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Abstract 

This paper aims to solve a multi-period green supplier selection and order allocation problem with all-unit 

quantity discounts, in which the availability of suppliers differs from one period to another. The proposed 

approach involves three stages. In the first stage, decision makers use fuzzy TOPSIS (Technique for Order of 

Preference by Similarity to Ideal Solution) to assign two preference weights to every potential supplier based on 

the supplier's performance in two sets of criteria considered separately: traditional and green. In the second 

stage, top management uses the analytic hierarchy process to assign an importance weight to each of the two 

sets of criteria based on the organization's strategy. The outputs of the first and second stages serve as inputs for 

a single-product bi-objective integer linear programming model with deterministic demand that takes into 

account all-unit quantity discounts and a varying number of suppliers in each period of the planning horizon. 

We implement the proposed mathematical model in MATLAB R2014a software using the weighted 

comprehensive criterion method and the branch-and-cut algorithm. Statistical analysis helps determine the most 

suitable ranking approach for suppliers when their availability changes in each period. This paper presents a 

numerical comparison between two settings: the first considers all-unit quantity discounts, and the second does 

not. Moreover, a time study shows that the proposed bi-objective integer linear programming model has an 

exponential computation time.    

Keywords: Green supplier selection; Inventory control; Quantity discounts; Supplier availability; Bi-objective 

optimization; Multi-criteria decision making 
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1. Introduction 

In the current competitive and global environment in which most businesses evolve, one of the most important 

processes in managing the supply chain of any organization is the selection of its suppliers. This process plays 

an important role in determining the cost, the quality, and other aspects of the finished product. Therefore, 

selecting the right suppliers to contract with for procuring physical products or services has become a multi-

criteria decision-making process. More specifically, to select the best suppliers, organizations must take into 

account multiple aspects related to these potential suppliers (e.g., price, lead time), to the product (e.g., quality, 

materials), and more recently to aspects related to the environment and society (e.g., amount of carbon dioxide 

emitted in production and transportation operations). In addition, national and international regulations as well 

as international competition are putting more pressure on companies to consider the environmental aspects in 

the production and delivery of their products and services (Akman, 2015; Hafezalkotob, 2015; Zhang, Wang, & 

Ren, 2014). Therefore, taking the environmental aspects into consideration while selecting the right suppliers 

not only protects the environment but also improves companies’ environmental performance and image and 

helps them achieve environmental goals (Büyüközkan & Çifçi, 2012; Kannan, Khodaverdi, Olfat, Jafarian, & 

Diabat, 2013). 

In addition to the decision of selecting suppliers, the procurement process, through which the company allocates 

orders to the selected suppliers, allows for some economies of scale through the right choice of the quantities to 

allocate to each supplier. Indeed, the unit price for large orders is usually smaller than the unit price of small 

orders, even if the orders are made from the same supplier (Taleizadeh, Stojkovska, & Pentico, 2015). The 

decrease in the unit price due to the increase in the ordered quantity is known as the quantity discount. Quantity 

discounts can be part of a pricing strategy and can be a powerful incentive to motivate buyers to increase the 

amount of their ordered quantities (Mansini, Savelsbergh, & Tocchella, 2012). The three major types of quantity 

discounts are incremental quantity discounts, business volume quantity discounts, and all-unit quantity discounts 

(Ayhan & Kilic, 2015).   

This combined supplier selection and order allocation problem with quantity discounts makes considering a 

multiple period framework more relevant. On the one hand, a supplier with excellent performance may not be 

available during the entire planning horizon, due to capacity limitation for example, which creates the need to 

consider less performing suppliers during some periods of the planning horizon and then to return to the 

excellent supplier in the following periods. On the other hand, because of the quantity discounts, ordering large 

quantities from few suppliers may be profitable and therefore requires the consideration of the capacity 

limitations and the estimation of the inventory holding costs over the entire planning horizon, especially for 

short life-cycle products.  

This paper introduces a single-product, multiple-periods model with deterministic demand in which suppliers 

are selected and orders are allocated according to cost, traditional criteria, and green criteria. The model allows 

the available suppliers to vary between the periods of the planning horizon and considers all-unit quantity 

discounts. The model comprises three stages. In the first stage, decision makers use fuzzy TOPSIS (Technique 

for Order of Preference by Similarity to Ideal Solution) to calculate two preference weights for each available 

supplier in each period of the planning horizon based on two sets of criteria taken separately: traditional and 

green. The set of traditional criteria includes aspects such as cost, quality, and lead time. The set of green criteria 

includes aspects such as the existence of a supplier’s environmental certification and the modes of transportation 

it uses to deliver the products. The two performance weights of each supplier are calculated on the basis of the 

historical performance of the supplier or a feasibility study. Fuzzy TOPSIS models the uncertainty or fuzziness 

of the decision makers' evaluation through the use of Triangular Fuzzy Numbers (TFNs). In the second stage, 

the highest levels of the organization's hierarchy use the analytic hierarchy process (AHP) to give an importance 

weight to the traditional criteria as a set and to the green criteria as a set based on the strategic importance of 

each set in the organization's strategy. The performance weights of each supplier are then combined with the 

importance weights of the two sets of criteria to produce two final performance weights for each supplier: one 

traditional and one green. This approach provides the decision maker with flexibility in evaluating the available 

suppliers, in the sense that a supplier with excellent performance in the traditional criteria and poor performance 
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in the green criteria will not rank among the best suppliers if the set of green criteria has a high importance 

weight. The use of fuzzy TOPSIS is justified because it does not have any inconsistency issues (Lima Junior, 

Osiro, & Carpinetti, 2014). Moreover, it allows the model to account for any uncertainty that may arise from the 

experts while ranking the different alternatives on the basis of the traditional or green criteria, especially when 

the number of alternatives or criteria is large (Lima Junior et al., 2014). Furthermore, an advantage of using 

TFNs to model the uncertainty in fuzzy TOPSIS is their facilitating role in the ranking process for the decision 

makers through the use of linguistic variables. TFNs allow for partial membership, whereas crisp sets allow for 

either full membership or non-membership. Moreover, using only AHP for both levels (category and criteria) 

would add more complexity in terms of number of matrices and may result in inconsistent rankings because of 

the large number of criteria. The use of AHP to calculate the two sets of importance weights is justified because 

this method is completely consistent when the number of alternatives is equal to two, where the random 

consistency index becomes equal to zero (Deng, Hu, Deng, & Mahadevan, 2014). The combined performance 

weights of the suppliers are then used as inputs for a bi-objective optimization model, which minimizes the 

fixed and variable costs and maximizes the preference weights of the selected suppliers. The model is solved 

using the weighted comprehensive criterion method (Dehghani, Esmaeilian, & Tavakkoli-Moghaddam, 2013).  

The rest of this paper proceeds as follows: in Section 2, we provide a detailed literature review on the studied 

subject. In Section 3, we describe the problem and then provide the model formulation and the solution 

approach. In Section 4, we compare two ranking approaches, as the available suppliers vary during the periods, 

and recommend the best approach. We also compare the quantity discount framework with another framework 

in which no quantity discounts are allowed. Last, we present a study of the computation time to solve the 

developed bi-objective optimization model. Section 5 concludes the study. 

 

2. Literature review 

The rich literature on supplier selection without capacity constraints includes the use of approaches such as 

fuzzy simple multi-attribute rating technique (SMART) (Chou & Chang, 2008), fuzzy hierarchical TOPSIS 

(Wang, Cheng, & Huang, 2009), SMART with fuzzy set theory (Kwong, Ip, & Chan, 2002), AHP combined 

with fuzzy set theory (Bruno, Esposito, Genovese, & Simpson, 2016), and grey system theory with uncertainty 

theory (Memon, Lee, & Mari, 2015). In addition, research has examined the case when the capacity of one 

supplier may not satisfy the entire demand by developing models using different techniques, such as mixed 

integer programming (Amorim, Curcio, Almada-Lobo, Barbosa-Póvoa, & Grossmann, 2016; Zhang & Zhang, 

2011), goal programming (Karpak, Kumcu, & Kasuganti, 1999), Monte Carlo simulation with fuzzy goal 

programming (Moghaddam, 2015), and fuzzy TOPSIS with mixed integer linear programming (Kilic, 2013).  

Recently, some researchers have begun integrating green aspects into the supplier selection and order allocation 

problem (Freeman & Chen, 2015; Ghorbani, Bahrami, & Arabzad, 2012; Hamdan & Cheaitou, 2015, 2017; 

Mafakheri, Breton, & Ghoniem, 2011). Doing so means evaluating suppliers on the basis of product-related 

criteria, such as the amount of toxic substance, the use of resources, and the use of green technology and 

environmental labeling (Igarashi, de Boer, & Fet, 2013). Suppliers can also be evaluated on the basis of 

organizational-related criteria, such as the environmental management certification, compliance with 

environmental policies and regulations, staff training on environmental awareness, and the organization's green 

market share (Igarashi et al., 2013). In particular, research has been conducted in the area of supplier selection 

and order allocation with quantity discount. For example, Dahel (2003) proposed a multi-objective mixed 

integer programming model to deal with total business volume discounts in supplier selection and the order 

allocation problem in multi-item environments. The model is solved using either a preference-oriented approach 

or the generating approach. Xia and Wu (2007) proposed a two-stage supplier selection and order allocation 

model with total business volume discounts. In the first stage, AHP improved by rough set theory is used to 

assign weights, while in the second stage, a multi-objective, multi-product mixed integer linear programming 

model is developed to maximize the total weighted quantity of purchasing, to minimize the total purchasing 

cost, to minimize the number of defective items, and to maximize the number of on-time delivered items. Burke, 
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Carrillo, and Vakharia (2008) developed a heuristic to measure the effect of quantity discounts in supplier 

selection and the order allocation problem for a single item and a single period. They developed three models: 

the first model considers the linear quantity discount, the second the incremental unit price, and the third the all-

unit quantity discount. Kokangul and Susuz (2009) addressed the issue of an all-unit quantity discount in a 

single product multi-criteria environment. They developed a bi-objective non-linear mathematical model that 

minimizes the total purchasing cost and maximizes the purchasing value obtained using AHP. They solve their 

model using goal programming. Amid, Ghodsypour, and O’Brien (2009) developed a fuzzy multi-objective 

mixed integer linear programming model to solve the all-unit quantity discount model for a single product. The 

model minimizes the total cost, the percentage of rejected items, and the percentage of late delivery items. Lee, 

Kang, Lai, and Hong (2013) proposed a mixed integer programming model and solved it using a genetic 

algorithm to minimize the total purchasing cost of a single-item, multi-periods supplier selection problem under 

all-unit and incremental quantity discounts. Wang and Yang (2009) proposed a two-stage mathematical model 

to solve an all-unit quantity discount supplier selection problem for a single item in a single-period planning 

horizon. In the first stage, they perform pair-wise comparison between the criteria using AHP, and in the second 

stage, the multi-objective mathematical model minimizes total cost, defective rate, and delivery lateness rate. 

