with initial price z.

We introduce the nearly superhedging price ū0 of the American option for the buyer as
the supremum of the initial prices which allow the buyer to be ε–superhedged for all ε > 0,
that is,

ū0 = sup{z ∈ R, ∀ε > 0,∃(τ, ϕ) ∈ Bε(z)}. (6.17)

Theorem 6.15 (Buyer’s nearly superhedging price). Let (ξt) ∈ S2 supposed to be right-
continuous. The buyer’s nearly superhedging price ū0 of the American option satisfies

ū0 = inf
ν∈V

sup
τ∈T
Ẽν0,τ (ξτ ). (6.18)

For each ε > 0, let τ̃ε := inf{t ∈ [0, T ] : Ỹt ≤ ξt+ε}. There exists a portfolio strategy ϕ̃ ∈ H2

such that, for each ε > 0, the pair (τ̃ε, ϕ̃) is an ε-superhedge for the buyer (associated with
the initial price ū0).

Remark 6.16. We note that when ξ is left-u.s.c. along stopping times at τ̃ , the buyer’s
nearly superhedging price is equal to the buyer’s superhedging price.

Remark 6.17. The result from Theorem 6.15 still holds under the following (weaker) local
assumptions: the processes Ỹ and ξ are respectively right-l.s.c.and right-u.s.c. at τ̃εn, for
a sequence (εn) tending to 0 (which, by Proposition 6.9, is satisfied if, for example, ξ is
right-continuous at τ̃εn for all n).15

Proof. Let us first show that ū0 ≤ Ỹ0.
Let z ∈ R be such that, for each ε > 0, there exists (τε, ϕ

ε) ∈ Bε(z).
Fix now ε > 0. By definition of Bε(z), there exists (τε, ϕ

ε) ∈ T × H2 such that V −z,ϕ
ε

τε ≥
−ξτε − ε a.s. Let ν ∈ V . By taking the Eν-evaluation in the above inequality, using the
monotonicity of Eν and the Eν-martingale property of the process V −z,ϕ

ε
, we derive that

−z = Eν0,τε(V
−z,ϕε
τε ) ≥ Eν0,τε(−ξτε − ε). (6.19)

Now, by Lemma 7.3, we get

Eν0,τε(−ξτε)− E
ν
0,τε(−ξτε − ε) = E[e

∫ τε
0 fy(s)dsH0,τε ε] ≤ eCT εE[H0,τε ] = eCT ε a.s. ,

where the inequality and the last equality follow from the fact that the process fy(·) is
uniformly bounded by the Lispchitz constant C of f , and the fact that, since ν ∈ V , the
process H0,· is a nonnegative martingale. We thus have

−Eν0,τε(−ξτε − ε) ≤ eCT ε− Eν0,τε(−ξτε) = eCT ε+ Ẽν0,τε(ξτε), (6.20)

15Indeed, these assumptions are sufficient to ensure the inequality (6.21) at τ̃εn for all n.
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where the last equality follows from Remark 6.2.
Using (6.19), we deduce z ≤ eCT ε+ Ẽν0,τε(ξτε) ≤ eCT ε+ supτ∈T Ẽν0,τ (ξτ ). Since this inequality

holds for all ε > 0, we get z ≤ supτ∈T Ẽν0,τ (ξτ ). As ν ∈ V is arbitrary, we deduce

z ≤ inf
ν∈V

sup
τ∈T
Ẽν0,τ (ξτ ) = Ỹ0.

Using the definition of ū0 as a supremum (cf. (6.17)), we get ū0 ≤ Ỹ0.
We now show that Ỹ0 ≤ ū0. Let ε > 0. By the second assertion of Lemma 6.10, the pro-

cess (Ỹt∧τ̃ε) is a strong Ẽν-submartingale for all ν ∈ V . This together with the first assertion
from Remark 6.2 implies that (−Ỹt∧τ̃ε) is a strong Eν-supermartingale for all ν ∈ V . By the
optional Ef -decomposition of strong Eν-supermartingale for each ν ∈ V (see Theorem B.4
in [23] applied to the right-continuous process −Ỹ ), there exists a unique process Z̃ ∈ H2

and a unique nondecreasing optional RCLL process h̃, with h̃0 = 0 and E[h̃2
T ] < ∞ such

that (6.13) holds on [0, τ̃ε]. Moreover, the wealth V −Ỹ0,ϕ̃. associated with the initial capital
−Ỹ0 and the strategy ϕ̃ := σ−1Z̃ is the solution of the forward differential equation (6.15).

