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Abstract— Automation in healthcare is a major challenge to 

improve quality of service while compressing costs. In 

particular, correct administration of medicines to patients is 

crucial to ensure quality of care during hospitalization and 

minimize medication errors. Mistakes are more likely to happen 

when medicine administration is done manually (dispensing, 

ordering or administrating). To reduce the risks related to 

medication errors, automation of the pharmacy processes 

appears as an appropriately tool to solve this situation. In this 

paper, we have proposed a new mathematical model to optimize 

the processes related to unit-doses management and 

prescriptions preparation in a network of hospitals. To model 

the uncertainty associated with the demand of medicines, the 

concept of p-robustness is included; the concept of resilience is 

also considered to model the risk of centralized distribution 

processes. 

I. INTRODUCTION 

Access to medicines and reliability in the pharmaceutical 

requirements of patients is one of the most important 

challenge in primary healthcare. To deal with this, automation 

technologies have become a support in the pharmaceutical 

services that helps hospitals to minimize human errors, 

minimize costs and improve efficiency of processes. In this 

way, the term pharmacy automation appears as the process of 

automating the routine tasks performed in pharmacies [1][2]. 

The related work within pharmacies consists in storing 

medicines, making unit-doses, preparing prescriptions and 

delivering prescriptions to patients. Critical errors may occur 

during the two last steps. Automatic dispensing systems is an 

innovative tool that allows hospitals not only to satisfy 

requirements of patients but also optimize the distribution of 

medicines across a network of interconnected facilities [3]. 

In this paper, we present a real application of an 

optimization of the automation process within a network of 

hospitals considering specific characteristics of the storage, 

packaging and distribution of medicines processes. Such 

problem can be addressed as a location-allocation problem. 

We have developed a mixed integer linear program (MILP) 

adding a special feature to take into account risks in the 

pharmaceutical supply chains such as resilience. Also, we 

extended the proposed MILP to include uncertainty in the 

demand since satisfaction of medicines requirements within 
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hospitals is a crucial objective regarding the quality of care. 

We use the concept of p-robustness to model the uncertainty 

on the demand and analyzed the results obtained on a real case 

study. We do not consider uncertainty from the production 

side (e.g. routing time uncertainty or probability of machine 

failure) since it was considered less important by health 

practitioners; however, such elements will be considered in 

future works. 

This paper is organized as follows. A literature review on 

location and location-allocation is provided in Section II. The 

proposed mathematical model and its extensions are detailed 

in Section III. The results obtained with each model over an 

application to a real case study are provided in Section IV. 

Finally, conclusions are developed in Section V. 

II. LITERATURE REVIEW 

Location-allocation problems solution approaches and  
applications have been widely studied in the scientific 
literature [4][5][6]. We consider two types of contributions: (i) 
applications of location and location-allocation problems in 
the healthcare context, and (ii) theoretical developments and 
applications in other domains. 

An application of location and reorganization in health 
systems is developed in [7]. This paper presents a real 
application in a healthcare system in Italy. Two problems are 
considered: (i) healthcare reorganization problem considering 
regional guidelines that aim to replace some ordinary 
admissions by ambulatory or home cares   and (ii) build a new 
model that considers the demand satisfaction and the 
increasing of the hospital capacity. A similar work is proposed 
in [8]. 

A location-allocation model under uncertainty for hospital 
network planning is proposed in [9]. The total cost of the 
network of hospitals is minimized as the expected distance to 
facilities. The authors developed a two-stage model: the first 
stage is limited to decisions related to location and the second 
stage involves location and allocation decisions. This model is 
applied to a real case in Portugal with two types of hospitals: 
non-specialized hospitals close to the population and high 
specialized ones that could stand far from the demand. 
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A similar two-stage approach is developed in [10]. The 
main idea is to determine the hospital location, then services 
and machines allocation and finally assign patients to services. 
The authors proposed a bi-objective robust model assuming 
that costs are uncertain. Other multi-objective models are 
applied to the location and sizing of medical departments in a 
hospital network in [11] and [12]. A similar problem is studied 
in [13] for emergency medical service stations.  

