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ABSTRACT

Health care system is one of the most critical units in case of disasters. Floods cause
an increase of emergency patient flow that may overwhelm hospital resources. In this
paper, we present a simulation model that evaluates health care emergency plan and as-
sesses the resilience of the Ile-de-France region in case of a major flood. We combined
in the model the health care process with a Markov chain flood model. The results
can be used to elaborate an optimized strategy for evacuation and transfer operations.
We provide a case study on three specialties and quantify the impact of several flood
scenarios on the health care system.

1 INTRODUCTION

Disasters, natural or man-made, can result in significant economic loss and human ca-
sualties. Disaster management operations consist of the reallocation of resources (e.g.
health facilities, transportation) to respond to the disaster’s emergency while covering
the daily emergencies. One of the main difficulties in disaster management is the lack
of resources [HHM™05], and understanding the key resources and their management
is primordial to adjust their utilization during a disaster.



In most of the emergency preparedness plans, health facilities represent a key re-
source and must accommodate the patients resulting from a disaster [Agc13]. However,
hospitals may be themselves at risk of damage from internal or external sources gen-
erated by a disaster. For example, in the Ile-de-France region, flood risk is relatively
high due the geographical position. As any disaster, flood causes an increase of emer-
gency patients flow that may overwhelm hospital resources [TIKNO7]. Moreover, some
hospitals in the region are at risk of submersion and damages to electricity and water
coverage. The patients treated in the impacted hospitals need to be transferred to other
hospitals.

Hospital evacuation is more constrained than mass evacuation due to the patients’
health conditions and the necessity to relocate them in appropriate facilities. In the lit-
erature, hospital evacuation operations have been approached in different ways: project
management, mathematical modeling, simulation models and hybrid models [TIS06].
In disaster management, simulation models address a variety of problems (e.g. pre-
vention, response, transportation) to evaluate several outcomes (e.g. costs, mortality)
[AGO6]. Some simulation models focus directly on the building architecture (e.g. exits
and staircases) that are used during evacuation [Hun16].

In [VDP16], a simulation model is developed to compare the impact of different
resources on the evacuation operations. The results indicate that an increase to the
transportation resources (number of ambulances or the transit rate) has a smaller ben-
efit to evacuation than a change in the available capacity of the safe hospitals. The
study in [YGPL10] focuses on the analysis of the available capacity in safe hospitals in
Florida, ans estimates the absorption ability of the region in case of flood. In [TT06],
simulation is used to evaluate the effectiveness of an evacuation plan for one hospital
under various scenarios and resources (e.g. patient types, nurses, number of ambu-
lances). Moreover, emergency patients’ flow also varies during disasters such as flood
events. However, only few studies integrate the uncertainty of disasters in the simu-
lation models [SCT13]. [Ban93] suggests using interdisciplinary simulation models
using for example meteorological or geological principles.

In France, the French White Plan (Plan Blanc) is an emergency management plan
in case of a sudden increase of activity in a hospital [CGR15]. If the increase of activ-
ity involves several hospitals, an Extended White Plan is triggered to coordinate both
impacted hospitals and the hospitals receiving the evacuees. One of the main deci-
sion makers in the development and application of the Extended White Plan in a given
region is the Regional Health Agency (Agence Régionale de Santé ARS).

Our aim in the project with ARS Ile-de-France is to develop a simulation model to
evaluate the performance of the regional hospitals in case of a flood event.

We present in this paper a discrete event simulation model that includes two major
parts:

e A health care process on a regional (macroscopic) level.

e A flood model using Markov chain to represent the flood dynamic and thus cap-
ture the dynamic variation of patients’ flow.

The paper is organized as follows: first we describe the general approach and the
various data used in our model. Then we detail the flood modeling and the health care



process. Finally, based on a real data set, we present examples of results of the model
quantified by key performance indicators.

2 GENERAL APPROACH AND INPUT DATA

The main objective of the DES model we present in this paper is to evaluate the emer-
gency plan of the regional (Ile-de-France) health care system and assess the region’s
resilience in case of flood.

We define the region’s resilience as the ability to treat all scheduled patients and
emergency arrivals within the region (i.e. with no transfer to hospitals outside of the
region). In other words, the resilience is achieved if the non-flooded hospitals can treat
their patients as well as emergency patients and the patients coming from the flooded
hospitals. In the context of very limited capacity, such solution may only be achieved
by predefined management rules. For example:

e Discharging patients in order to free up as many resources as possible, before
and during the flood.

e Preventive evacuation of high risk hospitals based on geographic location and
electric fragility.

e Transfer of flooded hospital patients according to pre-established preferences.