Ebrahim, Razmi, and Haleh (2009) introduced a mathematical model that accounts for three types of quantity 

discount schemes (all-unit, incremental, and total business volume). The developed model minimizes the cost, 

late delivered items, and defective items. They introduced a scatter search algorithm to solve the model and 

compared it with the results obtained using the exact method.  

Moreover, Sawik (2010) proposed and compared a single-period multi-objective and a single objective quantity 

discount model in the supplier selection problem while considering the case of no quantity discount and the case 

of total business volume and an all-unit quantity discount. Razmi and Maghool (2010) developed a fuzzy bi-

objective mixed integer multi-item, multi-period supplier selection and an order-sizing model under dynamic 

demand, capacity, and budget limitations. The proposed model considered different payment methods and price 

discount policies, such as all-unit discounts, incremental discounts, and total business volume discounts. The 

first objective function minimizes the total purchasing cost, while the second maximizes the total purchasing 

value, taking into account the impact of qualitative performance criteria in the purchasing decision. They 

adopted an augmented ε-constraint and reservation level by Tchebycheff models to solve the bi-objective model. 

They then obtained the efficiency of each method using an additive utility function offered by the decision 

maker. Kamali, Fatemi Ghomi, and Jolai (2011) considered the all-unit quantity discount supplier selection 

problem by developing a multi-objective mathematical model that minimizes the total annual cost, the total 

number of defective items, and the total number of late delivered items and maximizes the total purchasing 

value. They solved the model using particle swarm optimization and the scatter search algorithm. Mansini et al. 

(2012) proposed an integer programming heuristic to solve the supplier selection problem under an all-unit 

quantity discount and a truckload shipping environment for multiple products.  

Furthermore, Zhang and Chen (2013) analyzed the supplier selection problem with quantity discounts under 

uncertain demand for a single product in a single period by developing a mixed integer non-linear mathematical 

model solved using the generalized Benders decomposition technique. The proposed model selects suppliers 

using cost only, without considering any other criteria. Mazdeh, Emadikhiav, and Parsa (2015) proposed a 

model to solve a single-item supplier selection problem over a multi-period planning horizon. They considered 

two cases: in the first case, no quantity discounts are allowed, while in the second case, both all-unit quantity 

and incremental quantity discounts are used. Ayhan and Kilic (2015) developed a two-stage model for multi-

item supplier selection and the order allocation problem with an all-unit quantity discount. The model uses fuzzy 

AHP to obtain weights and mixed integer linear programming to maximize the total purchasing value. Table 1 

provides a summary and comparison of the relevant works that deal with the supplier selection with the quantity 

discount problem.   
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Table 1: Literature review summary. 
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Dahel 

(2003)  
 ✔ ✔  ✔   ✔   ✔ 

 ✔ 

 ✔ 

Preference-oriented 

approach and the 

generating approach 

Xia and Wu 

(2007) 
 ✔ ✔  ✔   ✔   ✔ 

 ✔ 
 ✔ AHP + MOMILP1 

Burke et al. 

(2008)  
✔  ✔  ✔  ✔  ✔ ✔  

 ✔ 

 ✔ 

Solved using heuristics 

*Also considered 

linear quantity 

discount 

Kokangul 

and Susuz 

(2009)  

✔  ✔  ✔   ✔ ✔   

 ✔ 

 ✔ 

AHP + multi-objective 

non-linear model 

solved using goal 

programming 

Amid et al. 

(2009) 
✔  ✔  ✔   ✔ ✔   

 

✔  ✔ 

Fuzzy multi-objective 

mixed integer linear 

programming 

Lee et al. 

(2013)  
✔   ✔ ✔  ✔  ✔ ✔  

 

✔  ✔ 

Mixed integer 

programming model 

solved using GA2 

Wang and 

Yang  

(2009)  

✔  ✔  ✔   ✔ ✔   
 

✔  ✔ 

AHP + fuzzy 

compromise 

programming 

Ebrahim et 

al. (2009)  
✔  ✔  ✔  ✔  ✔ ✔ ✔ 

 

✔  ✔ 

Multi-objective solved 

using scatter search 

algorithm 

Sawik 

(2010)  
✔  ✔  ✔  ✔ ✔ ✔  ✔ 

 

✔  ✔ 

Mixed integer 

programming: Multi-

objective solved using 

scalarization technique 

Razmi and 

Maghool 

(2010)  

 ✔  ✔ ✔   ✔ ✔ ✔ ✔ 

 

✔  ✔ 

Fuzzy bi-objective 

model solved using ε-

constraint method and 

reservation-level-

driven Tchebycheff 

procedure 

Kamali et 

al. (2011)  
✔   ✔ ✔   ✔ ✔   

 

✔  ✔ 

Particle swarm 

optimization and 

scatter search 

algorithm  

Mansini et 

al. (2012)  
 ✔ ✔  ✔  ✔  ✔   

 
✔  ✔ 

Integer programming 

heuristics 

Zhang and 

Chen 

(2013) 

✔  ✔  ✔  ✔  ✔   

 

✔  ✔ 

Mixed integer non-

linear programming 

model solved using 

generalized Benders 

decomposition 

Mazdeh et 

al. (2015) 
✔   ✔ ✔  ✔  ✔ ✔  

 

✔  ✔ 

Mixed integer non-

linear programming 

model solved using 

heuristics based on 

Fordyce–Webster 

 
1 Multiple objective mixed integer linear programming 
2 Genetic algorithm 
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algorithm 

Ayhan and 

Kilic 

(2015) 

 ✔ ✔  ✔  ✔  ✔   
 

✔  ✔ Fuzzy AHP + MILP3 

Hamdan 

and 

Cheaitou 

(2015, 

2017) 

✔   ✔ ✔ ✔  ✔    

 

✔ ✔  

Fuzzy TOPSIS + AHP 

+ MOMILP 

*Fixed number of 

suppliers and no 

quantity discounts 

This study ✔   ✔ ✔ ✔  ✔ ✔   ✔  
✔  Fuzzy TOPSIS + AHP 

+ MOMILP 

 

However, none of the reviewed articles considered the supplier selection and order allocation problem with 

quantity discounts and green aspects, especially with an emphasis on the set of green criteria on which the 

suppliers are evaluated. In addition, none of the articles tested the variability in suppliers’ availability during the 

periods of the planning horizon. Finally, most of the articles forced the demand to be satisfied in each period.  

Thus, to contribute to the literature, we extend the models that Hamdan and Cheaitou (2015, 2017) propose by 

considering the quantity discounts and the dynamic availability of suppliers. First, the model proposed herein 

allows decision makers to select their suppliers, plan the procurement of their materials from the selected 

suppliers, and make related inventory decisions while taking into account the suppliers’ green performance in a 

dynamic way in a multiple-period planning horizon. Indeed, in real life, suppliers have limited capacity, and 

their ability to supply the required amount of products may change from period to period because, for example, 

of the change in demand due to seasonality. Therefore, considering this dynamic aspect of suppliers' availability 

is important. Second, the dynamic suppliers' availability implies the consideration of two possible ways to 

evaluate suppliers using multi-criteria decision-making tools. This is a distinguishing feature from existing 

literature that we investigate in this article (see Section 4.1). Third, some suppliers offer quantity discount 

schemes to their customers. Considering these schemes in the supplier selection and order allocation problem is 

crucial to account for these incentives, as they may play a determining role in the selection of the suppliers, at 

least from an economic perspective. Furthermore, considering quantity discounts makes the problem more 

complex than that in the literature. Fourth, the proposed model considers backlog, and with simple alteration, it 

can be changed into a lost sales environment. To the best of our knowledge, the studies of Hamdan and Cheaitou 

(2015, 2017) are the only ones to consider this aspect in the green context. 

Therefore, considering the dynamic multi-period green supplier selection and order allocation problem, with 

varying suppliers' availability and an all-unit quantity discount, is relevant from a practical perspective and 

constitutes a contribution to the literature. This work includes a unique combination of multi-objective 

mathematical programming and multi-criteria decision-making tools to focus on the aforementioned aspects.  