A robust approximation for a multi-period location-
allocation problem of pharmaceutical centers is proposed in 
[14]. A multi-objective model is used by considering the 
minimization of costs and the maximization of customer’s 
satisfaction. Epsilon constraint approach is used for solving 
the bi-objective model. The robustness is considered regarding 
the uncertainty in demand.  

A healthcare application applied to emergency response in 
case of disaster is developed in [15]. A hybrid model is 
presented combining a simulation model and a nonlinear 
optimization model of the assignment of workers to 
workstations which is solved by simulation and a heuristic 
optimization algorithm. Decisions are related to the locations 
for dispensing aids and the design of the logistics to supply the 
demand. A review for location problems in emergencies is 
presented in [16].  

In [17] is proposed a model to locate services in a 
musculoskeletal physiotherapy department in which the 
patient behavior is modelled using heuristics. The model 
considers the individuality of patients along with the 
availability of resources. It uses simulation where scenarios 
correspond to different configurations of services. Several 
applications of facility location and extension are presented in 
these two surveys [18], [19],. Selecting locations for waste 
material in healthcare in [20] is another relevant application of 
location problems in healthcare. 

There are some recent developments in location problems. 
A combined problem of location and routing problem is 
defined in [21] and solved with a genetic algorithm.  
Approximate dynamic programming is used for solving a 
stochastic location problem in [22]. The problem consists in 
determine the optimal policy that indicates the sources and 
destinations of transshipments where the demand is stochastic. 
Other applications for different variants of location-allocation 
problems can be found in [23]–[26].  

Regarding the literature, our paper makes the following 
contributions: (i) model a real case application of optimizing 
the automation applied in a healthcare network, (ii) use the 
logistic concept of resilience to model the risk of failure in 
robots in a very high and sensitive distribution network and 
(iii) model uncertainty using the concept of p-robustness. 

III. FORMAL MODEL 

A. Problem Description  

The optimization problem considered in this paper is 
modeled as an extension of a location-allocation routing 
problem. The objective function consists in determining the 
best location and allocation of different types of robots for a 
network of hospitals. Three types of robots are considered: (i) 
robots that process medicines from suppliers and produce unit-

doses (i.e. medicines are extracted from their boxes and cut 
into unit-doses) named cutting machines; (ii) robots that store 
unit-doses named storage machines, and (iii) robots that 
process unit-doses to compose personalized prescriptions 
depending on patient requirements (i.e. unit-doses of different 
medicines are grouped together in a plastic bag to compose a 
prescription) named prescription machines. Storage and 
prescription machines can be bought with different settings, 
i.e. different costs and capacities. Each hospital of the network 
can have robots of each type. 

For example, let us consider a network of three hospitals 
H1, H2 and H3. The network design is: H1 has one cutting 
machine producing unit-doses (R1), one prescription machine 
(R2) and one storage machine (R4); H2 has one prescription 
machine (R3) and one storage machine (R5); H3 has no robot. 
The transportation plan is: H1’s robot R1 produces unit-doses 
for H1 (stored in R4) and H2 (stored in R5); H1’s robot R2 
produces prescriptions for H1 only. Unit-doses are transported 
from H1 to H2. H2’s robot R3 produces prescriptions using 
unit-doses received from H1 for H2 and H3. Prescriptions are 
transported from H2 to H3. Fig. 1 illustrates this process: 
dotted line arrows model unit-doses flows whereas hard line 
arrows model prescription flows. 

Figure 1.  Ilustrative example 

 
Two types of decisions are considered: (i) the number of 

robots of each type in each hospital, and (ii) the distribution 
flow over the network (i.e. which hospitals provide unit-doses 
and/or prescriptions for which hospital). Two mathematical 
models are proposed. In the first one the demand for medicines 
for each hospital is deterministic whereas in the second model 
this demand is stochastic. 