Unlike most other disasters (natural and man-made), these rules are feasible in case
of flood because of the alert period given by the weather forecast and water level mea-
surements. However, the effectiveness of the flood management rules is highly variable
depending on the flood dynamic (water level and speed) as well as the emergency pa-
tients flow.

Therefore, to evaluate accurately the preparedness plan and the decisions before
and during flood, the proposed approach (presented in Figure 1) combines a patient
flow model with a dynamic flood model using Markov chains.

In this approach, two main parts are distinguished: the patient flow model and the
flood model. The patient flow model is implemented in order to simulate all care path-
ways in all hospitals at the macroscopic level over a long horizon (one or two years);
the flood model is a dynamic short term event (few days to few weeks). When the
flood alert starts, health care processes are adjusted by including the flood management
rules until the resorption of the flood. Such processes are considered as degraded care
pathway (evacuation of the hospital and/or patients transfers). Input data (green boxes)
feed the aforementioned models: hospital data (capacity per specialty, flood risk evalu-
ation...), patient data (referred hospital, length of stay, arrival time...) and geographical
data (maps of departments within the region, flooded zones...). Finally, several Key
Performance Indicators (KPI) are measured (regional resilience probability, number of
transfers...) as an output of the model (orange box).
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Figure 1: General approach of the flood management model.

2.1 Input Data

In this part of the model, we simulate the flow of patients on a macroscopic level
without modeling their pathway inside the hospitals. Two sets of data are used as entry
of this part: hospitals data and patients data.

2.1.1 Hospitals Data

The capacities of hospitals have a major role in our model as the available capacity of
a non-flooded hospital can absorb the flow of patient caused by the flood (emergency
and evacuation).

Moreover, patients have specific needs depending on their health troubles. For
instance, a dialysis patient needs a bed specifically equipped for dialysis. The ARS
provides for each hospital in the region the capacity (number of equipped beds) for
critical specialties (for example, surgery or obstetrics).

2.1.2 Patients Data

The national hospitalization database (Programme de Médicalisation des Systémes
d’Information PMSI) is an exhaustive nationwide database that covers the data of pa-
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tients in both public and private hospitals. We extract from this database the dates of
start and end of stays of patients of all hospitals for every considered specialty.

Hospitals and patients data sets are used as the entry of the discrete event model.
Basically, in this part of the model, patients arrive to hospitals with specified arrival rate
to receive health care in a specialty for a given length of stay. In normal conditions,
hospitals have enough capacity to cover patients needs and no delays or transfers are
observed. This assumption allows us to identify the delays caused only by the flood
event.

2.1.3 Flood Data

Based on the results of a hydraulic model ( ALPHEE) , the Regional and Interdepart-
mental Directorate for Environment and Energy designed regional scenarios to estimate
the impact of floods on the Ile-de-France region.

These scenarios use a set of simplified maps of flooded areas according to the flow
of the main rivers in the region and are proportional to the flood of 1910, one of the
most devastating floods in the region. Figure 2 shows examples of the impact of the
three most important scenarios representing, from left to right, 80%, 100% and 115%
of 1910’s flood. These scenarios are respectively denoted RO.8, RI and RI.15 in the
rest of the paper.

Figure 2: Three regional flood scenarios in Ile-de-France as a percentage of 1910’s
flood.

Although the regional scenarios help organize the emergency plans in case of flood,
they have two major limitations:

1. The scenarios do not take into account the time factor, so they do not integrate
the phasing of the flood.

2. In reality, the flood will not be a replica of 1910. For example, the peak of flood
could be at 80% on some areas, 100% and 115% on others.

In order to correct such limitations, the flood model proposed in this paper is based
on the detailed maps of regional scenarios. In addition, we combine these maps with
the geographic location of hospitals to extract the list of potentially flooded hospitals
for each scenario.

2.2 Flood Management Assumptions

A major assumption of the proposed model is the binary impact of the the flood on
hospitals: we suppose that if a hospital is flooded, it must be evacuated and all the


http://cpdp.debatpublic.fr/cpdp-crue-seinebassee/DOCS/ETUDES/MISE_A_JOUR_SOCIO_ECONOMIQUE/ACTUALISATION_ESTIMATION_DOMMAG/RAPPORT_PHASE_1_ACTUALISATION_D/RAPPORT_PHASE1_AVEC_ANNEXES.PDF

patients transferred. Moreover, transfer to different specialties are not allowed in our
model. Flood management rules of hospitals assumed in our model are considered both
during the alert period and during the flood event.