3. Model 

The model is a single-product, multiple-period bi-objective integer linear programming model that considers all-

unit quantity discounts and the case when the available suppliers vary during the periods of the planning 

horizon. The model aims to determine the best suppliers to buy from in each period, the amount that should be 

ordered from each selected supplier, and the corresponding price ranges so that the total cost of purchasing 

(TCP) is minimized and the total value of purchasing (TVP) is maximized. We determine the TVP by 

 
3 Mixed integer linear programming 
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multiplying the combined preference weights (traditional and green) of each supplier by the quantity purchased 

from that supplier and then by summing up these values. Furthermore, the model determines the inventory level 

and the amount of the demand that is not satisfied at the end of each period. As mentioned previously, the model 

consists of three stages: fuzzy TOPSIS, AHP, and bi-objective mathematical optimization model. According to 

Lima Junior et al. (2014), fuzzy TOPSIS in supplier selection is preferred to fuzzy AHP because of the reversal 

ranking that occurs in fuzzy AHP when a new alternative or criteria is introduced; this is not the case with fuzzy 

TOPSIS. Fuzzy TOPSIS involves fewer matrices and does not require any inconsistency checks to justify the 

selection of fuzzy TOPSIS to rank the suppliers. Moreover, top management uses AHP to determine the 

importance weights of the two sets of criteria: the traditional criteria and the green criteria. Because a pair-wise 

comparison is necessary here, we select AHP. Moreover, in this context and because of the number of 

alternatives (two), AHP does not involve any inconsistencies (Deng et al., 2014). 

3.1 Fuzzy TOPSIS and AHP 

We use fuzzy TOPSIS to determine supplier preference weights based on traditional criteria (𝑇𝑊𝑖𝑡) and green 

criteria (𝐺𝑊𝑖𝑡) separately for each available supplier i (i = 1, …, 𝑛𝑡) in each period t (t = 1, …, T) of the 

planning horizon of length T. We adopt Lau et al.’s (2003) five-point linguistic scale (see Table 2; for other 

different ranking scales, see Chen & Ku, 2008).  

 

Table 2: Rating scales. 

Criterion rating scale Alternative rating scale 

Linguistic Variable TFN Linguistic Variable TFN 

Little importance (LI) (0, 0, 0.25) Very low (VL) (0, 0, 0.25) 

Moderately important (MI) (0, 0.25, 0.50) Low (L) (0, 0.25, 0.50) 

Important (I) (0.25, 0.50, 0.75) Good (G) (0.25, 0.50, 0.75) 

Very important (VI) (0.50, 0.75, 1.00) High (H) (0.50, 0.75, 1.00) 

Absolutely important (AI) (0.75, 1.0, 1.0) Very high (VH) (0.75, 1.0, 1.0) 

 

The linguistic variables allow decision makers to assign a weight to every criterion in the set of green criteria 

and to every criterion in the set of traditional criteria. The assignment of the weights is based on the available 

knowledge and expertise of the decision makers as well as the relative importance of each criterion to the 

company. Decision makers can assign weights to the suppliers with respect to the criteria using available 

historical data, the capability studies on the suppliers, and laboratory testing and analysis of the product to be 

purchased.  

Decision makers then use AHP to assign importance weights to the set of traditional criteria (𝑊𝑇
𝐴𝐻𝑃) and to the 

set of green criteria (𝑊𝐺
𝐴𝐻𝑃). To calculate the supplier preference weights (𝑇𝑊𝑖𝑡 and 𝐺𝑊𝑖𝑡) and the set 

importance weights (𝑊𝑇
𝐴𝐻𝑃 and 𝑊𝐺

𝐴𝐻𝑃), we employ Hamdan and Cheaitou’s (2015, 2017) methodology. 

We separate the green aspects from the traditional aspects in ranking the potential suppliers using fuzzy 

TOPSIS. This separation results in two preference weights given to each potential supplier, one based on the 

traditional criteria as a set and one based on the green criteria as a set. Experts from the departments concerned 

with the purchased item usually perform this step taking into account the past performance of the potential 

supplier. In the second step, AHP is used, preferably by top management, to assign an importance weight to the 

set of traditional criteria and another to the set of green criteria based on their relative strategic importance to the 

organization. This approach is more general and provides more flexibility for decision makers in highlighting 

the importance of one set over the other (Hamdan & Cheaitou, 2015, 2017). 
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3.2 Bi-objective integer linear programming model 

The bi-objective optimization model consists of two objective functions. The first aims to maximize the total 

combined preference weight of the selected suppliers, including their green preference weights and traditional 

preference weights, while the second aims to minimize the total purchasing cost, the fixed ordering cost, the 

variable purchasing cost, the inventory holding cost, and the penalty shortage cost. The model takes into 

consideration all-unit quantity discounts by considering different unit prices for each supplier. Each possible 

unit price corresponds to a range of possible values for the ordered quantity from the corresponding supplier. 

For every selected supplier, the model chooses only one unit price and its corresponding range of values for the 

ordered quantity. The model allows the available suppliers to vary among the different periods of the planning 

horizon.  

3.2.1 Notations 

3.2.1.1. Parameters 

• 𝑇 :  Number of periods in the planning horizon. 

• 𝑛𝑡:  Total number of available suppliers in period t; t = 1, …, T. 

• 𝑅𝑖:  Total number of quantity discount ranges (price breaks) for each supplier 𝑖; 𝑖 =  1 , . . . , 𝑛𝑡. 

• 𝑊𝐺
𝐴𝐻𝑃: Importance weight of the set of green criteria obtained from AHP. 

• 𝑊𝑇
𝐴𝐻𝑃: Importance weight of the set of traditional criteria obtained from AHP. 

• 𝐺𝑊𝑖𝑡: Preference weight (closeness coefficient) of supplier 𝑖 in period 𝑡 based on the green criteria 

obtained from fuzzy TOPSIS with 𝑖 =  1, . . . , 𝑛𝑡 and 𝑡 =  1, . . . , 𝑇.  

• 𝑇𝑊𝑖𝑡: Preference weight (closeness coefficient) of supplier 𝑖 in period 𝑡 based on the traditional 

criteria obtained using fuzzy TOPSIS with 𝑖 =  1, . . . , 𝑛𝑡 and 𝑡 =  1, . . . , 𝑇. 

• 𝑣𝑐𝑖𝑟: Unit variable cost for supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 corresponding to the quantity discount range 

𝑟, 𝑟 =  1, . . . , 𝑅𝑖. 

• 𝐹𝐶𝑖𝑡: Fixed ordering cost for supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 in period t;  𝑡 =  1, . . . , 𝑇. 

• 𝐻𝑡: Inventory holding cost per unit product in period t;  𝑡 =  1, . . . , 𝑇. 

• 𝑆𝑡: Penalty shortage cost per unit product in period t; 𝑡 =  1, . . . , 𝑇. 

• 𝐶𝑖𝑡𝑟
𝑚𝑖𝑛: Minimum possible quantity that can be ordered from supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 if supplier i is 

selected in period t, 𝑡 =  1, . . . , 𝑇 for the quantity-discount range 𝑟, 𝑟 =  1, . . . , 𝑅𝑖. For 𝑟 = 1, 𝐶𝑖𝑡1
𝑚𝑖𝑛is 

the general minimum order quantity of supplier 𝑖 in period 𝑡. 

• 𝐶𝑖𝑡𝑟
𝑚𝑎𝑥: Maximum possible quantity to be ordered from supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 if supplier i is 

selected in period t, 𝑡 =  1, . . . , 𝑇 for the quantity-discount range 𝑟 , 𝑟 =  1, . . . , 𝑅𝑖. For 𝑟 = 𝑅𝑖, 𝐶𝑖𝑡𝑅𝑖

𝑚𝑎𝑥 

represents the maximum supply capacity of supplier 𝑖 in period 𝑡. 

• 𝐷𝑡: Demand in period 𝑡, 𝑡 =  1, . . . , 𝑇, 𝐶𝑖𝑡𝑅
𝑚𝑎𝑥  is the maximum order quantity. 

• 𝑀𝑆, 𝑀𝐻: Large positive numbers; in this model, we assume that they are equal to the total demand in 

the planning horizon. 

• 𝑆𝑆, 𝑆𝐻: Small positive numbers that are less than one. In this model, they are equal to 0.5. 

3.2.1.2. Decision variables: 

• 𝑄𝑖𝑡𝑟: Quantity to be ordered from supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 in period 𝑡, 𝑡 =  1, . . . , 𝑇 within the 

quantity discount range 𝑟, 𝑟 =  1, . . . , 𝑅𝑖. 

• 𝑌𝑖𝑡𝑟: A binary variable that indicates whether a quantity is ordered from supplier 𝑖, 𝑖 =  1, . . . , 𝑛𝑡 in 

period 𝑡, 𝑡 =  1, . . . , 𝑇 within the quantity discount range 𝑟, 𝑟 =  1, . . . , 𝑅𝑖 (𝑌𝑖𝑡𝑟 = 1) or not (𝑌𝑖𝑡𝑟 = 0). 

3.2.1.3. State variables 

• 𝐼𝑡
𝐻 : Available inventory level at the end of period 𝑡, 𝑡 =  1, . . . , 𝑇. 
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• 𝐼𝑡
𝑆 : A negative state variable that indicates the number of unsatisfied demands (shortage) at the 

end of period 𝑡, 𝑡 =  1, . . . , 𝑇. 

• 𝑌𝑡
𝐻: A binary variable that indicates whether the inventory at the end of period 𝑡, 𝑡 =  1, … , 𝑇 is 

positive (𝑌𝑡
𝐻 = 1 ) or not (𝑌𝑡

𝐻 = 0). 

• 𝑌𝑡
𝑆: A binary variable that indicates whether the inventory at the end of period 𝑡, 𝑡 =  1, . . . , 𝑇 is 

negative (𝑌𝑡
𝑆 = 1) or not (𝑌𝑡

𝑆 = 0). 