B. Deterministic Model 

In order to define the problem described above as a MILP, 

we introduce the following sets, parameters and variables: 

 

Sets: 

• 𝐻: set of hospitals 

• 𝑃𝑀: set of settings of prescription machines 

• 𝑆𝑀: set of settings of storage machines 

Parameters: 

• 𝑈𝑅: utilization rate of machines 

• 𝑇𝐶𝑈 𝑖 𝑗: transportation costs of unit-doses between 

hospitals 

• 𝑇𝐶𝑃 𝑖 𝑗: transportation costs of prescriptions between 

hospitals 

• 𝑂𝑃 𝑖: annual opening hours per hospital  

• 𝐷 𝑖: requirements of unit-doses per year in each 

hospital 

H1 H2 H3 

 

R2:P 

R1:U R3:P 

R4:S R5:S 
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• 𝑃𝑈: price of unit-doses (cutting) 

• 𝐷𝐻𝑖: number of daily working hours per hospital 

• 𝐶𝑎𝑝𝑃𝑃𝑝𝑚: capacities of preparing prescriptions per 

setting 

• 𝐶𝑜𝑠𝑡𝑃𝑃𝑝𝑚: cost of prescription machines for each 

setting 

• 𝐴𝑚: years of investment 

• 𝑈𝐷𝑃𝑖: number of unit-doses per prescription in each 

hospital 

• 𝐶𝑎𝑝𝑆𝑠𝑚: storage capacity of each setting 

• 𝐶𝑜𝑠𝑡𝑆sm: cost of storage machines for each setting 

• 𝐶𝑜𝑠𝑡𝐶: unitary cost of cutting machines 

• 𝐶𝑎𝑝𝑃𝑟𝑜𝑑: capacity of cutting machines 

• 𝑀: big number 

Decision variables: 

• 𝐴𝑖 𝑗: number of unit-doses distributed each year 

between hospitals 

• 𝐵𝑖 𝑗: number of prescriptions distributed each year 

between hospitals 

• 𝑁𝑖: number of cutting machines in each hospital 

• 𝑋𝑖 𝑗= 1 if there is transportation of unit-doses between 

hospitals, 0 otherwise 

• 𝑌𝑖 𝑗= 1 if there is transportation of prescriptions 

between hospitals, 0 otherwise 

• 𝑃𝑀𝑝𝑚 𝑖: number of dispatching machines per type in 

each hospital 

• 𝑆𝑀𝑠𝑚 𝑖: number of storage machines per type in each 

hospital 

The mathematical model is described as follows: 

𝑀𝑖𝑛 𝑧 =  𝑃𝑈 ∗ 𝐴𝑚 ∗ ∑ ∑ 𝐴𝑖 𝑗𝑗 ∈ 𝐻𝑖 ∈ 𝐻 +

∑ ∑ (𝑇𝐶𝑈𝑖𝑗 ∗ 𝐴𝑚 ∗ 𝑋𝑖 𝑗 + 𝑌𝑖 𝑗 ∗ 𝐴𝑚 ∗ 2 ∗ 𝑇𝐶𝑃𝑖𝑗)𝑗 ∈ 𝐻𝑖 ∈ 𝐻 +

∑ ∑ 𝐶𝑜𝑠𝑡𝑃𝑃𝑝𝑚 ∗ 𝑃𝑀𝑝𝑚 𝑖𝑖 ∈ 𝐻𝑝𝑚 ∈ 𝑃𝑀 +

∑ ∑ 𝐶𝑜𝑠𝑡𝑆𝑠𝑚 ∗ 𝑆𝑀𝑠𝑚 𝑖𝑖 ∈ 𝐻𝑠𝑚 ∈ 𝑆𝑀 + ∑ 𝐶𝑜𝑠𝑡𝐶 ∗ 𝑁𝑖𝑖 ∈ 𝐻  () 

subject to: 

𝑁𝑖 ∗ 𝐶𝑎𝑝𝑃𝑟𝑜𝑑 ∗ 𝑂𝑃𝑖 ∗ 𝑈𝑅 ≥ ∑ 𝐴𝑖 𝑘𝑘 ∈ 𝐻 ∀𝑖 ∈  𝐻              () 

∑ 𝐶𝑎𝑝𝑃𝑃𝑝𝑚 ∗ 𝑃𝑀𝑝𝑚 𝑖 ∗ 𝑂𝑃𝑖 ∗ 𝑈𝑅 ≥𝑝𝑚 ∈ 𝑃𝑀

∑ 𝐵𝑖 𝑘 ∗ 𝑈𝐷𝑃𝑘𝑘 ∈ 𝐻     ∀𝑖 𝐻   () 