2.2.1 During the Alert Period

When a flood alert is triggered, the severity of the event remains unknown. We con-
sider that the alert period allows the increase of preparedness to the worst possibilities.
Consequently, all the hospitals in the region establish in our model a priority of their pa-
tients and free, if possible, a predefined percentage of their capacity. The performance
of the rules applied during the alert period is measured through the three following
outcomes:

e Less transferred patients in case of flood,
e better preparedness to face to the flow of emergency patients caused by the flood,

e cxcess capacity for patients transferred from flooded hospitals.

2.2.2 During the Flood Period

When a hospital is flooded, hospitalized patients must be transferred. Also, future
scheduled patients and emergency patients are referred to other hospitals during (at
least) the entire flood duration.

As the operations during emergency (especially transportation) are managed by
several decision makers at the hospital level, we define a sequence of priority for the
destination of transferred patients. Depending on the available capacity in the relevant
specialty, a patient will be transferred as first choice to a hospital in the same hospital
group, then in the same department (county), then outside the department but within
the same region (state), and finally outside of the region.

If the latter option is used, the region is not autonomous anymore. In this paper,
we propose a predictive model to determine the probability of a hospital group, de-
partment, and region to remain autonomous during a certain flood considering random
events such as the speed and level of water and the arrival rate of patients.

Hospital Deparime Out of

group region

Figure 3: Sequence of evacuations and transfers.

3 THE FLOOD MODEL USING MARKOV CHAIN

The aim of this project is to elaborate a flood model that reflects a realistic flood dy-
namic. We present in this section the set of assumptions we considered regarding the



flood dynamic related to its starting time and its duration. Then a new Markov chain
modeling flood dynamics is proposed.

3.1 Features of a Flood

Starting time. In the Ile-de-France region, the usual period of major flooding is from
November to April. Consequently, most preparedness plans are designed according to
the pattern of patients flow during this period. However, flooding may occur at any
time of the year, causing the sub-optimality of some of the emergency management
rules (e.g. June 2016 flood in Paris).

Moreover, patients arrival distribution varies depending on the time of the year.
In our model, the starting time of the flood event is selected randomly to capture the
impact of seasonality on the health care process.
Flood types. We consider two phases in a flooding event: the flood rising and receding.
The length of the first phase determines if the flood is slow or fast.

The total duration of the flood and the duration of both phases are selected randomly
within realistic ranges extracted from the ALPHEE model and validated by experts.

3.2 Flood Dynamics

In the Ile-De-France region, several measurement stations record water level and flow,
15 of which are said “reference station”. For each reference station, there is a potential
flooded area(Zone Inondable Potentielle ZIP). The reference stations and the associated
areas are shown in Figure 4. Let Z be the set of potential flooded areas indexed by z,
and S; be the set of possible states for an area.

AN

Figure 4: Water flow and the potential flooded areas associated to reference stations.

Four states are defined for each area: the first state corresponds to non-flood area;
the other three states correspond to water levels relative to the 1910’s reference flood
and the scenarios we defined previously (R0.8, R and R1.15). Notations and states are
summarized in Table 1.

Space and time dynamic factors are modeled as follows: at each time unit, the flood
advances in the direction of the water flow (i.e. the areas on the right (East) of Figure 4
are impacted first), and the changes of states follow that flow.



Table 1: Notation and definition of area states relatively to 1910’s flood.

State of the area z € Z Definition
s, =0 The area is not flooded
s;=1 The area is impacted by the scenario R0.8
s, =2 The area is impacted by the scenario R1
s, =3 The area is impacted by the scenario R1.15

Consequently, we consider a Markovian process where each node i represents a
vector SR; = {s7,..,5|7|} of |Z| items representing the states of all the region areas at a
time period. The areas are sequenced based on the water flow represented in Figure 4.

3.2.1 Initial State

We suppose that the flood event always starts at State S7p:

SRO[Zi]{1 ifie{1,2} 0

0 otherwise

That means, that all floods modeled start from the two extreme east regions (areas 1
and 2). Both regions are impacted by the scenario R0.8 (s; = sp = 1) which represents
the smallest impact considered in our model.

3.2.2 Transition Rules

A transition rule defines how the level of water is changing between two consecutive
time slots (every three hours). Three types of transitions or transition rules are applied
in our model : loop, increase and decrease.

Loop transition.The same state SR; with a probability p;; is kept for all areas between
two time slots. The transition periods allow to control the speed of the flood rising and
receding.