3.2.2 Mathematical model  

We define the objective functions as follows: 

max 𝑇𝑉𝑃 = 𝑇𝐺𝑉𝑃 + 𝑇𝑇𝑉𝑃,                                                                                                                                                (1) 

with 

𝑇𝐺𝑉𝑃 = ∑ ∑ ∑  𝑊𝐺
𝐴𝐻𝑃 × 𝐺𝑊𝑖𝑡 

𝑅𝑖

𝑟=1

𝑛𝑡

𝑖=1

× 𝑄𝑖𝑡𝑟

𝑇

𝑡=1

, 

and 

𝑇𝑇𝑉𝑃 = ∑ ∑ ∑ 𝑊𝑇
𝐴𝐻𝑃 × 𝑇𝑊𝑖𝑡

𝑅𝑖

𝑟=1

𝑛𝑡

𝑖=1

× 𝑄𝑖𝑡𝑟

𝑇

𝑡=1

, 

min 𝑇𝐶𝑃 =  ∑ ∑ ∑(𝑣𝑐𝑖𝑟 × 𝑄𝑖𝑡𝑟 + 𝐹𝐶𝑖𝑡 × 𝑌𝑖𝑡𝑟 + 𝐻𝑡 × 𝐼𝑡
𝐻 − 𝑆𝑡 ∗ 𝐼𝑡

𝑆)

𝑅𝑖

𝑟=1

𝑛𝑡

𝑖=1

𝑇

𝑡=1

,                                                            (2) 

subject to 

𝑌𝑖𝑡𝑟𝐶𝑖𝑡𝑟
𝑚𝑖𝑛 ≤ 𝑄𝑖𝑡𝑟 ≤ 𝑌𝑖𝑡𝑟𝐶𝑖𝑡𝑟

𝑚𝑎𝑥        ∀𝑖 = 1, … , 𝑛𝑡 , ∀𝑡 = 1 , … , 𝑇, ∀𝑟 = 1 , … , 𝑅𝑖 ,                                                 (3) 

𝐼𝑡−1
𝐻 + 𝐼𝑡−1

𝑆 + ∑ ∑ 𝑄𝑖𝑡𝑟

𝑅𝑖

𝑟=1

𝑛𝑡

𝑖=1

− 𝐼𝑡
𝐻 − 𝐼𝑡

𝑆 = 𝐷𝑡 ,                        ∀𝑡 = 1 , … , 𝑇                                                                        (4) 

∑ ∑ ∑ 𝑄𝑖𝑡𝑟

𝑅𝑖

𝑟=1

+ 𝐼0 =  ∑ 𝐷𝑡

𝑇

𝑡=1

𝑛𝑡

𝑖=1

𝑇

𝑡=1

,                                                                                                                                              (5) 

𝑄𝑖𝑡𝑟  , 𝐼𝑡
𝐻, 𝐼𝑡

𝑆  𝑖𝑛𝑡𝑒𝑔𝑒𝑟,                   ∀𝑖 = 1, … , 𝑛𝑡  , ∀𝑡 = 1 , … , 𝑇, ∀𝑟 = 1 , … , 𝑅𝑖                                                            (6) 

𝑌𝑖𝑡𝑟  , 𝑌𝑡
𝐻, 𝑌𝑡

𝑆 ∈ { 0 , 1 },                ∀𝑖 = 1, … , 𝑛𝑡  , ∀𝑡 = 1 , … , 𝑇, ∀𝑟 = 1 , … , 𝑅𝑖                                                            (7) 

−𝑀𝑆𝑌𝑡
𝑆 ≤ 𝐼𝑡

𝑆 ≤  −𝑆𝑆𝑌𝑡
𝑆,                 ∀𝑡 = 1 , … , 𝑇                                                                                                        (8) 

𝑆𝐻𝑌𝑡
𝐻 ≤ 𝐼𝑡

𝐻 ≤  𝑀𝐻𝑌𝑡
𝐻,                     ∀𝑡 = 1 , … , 𝑇                                                                                                       (9) 

𝑌𝑡
𝐻 + 𝑌𝑡

𝑆 ≤ 1,                               ∀𝑡 = 1 , … , 𝑇                                                                                                                   (10) 

∑ 𝑌𝑖𝑡𝑟

𝑅𝑖

𝑟=1

≤ 1,                                 ∀𝑖 = 1, … , 𝑛𝑡  , ∀𝑡 = 1 , … , 𝑇                                                                                       (11) 

Eq. (1) maximizes the TVP of all suppliers over the planning horizon that consists in the total green value of 

purchasing (TGVP) and the total traditional value of purchasing (TTVP). It includes the combined weight of 

every supplier based on the green criteria and the traditional criteria multiplied by the ordered quantities. Eq. (2) 
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minimizes the total purchasing cost, which includes the variable cost, the fixed cost, the inventory holding cost, 

and the penalty shortage cost, over the planning horizon for all the price ranges of all suppliers. Eq. (3) ensures 

that the ordered quantity from each supplier in each period is within the selected range of quantities for the 

chosen price. In other words, if the company chooses the price range 𝑟 of supplier 𝑖 in period 𝑡, then constraint 

(3) ensures that the quantity ordered from supplier 𝑖 in period 𝑡 is within the ranges of quantities, 𝑟, specified by 

the supplier for the selected price—that is, between 𝐶𝑖𝑡𝑟
𝑚𝑖𝑛 and 𝐶𝑖𝑡𝑟

𝑚𝑎𝑥. Moreover, 𝐶𝑖𝑡1
𝑚𝑖𝑛 specifies the minimum 

order quantity that a supplier allows. If the sales management policy of supplier 𝑖 does not specify a minimum 

order quantity, then 𝐶𝑖𝑡1
𝑚𝑖𝑛 = 0, which prohibits ordering negative quantities. Eq. (4) ensures that the demand is 

satisfied either from the quantity ordered or from the available inventory or is marked as a shortage. Eq. (5) 

ensures that the total demand for the entire planning horizon is satisfied, even if not necessarily in the same 

period of occurrence. Eq. (6) ensures the integrality of the decision variables, and Eq. (7) ensures that 

𝑌𝑖𝑡𝑟  , 𝑌𝑡
𝐻, 𝑎𝑛𝑑 𝑌𝑡

𝑆 are binary variables. Eq. (8) ensures that if 𝐼𝑡
𝑆 has a negative value, the corresponding binary 

variable, 𝑌𝑡
𝑆, is equal to 1, and Eq. (9) ensures that if 𝐼𝑡

𝐻 is positive, the corresponding binary variable 𝑌𝑡
𝐻 is 

equal to 1. It is worth noting that the proposed model accounts for shortage and backlog. However, it can easily 

handle lost sales by setting the value of 𝑀𝑆 to be equal to zero and by removing constraint (5).  

Eq. (10) ensures that at most one inventory type is chosen in each period—in other words, either positive 

inventory, negative inventory, or neither. Eq. (11) indicates that at most one range is selected from each supplier 

in each period.  

3.3 Solution approach 

In this paper, we adopt the weighted comprehensive criterion method to solve the bi-objective model because of 

the simplicity of its implementation and its efficiency in terms of the number of Pareto solutions it can provide 

(Kamali et al., 2011; Marler & Arora, 2004). This method is a scalarization approach that uses normalization to 

allow combining objective functions with different units in one objective function. It first solves the objective 

functions separately, subject to the original model constraints, to obtain the optimal single objective function 

values, 𝑇𝑉𝑃𝑚𝑎𝑥 and 𝑇𝐶𝑃𝑚𝑖𝑛. It then combines the two objective functions after multiplying them by a weight in 

the single objective function problem that aims to minimize the total relative variation of each objective function 

from its optimal value (Dehghani et al., 2013). We calculate the relative variation (normalization) in Eq. (12) for 

the maximization problem and in Eq. (13) for the minimization problem: 

𝑓1 =
𝑇𝑉𝑃𝑚𝑎𝑥 −  𝑇𝑉𝑃 

𝑇𝑉𝑃𝑚𝑎𝑥
.                                                                                                                                                          (12) 

𝑓2 =
𝑇𝐶𝑃 − 𝑇𝐶𝑃𝑚𝑖𝑛

𝑇𝐶𝑃𝑚𝑖𝑛
.                                                                                                                                                           (13) 

We then multiply each relative variation by a relative weight (𝛼𝑖) and sum up all weighted variations in a single 

objective function to be minimized: 

min 𝑓 =  𝛼1𝑓1 + 𝛼2𝑓2.                                                                                                                                                         (14) 

Next, we minimize the single objective function (Eq. (14)) subject to the same constraints. Note that changing 

the values of the weighting parameters (𝛼1 𝑎𝑛𝑑 𝛼2) may lead to different Pareto optimal solutions. In this work, 

we assume that 𝛼1 and 𝛼2 are both equal to 0.5, except in the determination of Pareto set. 

To make the proposed approach easier to use by decision makers in any organization, we developed a simple 

and user-friendly stand-alone software based on Graphical User Interface using MATLAB R2014a. The 

software handles the suppliers’ ranking step (fuzzy TOPSIS), weights the traditional and green sets of criteria 

(AHP), and solves the bi-objective optimization model. It uses the MATLAB language and optimization 

toolbox, which in turn uses the branch-and-cut algorithm. Screenshots of this software showing its features are 

available in Hamdan and Cheaitou’s (n.d.) study.  
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4. Numerical study  

In this section, we present numerical experiments that show the usefulness of the proposed methodology in 

facilitating the decision-making process for organizations willing to integrate green aspects into their supplier 

selection process. In Section 4.1, we perform an analysis on the two ranking approaches using fuzzy TOPSIS 

that can be used in the model. The results from Pareto solutions of the two ranking approaches do not allow us 

to choose the best method, so we perform statistical analysis for the optimization results using randomly 

generated input data. The results of the statistical analysis confirm that the difference is not statistical 

significant. Therefore, because of its simplicity we recommend using the first ranking methods (i.e., ranking the 

suppliers only once at the beginning of the first period). In Section 4.2, we compare a set of suppliers with 

quantity discounts with another set of suppliers without quantity discounts but with the same basic 

characteristics. The results show that the suppliers offering quantity discount schemes are preferred to those 

without quantity discounts and with comparable prices. Section 4.3 provides a time study on the time required to 

solve the model under varying problem sizes. This analysis shows the time complexity of the model and that it 

can be solved for optimality for small to medium-sized instances but may need heuristic solution approaches for 

large instances.  