∑ 𝐶𝑎𝑝𝑆𝑠𝑚 ∗ 𝑆𝑀𝑠𝑚 𝑖 ≥ ∑ 𝐴𝑖 𝑗𝑗 ∈ 𝐻𝑠𝑚 ∈ 𝑆𝑀 ∗
5

365
∀𝑖 ∈  𝐻 () 

∑ 𝐴𝑗 𝑖𝑗 ∈ 𝐻 = ∑ 𝐵𝑖 𝑗 ∗ 𝑈𝐷𝑃𝑗𝑗 ∈ 𝐻         ∀𝑖 ∈  𝐻 () 

∑ 𝑃𝑀𝑝𝑚 𝑖𝑝𝑚 ∈ 𝑃𝑀 ≤ ∑ 𝑆𝑀𝑠𝑚 𝑖𝑠𝑚 ∈ 𝑆𝑀  ∀𝑖 ∈  𝐻 () 

∑ 𝑈𝐷𝑃𝑗 ∗ 𝐵𝑖 𝑗 ≥ 𝐷𝑗𝑖 ∈ 𝐻   ∀𝑗 ∈  𝐻 () 

𝐴𝑖 𝑗 ≤ 𝑀 ∗ 𝑋𝑖 𝑗      ∀𝑖, 𝑗 ∈  𝐻  () 

𝐵𝑖 𝑗 ≤ 𝑀 ∗ 𝑌𝑖 𝑗      ∀𝑖, 𝑗 ∈  𝐻  () 

𝑋𝑗 𝑖 ≤ 1 − 𝑋𝑖 𝑗      ∀𝑖, 𝑗 ∈  𝐻 | 𝑖 <> 𝑗 () 

∑ 𝑋𝑖 𝑗 ≤ 1𝑖 ∈ 𝐻      ∀𝑗 ∈  𝐻  () 

∑ 𝑌𝑖 𝑗 ≤ 1𝑖 ∈ 𝐻|𝑖<>𝑗      ∀ 𝑗 ∈  𝐻                                 ()  

𝐶𝑎𝑝𝑃𝑟𝑜𝑑 ∗ 𝑁𝑖 ∗ 𝐷𝐻𝑖 ∗ 𝑈𝑅 ≥
1

365
    ∀𝑖 ∈  𝐻 () 

∑ 𝑌𝑖 𝑗 ≤ ∑ 𝑀 ∗ 𝑃𝑀𝑝𝑚 𝑗𝑝𝑚 ∈ 𝑃𝑀𝑖 ∈ 𝐻|𝑖=𝑗      ∀ 𝑗 ∈  𝐻 () 

𝐶𝑎𝑝𝑃𝑟𝑜𝑑 ∗ 𝑁𝑖 ≥ ∑ 𝐴𝑖 𝑗𝑗 ∈ 𝐻      ∀ 𝑖 𝐻 () 

∑ 𝑃𝑀𝑝𝑚 𝑖 ≥ ∑ 𝐵𝑖 𝑗𝑗 ∈ 𝐻𝑝𝑚 ∈ 𝑃𝑀       ∀ 𝑖 ∈  𝐻 () 

∑ 𝐶𝑎𝑝𝑃𝑃𝑝𝑚 ∗ 𝑃𝑀𝑝𝑚 𝑗 ∗ 𝐷𝐻𝑖 ∗ 𝑈𝑅 ≥ ∑ 𝐵𝑖 𝑗𝑗 ∈ 𝐻 ∗𝑝𝑚 ∈ 𝑃𝑀

4

365
   ∀𝑖 ∈  𝐻  () 

𝐴ℎ 𝑗, 𝐵ℎ 𝑗 , 𝑁ℎ, 𝑃𝑀𝑝𝑚 ℎ, 𝑆𝑀𝑠𝑚 ℎ >= 0; 𝑋ℎ 𝑗 , 𝑌ℎ 𝑗 ∈ {0,1}  () 

 

The mathematical model uses 3 sets: (i) set of hospitals 𝐻 

that indicates the hospitals in the network, (ii) set of possible 

settings of prescription machines 𝑃𝑀, and (iii) the set of 

possible settings for storage machines 𝑆𝑀. Objective function 

(1) minimizes the overall costs composed by (i) cutting costs, 

(ii) transportation costs and (iii) investment costs. Cutting 

costs represents the cost of producing unit-doses. 