By the comparison result for forward differential equations, it follows that −Ỹt ≤ V −Ỹ0,ϕ̃t ,
0 ≤ t ≤ τ̃ε a.s.
Now, since ξ is right-continuous, by Proposition 6.8, Ỹ is right-l.s.c. (and even right-
continuous). Hence, by the definition of τ̃ε (and the right-uppersemicontinuity of ξ), we
get

Ỹτ̃ε ≤ ξτ̃ε + ε a.s. (6.21)

We thus obtain the inequality V −Ỹ0,ϕ̃τ̃ε
≥ −Ỹτ̃ε ≥ −ξτ̃ε − ε a.s.

Hence, for each ε > 0, the pair (τ̃ε, ϕ̃) is an ε-superhedge for the buyer associated with the
initial price Ỹ0, that is

(τ̃ε, ϕ̃) ∈ Bε(Ỹ0). (6.22)

Using the definition of ū0, we get Ỹ0 ≤ ū0. It follows that ū0 = Ỹ0. By (6.22), we derive that
for each ε > 0, (τ̃ε, ϕ̃) ∈ Bε(ū0), which completes the proof. �

Remark 6.18. In the complete case, Theorem 6.15 still holds without the assumption that
(ξ̄t) is right-l.s.c. Indeed, in this case, Q = {P} and Ỹ = Ỹ 0, where Ỹ 0 is the solution of
the reflected BSDE associated with driver f̃ , lower obstacle ξ and terminal time T , which,
by the Skorokhod condition, implies that Ỹ 0

τ̃ε+
− Ỹ 0

τ̃ε = 0 a.s. on the set {Ỹ 0
τ̃ε > ξτ̃ε}. This

allows us to obtain the inequality (6.21) even if Ỹ 0 is not right-l.s.c. at τ̃ε (see the proof of
Lemma 4.1 in [20] for details).

We now show that the operations of infimum and supremum in the dual representation
(6.11) (resp. (6.18)) of the buyer’s superhedging (resp. nearly superhedging) price can be
interchanged.
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Proposition 6.19. Let (ξt) ∈ S2, supposed to be right-continuous.16 We have

inf
ν∈V

sup
τ∈T
Ẽν0,τ (ξτ ) = sup

τ∈T
inf
ν∈V
Ẽν0,τ (ξτ ).

Proof. We clearly have the inequality supτ∈T infν∈V Ẽν0,τ (ξτ ) ≤ infν∈V supτ∈T Ẽν0,τ (ξτ ).
It remains to show the converse inequality, that is

Ỹ0 ≤ sup
τ∈T

inf
ν∈V
Ẽν0,τ (ξτ ). (6.23)

By Lemma 6.10 (ii), for all ε > 0, for all ν ∈ V , the value process (Ỹt) is a strong Ẽν-
submartingale on [0, τ̃ε], where τ̃ε is defined by (6.8). Hence, Ỹ0 ≤ Ẽν0,τ̃ε(Ỹτ̃ε). Recall that

Ỹτ̃ε ≤ ξτ̃ε + ε a.s. (cf. (6.21)). By the same arguments as those used in the proof of Theorem
6.15 to show the estimate (6.20), we derive that for all ν ∈ V ,

Ỹ0 ≤ Ẽν0,τ̃ε(Ỹτ̃ε) ≤ Ẽ
ν
0,τ̃ε(ξτ̃ε + ε) ≤ eCT ε+ Ẽν0,τ̃ε(ξτ̃ε). (6.24)

By taking the infimum over ν ∈ V , we obtain

Ỹ0 ≤ eCT ε+ inf
ν∈V
Ẽν0,τ̃ε(ξτ̃ε) ≤ eCT ε+ sup

τ∈T
inf
ν∈V
Ẽν0,τ (ξτ ).