4.1 Comparative study on suppliers’ ranking 

As we consider that the suppliers' availability changes dynamically from period to period, two possible 

approaches for ranking the suppliers are possible. In the first approach, all suppliers are ranked one time using 

fuzzy TOPSIS at the beginning of the planning horizon, even if some suppliers are available during only a few 

periods of the planning horizon. This ranking compares all the suppliers using fuzzy TOPSIS and uses the 

resultant ranking for all the periods of the planning horizon. In other words, this approach obtains the traditional 

preference weight (𝑊𝑇
𝐴𝐻𝑃 × 𝑇𝑊𝑖𝑡) and the green preference weight (𝑊𝐺

𝐴𝐻𝑃 × 𝐺𝑊𝑖𝑡) of every supplier at the 

beginning of the planning horizon, taking into account all suppliers even if they are not available in all periods. 

The second approach ranks, in every period, only the suppliers available in that period by comparing them with 

each other using fuzzy TOPSIS. In other words, this second approach performs ranking in each period only for 

the suppliers available in that period and obtains preference weights valid for that period only for each supplier 

available in each period. In the second approach, the ranking results vary from one period to another depending 

on the availability of the suppliers in each period.  

To better clarify this idea, we use an example with a three-period planning horizon and five potential suppliers: 

in period one, supplier A and supplier B are available. In period two, supplier A and supplier C are available, 

and in period three, suppliers B, C, D, E, and F are available. Using the first ranking approach, all suppliers (A–

F) are ranked on the basis of the traditional and green criteria one time, at the beginning of period one, and the 

ranking results are used for all three periods. This results in the same weight for supplier B in the first and third 

periods. Conversely, the second ranking approach ranks the suppliers three times, one time for each period, only 

for the suppliers available in that period. For example, in period one, only suppliers A and B are ranked, which 

generates certain preference weights for A and B. For period three, suppliers B, C, D, E, and F are evaluated, 

which results in preference weights for these five suppliers. The preference weights of supplier B in the first and 

third periods may therefore be different. This potential difference is due to the normalization step in fuzzy 

TOPSIS, in which the fuzzy numbers are divided by fuzzy values that vary depending on their nature (benefit or 

cost) and on the existing suppliers in the ranking process. In summary, the first approach is static and thus is not 

affected by the changing availability of suppliers, while the second approach is dynamic and takes this changing 

environment into account. In this section, we compare the two approaches.  

4.1.1 Sample data 

We randomly generated one sample instance of data and tested it using the two ranking approaches over 19 

different importance weight scenarios (𝑊𝐺
𝐴𝐻𝑃and 𝑊𝑇

𝐴𝐻𝑃). Table 3 shows the values of the weights for the 19 

scenarios, where G denotes green and T denotes traditional, and the numbers next to G and T are the values of 
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the importance weights of the two sets of criteria. For example, 0.05G/0.95T means that 𝑊𝐺
𝐴𝐻𝑃 = 0.05 and 

𝑊𝑇
𝐴𝐻𝑃 = 0.95. 

In the first ranking approach, denoted as case A, we use fuzzy TOPSIS only once, while in the second ranking 

approach, denoted as case B, we use fuzzy TOPSIS for the available suppliers in each period. The aim is to 

determine which ranking approach is better and to check whether the difference between the two approaches is 

significant.  

Table 3: Criteria set importance weight scenarios. 

 Weights  Weights 

1 0.05 G/ 0.95 T 11 0.55 G/ 0.45 T 

2 0.1 G/ 0.9 T 12 0.60 G/ 0.40 T 

3 0.15 G/ 0.85 T 13 0.65 G/ 0.35 T 

4 0.2 G/ 0.8 T 14 0.70 G/ 0.30 T 

5 0.25 G/ 0.75 T 15 0.75 G/ 0.25 T 

6 0.3 G/ 0.7 T 16 0.80 G/ 0.20 T 

7 0.35 G/ 0.65 T 17 0.85 G/ 0.15 T 

8 0.40 G/ 0.60 T 18 0.90 G /0.10 T 

9 0.45 G/ 0.55 T 19 0.95 G/ 0.05 T 

10 0.50 G/ 0.5 T 

 

One decision maker (DM1) evaluates four suppliers (S1, S2, S3, and S4) on the basis of four traditional criteria 

(TRC1, TRC2, TRC3, and TRC4) and four green criteria (GC1, GC2, GC3, and GC4). Dickson (1966) listed 23 

traditional criteria for supplier selection and evaluation, including cost, flexibility, delivery time, quality of 

product, and payment method. Moreover, the green criteria include environmental labeling, green market share, 

use of green technology, and environmental management system certification. In the first approach, each 

criterion and each alternative with respect to each criterion is evaluated using a linguistic variable. These 

linguistic variables are generated randomly using Microsoft Excel. We then calculate the closeness coefficients 

(preference weights) of all the suppliers as shown in Table 4.  

Table 4: Supplier preference weights using the first approach. 

Criteria TRC1 TRC2 TRC3 TRC4 GC1 GC2 GC3 GC4 Preference weights  

Criterion 

rating 
DM1 LI I AI VI VI LI MI I Traditional  Green 

Alternative 

rating 

S1 VL L L VL L H VH VH 0.1818 0.2987 

S2 G VL VL L VH L VL G 0.1784 0.2917 

S3 G VH VL L H H G VH 0.273 0.3575 

S4 VH H VH G G VL L G 0.4769 0.2405 

Note: See Table 2 for definitions of letters. 

Table 5 show the availability of the suppliers in each period, where the empty cells represent periods during 

which the supplier is not available. The second approach repeats the steps of the first approach for every period, 

taking into account the availability of the suppliers in each period. Table 6 summarizes the obtained preference 

weights (closeness coefficients) based on the traditional criteria and the green criteria, respectively, for the 

available suppliers in each period. In Table 6, the crossed cells correspond to periods in which the supplier is not 

available. 

Table 5: Available suppliers in the different periods of the planning horizon. 

Period S1 S2 S3 S4 Period S1 S2 S3 S4 

1 ✓ ✓   11 ✓   ✓ 

2  ✓ ✓ ✓ 12  ✓ ✓  

3 ✓ ✓  ✓ 13 ✓ ✓ ✓ ✓ 

4 ✓   ✓ 14  ✓ ✓ ✓ 
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Period S1 S2 S3 S4 Period S1 S2 S3 S4 

5 ✓  ✓  15 ✓ ✓ ✓ ✓ 

6  ✓ ✓  16 ✓ ✓ ✓  

7   ✓ ✓ 17 ✓ ✓   

8 ✓ ✓ ✓  18   ✓ ✓ 

9 ✓  ✓ ✓ 19 ✓  ✓  

10  ✓ ✓ ✓ 20 ✓ ✓  ✓ 

 

Table 6: Supplier reference weights using the second approach. 

 Periods 1, 17 2, 10, 14 3, 20 4, 11 5, 19 6, 12 7, 18 8, 16 9 13, 15 

Preference 

weights 

based on 

traditional 

criteria 

S1 0.3088   0.1818 0.1818 0.2665     0.2665 0.1818 0.1818 

S2 0.2735 0.1784 0.1784     0.3008   0.2533   0.1784 

S3   0.273     0.3421 0.3847 0.273 0.3421 0.273 0.273 

S4   0.4769 0.4769 0.4769     0.4769   0.4769 0.4769 

Preference 

weights 

based on 

green 

criteria 

S1 0.2987   0.2987 0.3184 0.2987     0.2987 0.2987 0.2987 

S2 0.2917 0.296 0.2917     0.2965   0.2917   0.2917 

S3   0.3719     0.3575 0.3719 0.3719 0.3575 0.3575 0.3575 

S4   0.2509 0.2405 0.2731     0.2509   0.2405 0.2405 

 

For the mathematical model, we took the demand and quantity discount price breaks from the work of Lee et al. 

(2013). Table 7 shows the quantity discount ranges for each supplier. In this numerical example, we assume that 

the fixed ordering cost is 1000 for each supplier in each period, the inventory holding cost is 4/unit/period, and 

the unit penalty shortage cost is 10/unit/period. 

Table 7: Quantity discounts and price ranges for each supplier. 

 Min Quantity Max. Quantity Unit Price  Min Quantity Max. Quantity Unit Price 

Range S1 Range S3 

1 0 2000 2.99 1 0 900 3.05 

2 2001 3899 2.85 2 901 1800 2.96 

3 3900 9000 2.74 3 1801 9000 2.83 

 S2  S4 

1 0 1100 3 1 0 999 2.98 

2 1101 2200 2.93 2 1000 2599 2.82 

3 2201 3400 2.82 3 2600 4099 2.79 

4 3401 9000 2.75 4 4100 9000 2.76 

 

4.1.2 Optimization results  

Table 8 displays the sum of the optimal quantities to order from each supplier in all the periods of the planning 

horizon and for both cases. The table shows that slight differences (in bold) exist between the optimal solutions 

of the two ranking approaches. Therefore, to investigate these differences between the two approaches and 

identify the best approach, we conducted a statistical analysis in the following sections. 

Table 8: The sum of the optimal quantities to order from each supplier in all the periods of the planning horizon. 