Transportation costs are divided into transportation of unit-

doses and transportation of prescriptions. The investment cost 

is divided into costs of prescription/storage machines and cost 

of unit-doses machines. Equation (2) guarantees that cutting 

machines are enough to satisfy the distribution of unit-doses 

between hospitals. Equation (3) ensures that machines for 

preparing prescriptions in each hospital are enough to satisfy 

the prescriptions distributed between hospitals (the capacity 

of prescriptions for each type of machine is expressed in terms 

of unit-doses). Equation (4) models the storage capacity. Such 

capacity for each hospital must guarantee at least five days of 

distribution of unit-doses. Prescriptions contain a certain 

number of unit-doses, equation (5) is developed to balance the 

number of unit-doses received and the number of unit-doses 

dispatched in terms of prescriptions for each hospital. 

Equation (6) determines that for each hospital there must be 

at maximum the same number of prescription machines and 

storage machines. Satisfaction of demand in terms of unit-

doses is modeled in (7). Equations (8) and (9) ensure the 

relationship between the binary variables of distribution of 

unit-doses and prescriptions with the integer variables of 

distribution of unit-doses and prescriptions. Equation (10) 

ensures that distribution of unit-doses is not allowed in two 

directions, this means that a hospital can supply other 

hospital, but the supplied hospital cannot supply in return the 

previous one. For medicines flow requirements, each hospital 

can only receive unit-doses from only one hospital (11). 

Equation (12) models that each hospital can only receive 

prescriptions for at most one hospital or by itself. Equation 

(13) guarantees that capacity of unit-doses machines in terms 

of unit-doses is enough for having daily capacity of 
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distribution of unit-doses. Equation (14) ensures that each 

hospital only can satisfy its own demand if prescription 

machines are implanted there. Distribution of unit-doses can 

only be made by hospitals that locate unit-doses machines in 

their own (15). Distribution of prescriptions can only be made 

by hospitals that locate prescriptions machines in their own 

hospitals (16). Equation (17) ensures that in each hospital that 

will distribute prescriptions there has to be enough daily 

capacity to ensure at least 4 days of making prescriptions. 

Finally equation (18) ensures the domain definition of 

variables. 

 

C. Resilience and robustness in pharmaceutical supply 

chains 

 We have used the concept of risk and resilience in supply 

chains proposed in [27][28] as the ability of organizations to 

bounce back from large scale disruptions such as random 

events, accidents, negligence, intentional disruptions, natural 

disasters, among others [29]. In this way and as the 

distribution of medicines is a very important issue where 

backorders or stockouts are not allowed because of patient’s 

health, we introduce additional constraints to ensure that 

locations of robots are not centralized in one hospital, 

increasing the flexibility in the distribution of medicines. 

Since decisions of purchasing robots are made on a strategic 

level, we have considered the uncertainty in demand as a 

factor of analysis. For that we have added and modified the 

following elements using the concept of p-robustness 

developed in [30]. To describe the model we have used the 

strategy presented in [9] which formulates the mathematical 

model as non-scenario dependent. The new terms added to the 

mathematical model are as follows: 

 

Sets: 

• 𝑆𝐶𝑁: set of scenarios of variation of demand 

 

Parameters: 

• 𝐷 𝑠𝑐 𝑖 : requirements of unit-doses by hospital in each 

scenario  

• 𝑞𝑠𝑐: probability that a scenario occurs 

• 𝜌: desired robustness level 

 

The variation of the mathematical model is as follows: 

 
𝑀𝑖𝑛 𝑧

= ∑ 𝑞𝑠𝑐𝑛

𝑠𝑐𝑛 ∈ 𝑆𝐶𝑁

∗

[
 
 
 