Increase and decrease transitions. The first (flood rising) and second (flood receding)
phases are symmetrically controlled by the following rules. Since sudden increase
(resp. decrease) in the water level are not relevant in the studied region, the value of s,
is incremented (resp. decremented) by zero or one unit. In order to keep the flow of
water consistent with the slope of the ground, the water level in any downstream area
z is lower (resp. upper) than the level in the upstream neighboring area 7’ during the
previous period. Equations (1-2) and (3-4) enforce these constraints for State SR; that
follows SR; for the increase and decrease transitions, respectively.

1. Vz€ Z,SR;[z] <SR;[z] <SR;[z]+1
2. V2,7 €7, SR, [z) < SRi[Z]
3. Vz€Z SR;[z]—1 < SR;[z) < SR;[7]
4. V2,7 €Z,SR;[z) > SR [



All feasible transitions are equiprobable and the sum of their probabilities satisfies
Y.i.jj#i Pij = 1 — pii, with p;; the probability to transit from node i to j.

3.3 Monte-Carlo Simulation of the Flood Dynamic Model

The proposed Markov chain model is integrated in a DES model in the following way:
at each time slot, transition probabilities of the Markov models are activated. Depend-
ing on the result, the states of the areas are updated, resulting in the triggering of new
management rules in the patient flow model described in the next Section.

4 HEALTH CARE PROCESS AND HOSPITAL MAN-
AGEMENT

4.1 Petri Net Model of Patient Flow

In order to formally define the patient flow model, a generic t—Timed Petri net model
for each hospital specialty is proposed in Figure 5. Patients arrivals are modeled using a
source transition ;. Place p; models the decision related to the triggering of a degraded
mode for patient care in the event of a flood. If the hospital is not impacted, transition
t; is fired and the patient stay in the hospital (the transition duration is defined by a
random variable that depends on the type of stay). When the patient exits the hospital,
sink transition #4 is fired.

In the event of a flood, degraded mode is triggered and transitions fs (transfer to
another hospital inside the same hospital group), ¢ (transfer to another hospital inside
the same department), 77 (transfer to another hospital inside the same region) or g
(transfer outside the region). For transition #g, since the hosting hospital is outside the
region, the patient is transferred directly to the sink transition #4 through place ps.

t7

Figure 5: Generic patient flow model.

The resulting model is replicated for all hospitals and specialties of the region. As
stated in Section 2, specialties are considered separately since we assume no transfer
between medical specialties is permitted during the flood. The autonomy of the region
in the event of a flood can then be evaluated for each hospital specialty separately.



4.2 Simulation of the Patient Flow Model

Anylogic Pro 7.1 has been chosen to implement both the patient flow model and the
flood dynamic model. The implementation of the Petri net model in a simulation soft-
ware is straightforward: source and sink transitions are implemented using source and
sink modules. Decision place p; is implemented using a decision node. Hospital stay
(temporized transition ¢3) is implemented using a process module.

A virtual event is triggered periodically (every three hours) during the simulation
in order to update the Markov chain states. Global variables describing the flow state
are updated. Depending on these values, output of place p; is chosen accordingly to
the currently used management rule and the flood state.

S SIMULATION: NUMERICAL EXPERIMENTS

In this section, we present some results obtained with the DES model presented in the
previous sections. We use several flood scenarios obtained by the Markov chain model
and real data for different specialties.

5.1 Data and Scenarios

Three specialties are treated in the experiments: surgery, general medicine and obstet-
rics. The data collected from the hospitals in the Ile-de-France region are summarized
in Table 2. Hospitals provided for each specialty their capacity, the number of patient
per month, the mean length of stay. Therefore, the study is limited to the hospital spe-
cialties that gave those informations. The flood risk is evaluated for each flood scenario
by mapping the hospitals locations and the flood coverage.

Table 2: Hospitals and patients data for the studied specialties.

Specialty Number of Maximum Total Patients Mean LoS
hospitals | flooded hospitals | capacity | per year (~) | (in days)
Surgery 162 9 12,180 1,000,000 24
General medicine 189 11 20,601 1,748,569 39
Obstetrics 94 7 3,921 270,000 23

In these experiments, we consider 48 scenarios based on the combination of the
three following parameters:

e Flood duration: We differentiate short flood events (2 to 8 days) and long flood
events (8 to 20 days).

e Flood starting time (month): The flow of patients of each specialty strongly de-
pends on the month.

e Arrival variation: Represents the additional patients flow caused by the flood
event. Two cases are considered: the flow of patients remains stable or is doubled
during the flood.
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5.2 Performance Indicators and Results

As introduced above, the ARS coordinates the evacuation operations and the patients
transportation over the region during a disaster. Therefore we choose a set of KPI
that quantify the impact of each scenario and identify the decision makers involved
(hospital groups, departments or the entire region).