Scenario 
Case (A) Case (B) 

S1 S2 S3 S4 S1 S2 S3 S4 

0.05 G 0.95 T 1610 0 4970 9110 1610 0 4970 9110 

0.1 G 0.9 T 1610 0 4970 9110 1610 0 5575 8505 

0.15 G 0.85 T 1610 0 4970 9110 1610 0 5575 8505 

0.2 G 0.8 T 1610 0 4970 9110 1610 0 5575 8505 

0.25 G 0.75 T 1610 0 4970 9110 1610 0 5575 8505 

0.3 G 0.7 T 1610 0 4970 9110 1610 0 5575 8505 

0.35 G 0.65 T 1610 0 5575 8505 1610 0 5575 8505 
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0.40 G 0.60 T 1610 0 5575 8505 1610 0 5575 8505 

0.45 G 0.55 T 1610 0 5575 8505 1610 0 5575 8505 

0.50 G 0.5 T 1610 0 5575 8505 1610 0 5575 8505 

0.55 G 0.45 T 1610 0 5575 8505 1610 0 5575 8505 

0.60 G 0.40 T 1610 0 5575 8505 1610 0 5575 8505 

0.65 G 0.35 T 1610 0 7425 6655 1610 0 9045 8505 

0.70 G 0.30 T 1610 0 12440 1640 1610 0 12440 5035 

0.75 G 0.25 T 1610 0 12440 1640 1610 0 12440 1640 

0.80 G 0.20 T 1610 0 12440 1640 1610 0 12440 1640 

0.85 G 0.15 T 2930 0 12760 0 2120 0 12440 1640 

0.90 G 0.10 T 2930 0 12760 0 3250 0 12440 1130 

0.95 G 0.05 T 2930 0 12760 0 3250 0 12440 0 

 

For more numerical results, we refer the reader to the paper of (Hamdan & Cheaitou, n.d.) in which Tables A.1 

– A.20 show the optimal quantities to be ordered from each supplier in cases A and B for the 19 importance 

weight scenarios.  

4.1.3 Pareto set for case A 

Table 9: Pareto optimal solutions for both supplier-ranking approaches. 

Objective function 

importance weights 
Case A Case B 

𝜶𝟏 𝜶𝟐 TCP TVP TCP TVP 

1 0 65670.80 4404.30 65670.80 4617.25 

0.95 0.05 65716.60 4670.49 65713.40 4890.55 

0.9 0.1 66138.60 5072.53 65893.25 5102.30 

0.85 0.15 66138.60 5072.53 66138.60 5292.62 

0.8 0.2 66350.00 5152.29 66350.00 5377.21 

0.75 0.25 66350.00 5152.29 66350.00 5377.21 

0.7 0.3 66350.00 5152.29 66350.00 5377.21 

0.65 0.35 66350.00 5152.29 66350.00 5377.21 

0.6 0.4 66350.00 5152.29 66350.00 5377.21 

0.55 0.45 66350.00 5152.29 66350.00 5377.21 

0.5 0.5 66350.00 5152.29 66350.00 5377.21 

0.45 0.55 66582.00 5169.19 66350.00 5377.21 

0.4 0.6 66582.00 5169.19 66350.00 5377.21 

0.35 0.65 66582.00 5169.19 66582.00 5389.45 

0.3 0.7 66582.00 5169.19 66582.00 5389.45 

0.25 0.75 67547.00 5196.13 67547.00 5422.27 

0.2 0.8 70175.78 5258.14 67547.00 5422.27 

0.15 0.85 70175.78 5258.14 71434.08 5493.31 

0.1 0.9 70175.78 5258.15 71434.08 5493.31 

0.05 0.95 80868.78 5344.01 88834.68 5604.90 
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Fig. 1. Pareto frontier for both supplier-ranking approaches. 

Table 9 displays optimal solutions obtained for the case of 0.80 G/ 0.20 T by changing 𝛼1and 𝛼2. Fig. 1 depicts 

the Pareto set for case A by plotting TCP values versus (-TVP) values. The abscissa axis represents the Pareto 

optimal TCP for all periods (Eq. (2)), and the ordinate axis represents the Pareto optimal TVP for all periods 

(Eq. (1)). We obtained these different Pareto solutions by solving the problem defined in Eq. (14), subject to 

constraints (3)–(11), and by changing the values of 𝛼1 and 𝛼2. The used values of the weighting parameters 

were from 1 to 0.05 for 𝛼1 and from 0 to 0.95 for 𝛼2, with increments of 0.05 and –0.05 respectively. For every 

value of (𝛼1; 𝛼2), we substituted the obtained optimal solution in (1) and (2) to obtain the corresponding Pareto 

optimal solution (TCP and TVP values). Fig. 1 shows that an average improvement of the TVP by 2.69%, which 

corresponds to an average increase in the TGVP (defined in Section 3.2.2) by 4.07%, can be achieved at an 

average increase in the cost of 2.82% using case A, while an average improvement of the TVP by 2.38%, which 

corresponds to an average increase in the TGVP by 3.61%, can be achieved at an average increase in the cost of 

3.48% using case B. These results do not allow us to draw a general conclusion about the superiority of one of 

these two ranking approaches, and thus we conduct a more detailed analysis in the following section to compare 

them using randomly generated input data.  

4.1.4 Statistical analysis   

4.1.4.1 Test characteristics  

The proposed model is complex, which makes the use of numerical experiments to analyze the effect of the 

ranking approaches on the optimal solution challenging. Therefore, we conduct a statistical analysis to test 

whether there is a significant difference between the two ranking approaches. To our knowledge, the only study 

that applied hypothesis testing in the field of optimization was that of Hassan et al. (2005), which aimed to 

compare the genetic algorithm and particle swarm optimization. 

We compare the TCP values in case A and case B because they have the same baseline (𝑇𝐶𝑃𝑚𝑖𝑛). At the same 

time, 𝑇𝑉𝑃𝑚𝑎𝑥 differs between case A and case B, as this value depends on the suppliers rating (obtained from 

fuzzy TOPSIS), which differs between the two ranking approaches. As a result, we consider the percentage of 

variation in the TVP from its optimal value (VTVP) in the statistical comparison to determine whether the 

difference between case A and case B is statistically significant by generating 16 random samples and testing 

them on different category weight scenarios of 𝑊𝐺
𝐴𝐻𝑃and 𝑊𝑇

𝐴𝐻𝑃 at equal objective function importance (𝛼1 =

𝛼2 = 0.5). Table 10 shows the different category weights scenarios. 

 

-5620

-5420

-5220

-5020

-4820

-4620

-4420

-4220

64000 69000 74000 79000 84000 89000

T
V

P

TCP

Pareto optimal solution for case A

Pareto optimal solution for case B



16 

 

Table 10: Different category weights scenarios. 

Scenario 𝑊𝐺
𝐴𝐻𝑃

 𝑊𝑇
𝐴𝐻𝑃

 

1 0.1 0.9 

2 0.4 0.6 

3 0.6 0.4 

4 0.9 0.1 

 

We randomly generated all the data using the randi( ) function in MATLAB. This function generates random 

integers between a minimum and a maximum value, which represents our sample population in this case. The 16 

samples were generated using the same minimum and maximum bounds. To generate suppliers’ weights for 

green and traditional criteria, we used Microsoft Excel to randomly select one linguistic variable for each 

criterion and each supplier, and then we evaluated these linguistic variables using fuzzy TOPSIS for both cases 

A and B. To perform hypothesis testing, we follow the procedure illustrated in Fig. 2. 

 

Fig. 2. Hypothesis testing procedure. 

 

4.1.4.2 Comparison between the results of case A and case B 

Table 11–Table 14 show TCP and VTVP for the 16 random samples representing the four scenarios of weights 

mentioned in Table 10. 

Table 11: Comparison between TCP and VTVP for case A and case B in scenario 1. 

 TCP Case A TCP Case B VTVP Case A VTVP Case B 

Sample 1 256804.9 256806.8 0.54% 0.53% 

Sample 2 98512.17 98512.17 1.50% 4.98% 

Sample 3 418829.1 418829.1 1.71% 1.73% 

Sample 4 370884.3 370884.3 0.67% 0.71% 

Sample 5 70994.57 70994.57 4.55% 2.04% 

Sample 6 115138.7 115138.7 24.02% 24.29% 

Sample 7 331597.9 331597.9 1.43% 1.26% 

Sample 8 175141.4 175278.1 0.31% 0.36% 

Normally distributed Not normally distributed 

Hypothesis Testing for n < 25 

Normality Test 

Parametric test Non-parametric test 

Dependency (correlation) test 

Pearson’s correlation Spearman’s rank-order correlation 

Not correlated Not correlated Correlated Correlated 

Paired t-

test 

Two-

sample t-

test 

Wilcoxon 

Mann–

Whitney 

test 

Sign test 
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Sample 9 152076.6 151378.4 0.64% 0.94% 

Sample 10 352614.8 352614.8 0.19% 0.19% 

Sample 11 373950.3 373950.3 0.70% 0.69% 

Sample 12 133537 134349 1.33% 1.47% 

Sample 13 174997.1 174997.1 1.09% 0.24% 

Sample 14 76207.48 76207.48 1.40% 1.40% 

Sample 15 382584.6 382584.6 0.94% 0.94% 

Sample 16 201409.9 200850.6 2.34% 2.80% 

Mean 230330.1 230310.9 0.027105 0.027866 

SD 123079.4 123071.6 0.057762 0.058581 

Coefficient 

of variation 
0.534361 0.534372 2.131002 2.102204 

Table 12: Comparison between TCP and VTVP for case A and case B in scenario 2. 