 ∑ ∑ 𝑃𝑈 ∗ 𝐴𝑚 ∗ 𝐴𝑖 𝑗

𝑗 ∈ 𝐻𝑖 ∈ 𝐻

+ ∑ ∑ (𝑇𝐶𝑈𝑖𝑗 ∗ 𝐴𝑚 ∗ 𝑋𝑖 𝑗 + 𝑌𝑖 𝑗 ∗ 𝐴𝑚 ∗ 2 ∗ 𝑇𝐶𝑃𝑖𝑗)

𝑗 ∈ 𝐻𝑖 ∈ 𝐻

+ ∑ ∑ 𝐶𝑜𝑠𝑡𝑃𝑃𝑝𝑚 ∗ 𝑃𝑀𝑝𝑚 𝑖

𝑖 ∈ 𝐻𝑝𝑚 ∈ 𝑃𝑀

+ ∑ ∑ 𝐶𝑜𝑠𝑡𝑆𝑠𝑚 ∗ 𝑆𝑀𝑠𝑚 𝑖

𝑖 ∈ 𝐻𝑠𝑚 ∈ 𝑆𝑀

+ ∑ 𝐶𝑜𝑠𝑡𝐶 ∗ 𝑁𝑖

𝑖 ∈ 𝐻 ]
 
 
 
 

 

                       (19) 

∑ ∑ 𝑃𝑈 ∗ 𝐴𝑚 ∗ 𝐴𝑖 𝑗𝑗 ∈ 𝐻𝑖 ∈ 𝐻 + ∑ ∑ (𝑇𝐶𝑈𝑖𝑗 ∗ 𝐴𝑚 ∗ 𝑋𝑖 𝑗 +𝑗 ∈ 𝐻𝑖 ∈ 𝐻

𝑌𝑖 𝑗 ∗ 𝐴𝑚 ∗ 2 ∗ 𝑇𝐶𝑃𝑖𝑗) + ∑ ∑ 𝐶𝑜𝑠𝑡𝑃𝑃𝑝𝑚 ∗ 𝑃𝑀𝑝𝑚 𝑖𝑖 ∈ 𝐻𝑝𝑚 ∈ 𝑃𝑀 +
∑ ∑ 𝐶𝑜𝑠𝑡𝑆𝑠𝑚 ∗ 𝑆𝑀𝑠𝑚 𝑖𝑖 ∈ 𝐻𝑠𝑚 ∈ 𝑆𝑀 + ∑ 𝐶𝑜𝑠𝑡𝐶 ∗ 𝑁𝑖𝑖 ∈ 𝐻 ≤ (1 +

𝜌))  ∗ 𝑧∗
𝑠𝑐𝑛                                                                                         (20)  

 
∑ 𝑈𝐷𝑃𝑗 ∗ 𝐵𝑖 𝑗 ≥ 𝐷𝑠𝑐 𝑗𝑖 ∈ 𝐻      ∀𝑗 ∈  𝐻, ∀ 𝑠𝑐 ∈  𝑆𝐶   (21) 

 

Constraints (2) - (18) are similar except for variables having 

the index of scenarios of demand (Equation (7) is replaced by 

Equation (21)). The new objective function (19) minimizes the 

expected transportation cost and the location of machines 

purchased overall scenarios. In (20) is enforced the p-

robustness condition that is a measure that combines the 

minimization of the expected costs and the minimization of the 

worst-case cost or regret. 

 

IV. NUMERICAL RESULTS 

A real case study related to the “Rhône Nord Beaujolais 

Dombes” territorial hospital network is proposed to illustrate 

the results of the mathematical model and its applicability in 

a realistic case. The network located in the north of Lyon 

(France) has 8 different hospitals spread in the region, and 

each one of them has different consumptions and different 

types of illnesses treated; also because of the size, they have 

variations in demand between them. For the robust version we 

have generated 30 different scenarios of demand, in which the 

variations were generated with the average value defined by 

the hospitals network with a range of (+/-) 30%. 

Results are analyzed considering performance 

(computational times and complexity of the models), key 

performance indicators (costs of the provided solutions) and 

qualitative indicators (network design). 