Since this inequality holds for all ε > 0, we get the inequality (6.23). The proof is thus
complete. �

7 Appendix

In this Appendix, we provide some useful results.
We first show that the non-linear operator Yg,ξ induced by the reflected BSDE with

driver g and obstacle (ξt)t<T , defined by (6.4), simply denoted by Yg, is continuous with
respect to the terminal condition. Moreover, for each θ ∈ T0 and each η ∈ L2(Gθ), Yg is
continuous with respect to the pair terminal time-terminal condition at the point (θ, η) under
an additional assumption on (ξt) and η on a right neighborhood of θ.

Lemma 7.1. Let g be a λ-admissible driver satisfying Assumption 2.3. Let (ξt) ∈ S2. Let
(ξ̄t) be the right-u.s.c. process defined by ξ̄t := lim sups↓t,s≥t ξs, for all t ∈ [0, T [.
Let (θn)n∈N be a non increasing sequence of stopping times in T0, converging a.s. to θ. Let
(ηn)n∈N be a sequence of random variables such that E[supn(ηn)2] < +∞, and for each n,
ηn is Gθn-measurable. Suppose that the sequence (ηn) converges a.s. to an Gθ-measurable
random variable η. We also assume the following condition:

ξ̄θ ≤ η a.s. (7.1)

Then, for each S ∈ T0, limn→+∞Yg
S,θn(ηn) = Yg

S,θ(η) a.s.
When for each n, θn = θ a.s. , the result still holds without any assumption on (ξt).

16Note that this result still holds under the assumptions from Remark 6.12 or those from Remark 6.17.
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Remark 7.2. We note that the condition (7.1) is necessary in general to ensure this conti-
nuity property of the reflected operator Yg,ξ.
When the obstacle (ξt) is right-u.s.c., the condition (7.1) reduces to ξθ ≤ η a.s.
When the obstacle (ξt) is right-continuous, we recover the continuity result shown in [13] (cf.
[13, Lemma A.6]).

Proof. In the particular case when for each n, θn = θ a.s. , the result follows from the a
priori estimates for reflected BSDEs with irregular obstacles (cf. Theorem 5.5 in [21]), which
do not require any additional assumption on (ξt).
Let us now consider the general case. Using the same arguments as those used in the proof
of Lemma A.6 in [13], we show that lim infn→∞Yg,ξ

θ,θn
(ηn) ≥ η a.s.

It thus remains to show that lim supn→∞Yg,ξ
θ,θn

(ηn) ≤ η a.s. By the monotonicity property

of reflected BSDEs with respect to the obstacle, for each n ∈ N, we have Yg,ξ
θ,θn

(ηn) ≤
Yg,ξ̄
θ,θn

(ηn) a.s., since ξ ≤ ξ̄. Let ε > 0. Let n ∈ N. Recall that Yg,ξ̄
·,θn(ηn) is the solution of the

reflected BSDE associated with terminal time θn and the obstacle (ξ̄t1t<θn + ηn1t≥θn), which
is right-u.s.c. (since (ξ̄t) is right-u.s.c.). Hence, by Theorem 4.2 in [20], there exists τ εn ∈ Tθ
such that

Yg,ξ̄
θ,θn

(ηn) ≤ Egθ,τεn∧θn(ξ̄τεn1τεn<θn + ηn1τεn≥θn) + ε a.s. (7.2)

Now, by the right-uppersemicontinuity of ξ̄ and the condition (7.1), we have lim supn→∞ ξ̄τεn∧θn ≤
ξ̄θ ≤ η a.s. , which implies that lim supn→∞(ξ̄τεn1τεn<θn + ηn1τεn≥θn) ≤ η a.s. Hence, using the
Fatou property for BSDEs with respect to the pair terminal time-terminal condition (cf. e.g.
Lemma A.5 in [13]), we derive that

lim sup
n→∞

Egθ,τεn∧θn(ξ̄τεn1τεn<θn + ηn1τεn≥θn) ≤ Egθ,θ(η) = η a.s.