 TCP Case A TCP Case B VTVP Case A VTVP Case B 

Sample 1 254182.6 254182.6 3.33% 3.17% 

Sample 2 98512.17 98512.17 0.00% 1.15% 

Sample 3 411253.8 411330.5 2.74% 2.83% 

Sample 4 370884.3 366735.9 0.48% 1.86% 

Sample 5 71058.34 71058.34 7.96% 6.08% 

Sample 6 115138.7 115138.7 22.51% 22.72% 

Sample 7 335596.4 335596.4 0.65% 0.55% 

Sample 8 171667.2 169527.5 2.69% 2.49% 

Sample 9 152076.6 152076.6 0.58% 0.49% 

Sample 10 352614.8 352614.8 0.21% 0.20% 

Sample 11 370880.6 370881.9 1.85% 1.71% 

Sample 12 133626.9 134307.4 1.18% 0.21% 

Sample 13 174997.1 174997.1 1.84% 0.81% 

Sample 14 76339 76339 0.26% 0.26% 

Sample 15 382584.6 382584.6 0.86% 0.97% 

Sample 16 201409.9 201409.9 8.02% 7.80% 

Mean 229551.4 229205.8 0.034472 0.033316 

SD 122354.4 122079.8 0.056579 0.056005 

Coefficient 

of 

variation 

0.533015 0.532621 1.641285 1.681025 

Table 13: Comparison between TCP and VTVP for case A and case B in scenario 3. 

 TCP Case A TCP Case B VTVP Case A VTVP Case B 

Sample 1 255543.3 255543.3 4.89% 4.83% 

Sample 2 98512.17 98512.17 0.01% 0.01% 

Sample 3 415185.1 415017.7 0.28% 0.75% 

Sample 4 359700.4 359369.1 3.93% 3.28% 

Sample 5 71642.39 71642.39 9.14% 8.44% 

Sample 6 115138.7 115138.7 21.77% 21.90% 

Sample 7 335951 335951 1.53% 1.34% 

Sample 8 167899.2 167602 4.61% 2.48% 

Sample 9 152076.6 152076.6 0.55% 0.50% 
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Sample 10 352863.7 352863.7 0.08% 0.08% 

Sample 11 373319.8 373319.8 2.75% 2.46% 

Sample 12 134299 134307.4 1.11% 0.49% 

Sample 13 174997.1 174997.1 2.27% 1.45% 

Sample 14 76865.73 76865.73 0.12% 0.12% 

Sample 15 379997.9 379997.9 1.02% 1.09% 

Sample 16 201409.9 201409.9 11.33% 11.11% 

Mean 229087.6 229038.4 0.040869 0.037706 

SD 121944.1 121912.9 0.057546 0.057694 

Coefficient 

of 

variation 

0.532303 0.532282 1.408069 1.530105 

Table 14: Comparison between TCP and VTVP for case A and case B in scenario 4. 

 TCP Case A TCP Case B VTVP Case A VTVP Case B 

Sample 1 265855.5 265855.5 2.93% 2.90% 

Sample 2 98534.25 98534.25 1.13% 1.10% 

Sample 3 417790.5 419044.3 0.09% 0.06% 

Sample 4 369484.8 364371.4 0.01% 0.04% 

Sample 5 71642.39 76600.95 11.73% 5.70% 

Sample 6 115138.7 115138.7 20.89% 20.93% 

Sample 7 340523 340523 0.82% 0.62% 

Sample 8 168363 167918.3 5.40% 3.50% 

Sample 9 152076.6 152076.6 0.52% 0.51% 

Sample 10 353324 352900.6 0.00% 0.14% 

Sample 11 375625.2 375625.2 5.21% 4.85% 

Sample 12 134860.3 134299 1.48% 1.57% 

Sample 13 174997.1 174997.1 2.85% 2.31% 

Sample 14 76964.99 76964.99 1.28% 1.28% 

Sample 15 384937.5 386374.7 0.19% 0.11% 

Sample 16 226733.3 226733.3 0.21% 0.20% 

Mean 232928.2 232997.4 0.034215 0.028639 

SD 123676.5 123143.1 0.05573 0.051296 

Coefficient 

of 

variation 

0.530964 0.528517 1.628821 1.79114 

 

4.1.4.3 Normality checks 

We apply a normality check to determine the type of test because we generate the input data randomly and 

perform the test on the solution of the optimization model after solving the problem using the two ranking 

approaches. We used Minitab software to check the normality assumption of the data by comparing the p-values 

with a significance level of 𝛼 = 0.05. The results show that the samples of the TCP values are normally 

distributed (see Fig. 3); however, the difference in TCP values for case A and case B is not normally distributed 

(see Fig. 4), which means that a non-parametric test must be used. The normality assumption is violated for the 

VTVP for case A and case B and the difference in VTVP of case A and case B (VTVP A-B), as we show in Fig. 

5 and Fig. 6, respectively. 
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Fig. 3. Normality check for TCP in case A and case B in all scenarios. 

 

Fig. 4. Normality check for difference in TCP between case A and case B in all scenarios. 
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Fig. 5. Normality check for VTVP in case A and case B in all scenarios. 

 

Fig. 6. Normality check for difference in VTVP between case A and case B in all scenarios. 

4.1.4.4 Spearman rank-order correlation check  

As indicated previously, the normality assumption is violated, and therefore we use the Spearman's rank-order 

correlation test. The Spearman’s rank-order correlation coefficient can be calculated with Minitab software. We 

test the following hypotheses about the correlation tested at the 5% significance level: 

- 𝐻0
𝑎: 𝜌 = 0, which means that no correlation exists.  

- 𝐻1
𝑎: 𝜌 ≠ 0, which means that a correlation does exist. 

We calculated the Spearman correlation coefficient using Minitab software and found it to be approximately 

equal to 1 in all scenarios of TCP; for the VTVP, we found it be 0.890, 0.803, 0.976, and 0.979 for scenarios 1, 

2, 3, and 4, respectively. The corresponding p-values are 0.00 for all scenarios in both TCP and VTCP. From 

these results, we can conclude that there is a correlation between the two samples (case A and case B) in the 

TCP and VTVP in all scenarios, and therefore we carry out the "sign test".  

4.1.4.5 Hypothesis test 

We test the hypotheses at the 5% significance level. The sign test checks the following hypotheses for the 

percentage difference in the TCP: 

- 𝐻0
𝑏: 𝜇̃𝐷 = 0, which means that the difference between the medians of case A and case B is equal to zero. 

- 𝐻1
𝑏: 𝜇̃𝐷 ≠ 0, which means that the difference between the medians of case A and case B is not equal to 

zero. 

We derive the results shown in Table 15 from the sign test using Minitab software for all scenarios for both TCP 

and VTVP. According to the statistical analysis, the 16 random samples showed no significant differences in 

TCP or VTVP when using the case A or case B ranking approach. 

Table 15: Hypotheses test results. 

TCP p-Value Decision VTVP p-Value Decision 

Scenario 1 1.000 

No 

significant 

difference 

Scenario 1 0.5811 

No 

significant 

difference 

Scenario 2 1.000 Scenario 2 0.3018 

Scenario 3 0.625 Scenario 3 0.0923 

Scenario 4 1.000 Scenario 4 0.1185 
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4.1.5 Findings 

From the comparison of the two ranking approaches, we found that both result in close TCP and VTVP mean 

values, as displayed in Table 11–Table 14. In addition, the statistical analysis confirmed that the difference is 

not statistically significant. As a result, both supplier ranking approaches can be used; however, the second 

ranking approach (case B) requires ranking the suppliers for every period, which means more time and effort. 

Therefore, as the model also accounts for planning decisions, decision makers should rank all suppliers in the 

planning horizon once at the beginning of the planning horizon (case A).  

4.2 Comparison between the suppliers with and without quantity discounts 

4.2.1 Numerical example  

The goal of this section is to investigate the case when a supplier offers all-unit quantity discounts, and a 

competing supplier with the same characteristics charges the same unit price regardless of the ordered quantity.  

We use the data of case A presented in section 4.1.1 as the base case and analyze them over the 19 importance 

weight scenarios shown in Table 3. The total quantity ordered from each supplier in all the periods serves as the 

basis of the comparison. In addition to the four suppliers (S1, S2, S3, and S4) of case A, we add four new 

suppliers (S5, S6, S7, and S8) as competitors of the four original suppliers. Every new supplier competes with 

one original supplier. The new suppliers do not offer quantity discounts and therefore charge the same unit price 

regardless of the ordered quantity. We calculate this unit price of every new supplier as the average of the 

maximum unit price and minimum unit price of the original suppliers, as shown in Fig. 7.  

 

Fig. 7. List of suppliers with and without quantity discount and their characteristics.  

 

4.2.2 Analysis of the results 

We add supplier S5 first to the original suppliers (S1, S2, S3, and S4) and solve the problem defined in Eqs. (14) 

and (3)–(11) for the 19 importance weight scenarios. Then, we add supplier S6, while keeping supplier S5 as an 

available supplier, and solve the same optimization problem again for the same 19 scenarios. Finally, we 

introduce supplier S7 while keeping S5 and S6 and then supplier S8 while keeping the other seven suppliers. 

When S5 entered the selection process, the total quantities ordered from S3 marked a decrease that ranged from 

51.51% to 65.76%. The introduction of S6, which has similar characteristics to S2, resulted in a reduction in the 

optimal quantity ordered from S1 by 65% to 100%. This reduction depends on the importance weights. The 

introduction of S7 as a potential supplier caused a reduction of between 51% and 100% in the optimal quantity 

ordered from S4. On the introduction of S8, it outperformed S6 in terms of ordered quantity. To better 

understand these results, we plot the quantity discount ranges of every supplier against the price of the 

competing supplier in Fig. 8. 