The example provided is analyzed considering the whole 

hospitals network and with full opening hours. The instance 

used is defined as follows: 

 

• 8 hospitals in the network; 

• Overture times (annual) varies between 1,690 and 

2,820 hours per year; 

• Demand of prescriptions varies between 387,581 and 

3,038,490 per year; 

• The supplier has one setting of machines for each type 

of process (cutting and packaging for cutting 

machines, storage and preparation of prescriptions for 

prescription machines); 

• Daily opening hours varies between 6.5h to 8.5h; 

• Capacities of machines can have a small extension 

instead of buying another machine of the same type. 

Table I provides statistics related to the deterministic model 

and the p-robust version. Complexity of the p-robust model is 

not high compared to the deterministic model whereas 

computational times are doubled. However, total CPU time 

remains very low considering the strategic nature of the 

problem. 
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TABLE I.  COMPUTATIONAL RESULTS 

Problem 
Computational results 

No. of variables 
No. of 

constraints 
CPU time (s) 

Deterministic 328 304 26.8 

P-robust 328 334 54.6 

 

As a qualitative analysis, the network design of the 

deterministic model and the robust version is presented in 

Figure 2.  The triangles represent the 8 hospitals in the 

network. Dotted lines represent distribution of unit-doses and 

continuous lines represent distribution of prescriptions in both 

models. In the deterministic result, it can be observed that the 

network design is very centralized, each type of robots is 

allocated in hospital 4 and from that hospital are distributed 

prescriptions for the rest of hospitals in the network. In the 

robust version, the network design is distributed into three 

hospitals, hospitals 1, 7 and 4. In each hospital is allocated 

robots to prepare and storage unit-doses and prepare 

prescriptions, also each hospital where are located robots 

satisfy its own demand and the demand of hospitals assigned. 

Figure 1.  Results of the configuration of the network 

Tables II, III and IV provide results of the network design 

of both models with their capacities.  In Table II results of the 

deterministic version including number of robots located and 

their capacities in units per week are presented. Tables III and 

IV present the network design of the p-robust model. Table 

III present the configuration of the number of robots in each 

hospital and Table IV present the capacities in each hospital. 

TABLE II.  DETERMINISTIC CONFIGURATION 

Type of robots 
Configuration and capacities 

#of robots Capacity (units per week) 

Preparing unit-doses 5 200,000 

Storage 3 135,000 

Preparing Prescriptions 3 120,000 

TABLE III.  P-ROBUST CONFIGURATION 

Type of 

robots 

Number of robots 

H1 H4 H7 

Preparing 
unit-doses 

1 5 1 

Storage 1 3 1 

Preparing 

Prescriptions 
1 3 1 

TABLE IV.  P-ROBUST CAPACITIES 

Type of 

robots 

Capacities in units per week 

H1 H4 H7 

Preparing 
unit-doses 40,000 250,000 45,000 

Storage 45,000 135,000 45,000 

Preparing 

Prescriptions 40,000 12,000 40,000 

 

Several conclusions can be formulated regarding these 

results:  

- Using the concept of resilience in very sensitive 

distribution networks as healthcare distribution of medicines 

allows the p-robust version to obtain a desirable location-

allocation results in which the hospitals are not dependent of 

only one hospital in which any disruption can be translate into 

the not satisfaction of the patient´s demand. 

- The p-robust version model allows hospitals to satisfy the 

demand including its variation while the first model cannot 

satisfy the demand out of the deterministic range.  

V. CONCLUSION 

The objective of this paper is to develop a real case 

application of optimization in automating the process of 

preparing, storage and dispatching prescriptions in a network 

of hospitals. In this paper we have used the concept of 

resilience in supply chains to model the fact that healthcare 

networks cannot allow the presence of risk in the distribution 

of medicines and prescriptions. Also, we have used the 

concept of p-robustness to model the uncertainty in demand 

that is a natural process in healthcare because of the growing 

of population. A real life instance is solved, allowing to 

highlight the benefit of the p-robustness model compared to 

the deterministic one. This paper contributes to the healthcare 

location-allocation literature by addressing a real application 

of automation including the uncertainty in demand and 

considering specific features of the application relevant in 

real-world situations.  
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