Following the sequence of evacuation and transfers, Table 3 defines the list of indi-
cators measured in this experiment.

Table 3: Key performance indicators.

Evac Mean number of evacuees

Tuc Mean number of patients transferred to a hospital in the same group

Tyep Mean number of patients transferred to a hospital in the same department
Treg Mean number of patients transferred to a hospital within the region

Auto Binary indicator that equals 1 if the region remains autonomous, 0 otherwise

We ran 100 replications per scenario. Depending on the specialty, the computing
time of one replication is between 5 and 15 seconds. Results are split into three sec-
tions: the regional autonomy, the arrival variations due to the flood and the month of
the flood start.

5.2.1 Regional Autonomy

For all simulated scenarios, 7., = 0 and Auto = 1 . This means that for the considered
data, the departments are able to absorb the effects of the flood (receive the evacuees
and cover the emergencies). This also implies that the set of decisions regarding the
emergency operations must be coordinated within the departments (for example, the
reallocation of ambulances).

5.2.2 Arrival Variation

Arrival variation has little to no impact in this experiment (Figure 6). This may be
explained by the ability to absorb within each department (at most) the increased flow
even when the flow of patients doubles during the flood.For the rest of the results will
be presented only for variation x 2 for a better readability.

5.2.3 Month Impact

In Figures 7, 8 and 9, the values obtained for the performance indicators Evac, Tyg
and T, are given for each specialty, month and flood duration (short and long), re-
spectively. The number of patients per month in normal conditions is also given for
each specialty.

As expected the number of evacuees and transferred patients increases with the
length of the flood event. For short flood events, all the areas may not be flooded
depending on the random draw of transitions. Additionally, the gap between short and
long event flood impact vary for each specialty based on hospitals location.
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Figure 6: Examples of the impact of the arrival variation on the performance indicators.
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Figure 7: Mean of the number of evacuees per specialty and flood month.

The variation of Evac per month follow mostly the flow of arrivals of patients for
each specialty. Note that each specialty is characterized by a different distribution. For
example, February is the busiest month in general medicine, while the distribution of
obstetrics patients is almost uniform throughout the year. At last, it is very important to
note the difference of performance between the three considered specialties. This result
is consonant with the patients flow in normal conditions. The most critical specialty is
general medicine with a mean number of evacuees that ranges from 40 to 51 in case of
a long flood.

Tng and Ty, are correlated and must be analyzed simultaneously. For short flood
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Figure 9: Mean of transferred patients in the same department per specialty and flood
month.

events, the number of transfers within the same hospital group is equal or close to zero
for all specialties (Figure 8). In the first flooded areas, the flooded hospitals are part
of small group hospitals saturated by the emergency patients flow. Tj,, follows the
patients flow and is proportional to Evac for all specialties.

For long flood events, the smaller the patient flow the more hospital groups absorb
the flood impact. For example, in the surgery case, August has the most transfers within
the hospital groups (7 ) while it represents the least important patient flow of the year.

Moreover, hospital groups are not uniform for all specialties. For example, if we
analyze Ty, values, surgery seems almost as critical as general medicine during long
flood events. This result is only justified by the fact that hospital groups absorb more
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than half of the transfers in general medicine.

6 CONCLUSION AND FUTURE WORK

We presented in this paper the work carried out with the Regional Health Agency,
which aims to evaluate health care emergency plan and assess the regional resilience
in case of major flood. We developed a discrete event simulation model that combines
a health care process with a flood model using Markov chain. The results obtained
on real data allow us to validate the model and estimate the impact of several flood
scenarios on each specialty. The measured key performance indicators also identify
the decisions makers involved for each scenario (the hospital groups, counties or the
state).

In future work, additional information about patients will be added to model in or-
der to take into account some specific needs. For example, three categories of maternity
services exist in France and patients of type 3 maternity may only be transferred to the
same type. Moreover, our model considers currently transfers and evacuation depend-
ing only on the hospitals capacity. However, a critical part in emergency management
is patients transportation. An optimization model will be added to the simulation model
(integrated or sequential) in order to plan the evacuation and transfer operations with
respect to vehicles fleet capacity and routing constraints.
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