Versus 

Existing suppliers 

S8 

Price:  2.865 

S6 

Price: 2.875  

S5 

Price: 2.940 

S7 

Price: 2.870 

S1 

No. of ranges: 3 

Max Price: 2.99  

Min Price: 2.74  

S2 

No. of ranges: 4 

Max Price: 3.00  

Min Price.2.75  

S3 

No. of ranges: 3 

Max Price: 3.05 

Min Price: 2.83  

S4 

No. of ranges: 4 

Max Price: 2.98 

Min Price: 2.76 
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Fig. 8. Comparison of the quantity discount ranges. 

Fig. 8 (a) confirms that any quantity that is fewer than 1800 units and ordered from S3 in case A will be ordered 

from S5, which has the same characteristics as S3 but a unit price of 2.94. To verify this, we provide quantities 

ordered from S3 in each period of the scenario (0.75 G/0.25 T) in Table 16. In the original scenario (case A), the 

quantities ordered from S3 vary between 465 in period 6 and 2410 in period 8; however, when S5 is considered, 

only quantities greater than 1800 units are ordered from S3. 

Table 16. Optimal quantities ordered in case A and in the case with S5 from S3 and S5. 

 Period 2 5 6 7 8 9 10 12 13 15 16 18 19 

Original 

Case 

(Case A) 

S3 720 725 465 1510 2410 515 1850 540 840 780 830 650 605 

Case 

with S5 

S3 0 0 0 0 2410 0 1850 0 0 0 0 0 0 

S5 720 725 465 1510 0 515 0 540 840 780 830 650 605 
 

When we add S6 to the selection process, it competes with S1 instead of S2. Indeed, in case A, no order was 

made from S2; therefore, S6 does not compete with any other suppliers. However, because the performance 

weights of S1 and S2 are close (0.1818 and 0.1784 in the traditional criteria and 0.2987 and 0.2917 in the green 

criteria for S1 and S2, respectively), S6 replaces S2 in all the orders having a quantity of fewer than 2200 units 

and replaces S1 in all the orders having a quantity of fewer than 2000 units, as shown in Fig. 8 (b). 

Table 17 shows the quantities ordered from S1 without and with S6 in the scenario (0.75 G/0.25 T). However, in 

some scenarios, such as (0.95 G/0.05 T), not all quantities fewer than 2000 units and ordered from S1 in case A 

were shifted to S6, as shown in  

Table 18. This result is caused by the difference between the green weights of the two suppliers. The difference 

is significant because the green set of criteria is given a much higher importance weight than the traditional set. 

This result confirms the importance of separating the green criteria from the traditional criteria, because this 

separation gives the decision makers a degree of flexibility and allows them to focus on one category of criteria 

more than the other category, in the supplier selection process, by assigning a higher importance weight.  

Table 17: Optimal quantities ordered in case A vs. the case with S5 and S6 in 0.75 G/0.25 T scenario. 

Case Supplier Period 1 Period 17 

Case A 
S1 660 950 

S6 0 0 

Case with S5 and S6 
S1 0 0 

S6 660 950 

 

(a) Price range for S3 and S5  

0 90

0 

1800 9000 

2.82 2.96 3.00 

2.94 2.94 

S3 

S5 

(b) Price range for S2 and S6 

0 110

00 

2200 9000 

2.82 2.93 3.00 
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5 
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5 
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Table 18: Optimal quantities ordered in case A vs. the case with S5 and S6 in 0.95 G/0.05 T scenario. 

Case Supplier Period 1 Period 3 Period 4 Period 11 Period 17 

Case A 
S1 660 510 810 320 950 

S6 0 0 0 0 0 

Case with S5 and S6 
S1 0 0 810 320 0 

S6 660 510 0 0 950 

 

For more detailed numerical results, we refer the reader to (Hamdan & Cheaitou, n.d.), where Tables B.1 – B.5  

show the sum of the optimal quantities ordered from each supplier in all periods of the planning horizon for the 

different importance weight scenarios.  

4.2.3 Findings 

We compare suppliers that provide quantity discounts with suppliers that do not but have other similar 

characteristics. Depending on the quantity to be purchased, a supplier offering quantity discounts has a better 

chance of being selected at large quantities when its unit price is lower than the supplier with similar 

characteristic but without quantity discount and offering an average unit price. 

4.3 Computation time analysis for the bi-objective model  

4.3.1 Computer specifications and computation time fitting 

In this section, we assess the total computation time required to solve the three optimization problems of the bi-

objective integer linear programming model defined in Section 3.3 and in Eq. (14). Previously, we solved all the 

optimization models using the branch-and-cut algorithm implemented in the optimization toolbox of MATLAB 

R2014a. We ran the models on a computer equipped with an Intel(R) Core(TM) i7-3610 QM, CPU @ 2.3 GHz 

2.3 GHZ and an 8.00 GB RAM and Microsoft Windows 7 64-bit operating system. 

We now change the problem size to investigate the effect on the computation time of the number of suppliers, 

the number of periods, and the number of quantity discount ranges for each supplier. Ninety problems were 

solved for this purpose. The input data required that the problems be generated randomly using the 

(RANDBETWEEN) function of Microsoft Excel. The corresponding problems were solved and their 

computational time was recorded. We refer the reader to (Hamdan & Cheaitou, n.d.) for more details about the 

raw data.  

 

Fig. 9. Number of decision variables and constraints versus the CPU running time (exponential fitting). 
 

We add the number of decision variables and constraints together. Fig. 9 displays the CPU running time as a 

function of the total number of decision variables and constraints and shows that the computation time can be 
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fitted as an exponential function with a coefficient of determination ( 𝑅2 = 86%), which means that the 

obtained regression model accounts for 86% of the variability in the data.  

4.3.2 Big O notation 

The big O notation can help classify a model or an algorithm in terms of the required processing time to solve 

the model or execute the algorithm as the input size changes. A description of a function in terms of the big O 

notation usually provides an upper bound on the growth rate of the function (Leiserson, Rivest, Stein, & 

Cormen, 2009). The formal definition of the big O notation is as follows: 

𝑇(𝑛) = 𝑂(𝑔(𝑛)) ,                                                                                                                                                                  (15) 

if and only if there are two constants 𝑐 and 𝑛0 > 0, such that 𝑇(𝑛) ≤ 𝑐 × 𝑔(𝑛) for all 𝑛 ≥ 𝑛0, where 𝑛 is the 

problem size, 𝑔(𝑛) is the function that corresponds to the upper bound on the growth rate of the function 𝑇(𝑛), 

and 𝑇(𝑛) is the time function for the algorithm. 

The big O notation is based on two assumptions: the input argument, n, is restricted to be a non-negative integer 

and the value of 𝑇(𝑛) is non-negative for all values of n. As Fig. 9 shows, the computation time function is 

exponential and leads to the following Lemma:  

Lemma 1: As a function of the number of decision variables and constraints, n, the computation time, 𝑇(𝑛), 

required to optimize the bi-objective ILP problem described in Section 3.3.2 using the branch-and-cut algorithm 

has an exponential upper bound function: 𝑇(𝑛) = 𝑂(𝑒𝑛). 

Proof 1: For the best-fitting curve function in Fig. 9, we consider 𝑇(𝑛) = 1.4588𝑒0.0038 𝑛 ≤ 𝑐𝑒𝑛. 

Assuming 𝑛0 = 1, the goal is to find the value for c, such that 𝑐𝑒𝑛represents the upper bound of the time 

function, 𝑇(𝑛) ≤ 𝑐𝑒𝑛, which leads to 

1.4588𝑒0.0038 𝑛

𝑒𝑛
≤ 𝑐 , 𝑓𝑜𝑟 𝑛0 = 1,  

and consequently, for 𝑛0 = 1, we get 𝑐 ≥ 0.5387. Therefore, 𝑇(𝑛) is 𝑂(𝑒𝑛) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑛 ≥ 𝑛0 = 1, and 𝑐 =

0.5387. This completes the proof.                                           □ 

4.3.3 Findings 

The bi-objective model formulated has an exponential computation time function of 𝑇(𝑛) = 𝑂(𝑒2). This result 

indicates that the model can be solved in a reasonable computational time for small and medium-sized problems 

while a heuristic approach is required for large problems.  

5. Conclusion  

In this paper, we proposed a supplier selection and order allocation model that takes into account all-unit 

quantity discounts and variable availability of suppliers. The model consists of three stages: fuzzy TOPSIS, 

AHP, and a bi-objective integer linear programming model. We solve the model using the weighted 

comprehensive criterion method and the branch-and-cut algorithm by implementing it in MATLAB R2014a. 

Moreover, we conduct a numerical analysis to analyze three aspects of the model: the suppliers’ ranking, the 

quantity discounts, and the computation time. As the proposed model accounts for the variability in the 

suppliers’ availability from one period to another, an analysis to determine whether to rank all the suppliers only 

once at the beginning of the planning horizon or to rank the available suppliers in each period is relevant. It is 

also relevant to compare suppliers that offer quantity discounts with those with fixed unit prices. The results of 

the numerical study confirm that applying fuzzy TOPSIS once for all the suppliers at the beginning of the 

planning horizon and using the results for all periods does not differ significantly than when applying fuzzy 

TOPSIS in each period. Moreover, ranking the suppliers in every period wastes more time and effort than 

ranking all the suppliers only once; therefore, the approach of ranking all suppliers once at the beginning of the 
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planning horizon should be considered. For the second aspect of the numerical application, we tested the model 

on the case when a supplier with no quantity discounts was introduced into the system. We assumed that the 

suppliers with and without quantity discounts have the same characteristics. Finally, the time analysis results 

revealed that the model has an exponential time function with 𝑂(𝑒𝑛), which means that the time will increase 

exponentially as the problem size increases. Avenues for future research include considering stochastic demand, 

taking into account probabilistic suppliers' availability, and developing heuristic approaches for solving large 

size instances of the considered problem.   
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