Hence, by (7.2), we get lim supn→∞Yg,ξ
θ,θn

(ηn) ≤ η + ε a.s. The desired result follows. �

We state the following result which provides, for each ν ∈ V , a useful representation of
the difference of the solutions of two BSDEs associated with the driver f ν in terms of the
spread between the difference of the terminal conditions.

Lemma 7.3. Let η1 and η2 ∈ L2(GT ). Let ν ∈ V. For i = 1, 2, let (X i, Zi, Ki) be the
solution in S2 × H2 × H2

λ of the BSDE associated with driver f ν (defined in Definition
4.3), terminal time T and terminal condition ηi. Let X̄s := X1

s − X2
s ; Z̄s := Z1

s − Z2
s ;

K̄s := K1
s −K2

s . Let fy(s) :=
f(s,X1

s− , Z
1
s )− f(s,X2

s− , Z
1
s )

X̄s−
if X̄s− 6= 0, and 0 otherwise, and

let fz(s) :=
f(s,X2

s− , Z
1
s )− f(s,X2

s− , Z
2
s )

Z̄s
if Z̄s 6= 0, and 0 otherwise. We have

X̄t = E[e
∫ T
t fy(s)dsHt,T (η1 − η2) | Gt], 0 ≤ t ≤ T, a.s.

where Ht,· is solution of the following SDE

dHt,s = Ht,s−
[
(fz(s)− νsλsβsσ−1

s )dWs + νsdMs

]
; Ht,t = 1. (7.3)
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Proof. By a classical ”linearization procedure” (as the one used at the beginning of the
proof of Theorem 3 in [11]), we derive the desired result. �

A result on reflected BSDEs with a non positive jump at the default time ϑ:
Let V be the set of bounded predictable processes ν such that νt ≥ 0 dP ⊗ dt-a.e.
Let g be a λ-admissible driver and let (δt) be a bounded predictable process.

For each ν ∈ V , we define

gν(ω, t, y, z, k) := g(ω, t, y, z, k) + νt(ω)λt(ω)
(
k − δt(ω)z

)
Note that gν is a λ-admissible driver. For each S ∈ T , the value Y (S) at time S is defined
by

Y (S) := ess sup
(τ,ν)∈TS×V

EνS,τ (ξτ ), (7.4)

where Eν = Egν . By the same arguments as before (cf. the proof of Corollary 4.11), there
exists an r.u.s.c. process (Yt) ∈ S2 which aggregates the value family (Y (S)), which is a
strong Eν-supermartingale for all ν ∈ V and Yt ≥ ξt, for all t ∈ [0, T ], a.s. Moreover, the
process (Yt) is the smallest process in S2 satisfying these properties.

By similar arguments as those used in the proof of Theorem 5.4, it can be shown that
the value process (Yt) is a supersolution of the constrained reflected BSDE from Definition
5.1 with f replaced by g and the constraints (5.4) replaced by the constraint (7.6) hereafter.
We thus have the following result.

Proposition 7.4. There exists a unique process (Z,K,A,C) ∈ H2×H2
λ×A2×C2 such that

− dYt = g(t, Yt, Zt, Kt)dt+ dAt + dCt− − ZtdWt −KtdMt; (7.5)

YT = ξT a.s. and Yt ≥ ξt for all t ∈ [0, T ] a.s. ;

(Yτ − ξτ )(Cτ − Cτ−) = 0 a.s. for all τ ∈ T0;

(Kt − δtZt)λt ≤ 0, t ∈ [0, T ], dP ⊗ dt− a.e. (7.6)

In other words, the value process (Yt) is a supersolution of the above constrained reflected
BSDE. Moreover, it is the minimal one, that is, if (Y ′t ) is another supersolution, then Y ′t ≥ Yt
for all t ∈ [0, T ] a.s.

Note that when δ = 0, the constraint (7.6) means that the jump of the process (Xt) at the
default time ϑ is non-positive. In the case when δ = 0 and the obstacle is right-continuous,
our result gives the existence of a minimal supersolution of the reflected BSDE with driver g,
obstacle ξ and with non positive jumps, which correponds to a result shown in [6] by using a
penalization approach. Moreover, our result provides a dual representation (with non linear
expectation) of this minimal supersolution.
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