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Abstract 

We consider the manifold of positive definite matrices endowed with the Fisher Riemannian metric 

and some other distances commonly used in information theory. We show that for each of them 

the best approximant to A from the unitary orbit of another matrix B commutes with A. 
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1. Introduction 

The classical Procrustes problem in statistics is the problem of finding 
2

min
U

A BU , where A and B 

are fixed n n  matrices and U varies over the unitary matrices. (See e.g., [1].) Here 
2

X  denotes the 

Euclidean (Frobenius) norm 

     
11 22* 2

2 1
tr

n

jj
X X X s X


   ,  (1) 

      1 , , ns X s X s X  being the singular values of X. There is a variant of the problem in which the 

Euclidean norm is replaced by a unitarily invariant norm   


  corresponding to a symmetric gauge 

function Φ: 

   X s X

 .  (2) 

See Chapter IV of [2] for the basic facts about such norms used in this paper. 

  

In recent years there has been considerable interest in the manifold P of positive definite matrices with 

the Riemannian distance 

    
1 1

2 2

2
2

, logA B A BA
 

 .  (3) 

If       1 , , nX X X    are the eigenvalues of X, then 

    
1

2
2 1

2 1
, log

n

jj
A B A B  



 
   .  (4) 

This is the matrix version of the Fisher-Rao metric on probability distributions. (See Chapter 6 of [3].) The 

analogue of the Procrustes problem on P is solving 

  *
2min ,

U
A U BU ,  (5) 
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where U varies over the set of unitary matrices U. Let  * :B U BU U U U  be the unitary orbit of B. 

Then problem (5) asks for the best 2-approximant of A from the set UB.  

Each symmetric gauge function Φ on 
n

 gives rise to a metric on P defined as 

       
11 1

2 2, log logA B A BA A B 
 




  .  (6) 

(See [4].) The metric 2 is the special case when Φ is the symmetric gauge function corresponding to the 

Euclidean norm. Besides these, there are other distances on P that are widely used in statistics, signal 

processing, machine learning and other areas. The Bures-Wasserstein distance 

      
1

1 2
1 1 2

2 2, tr 2trWd A B A B A BA
 

  
  

  (7) 

is of great interest in the theory of optimal transport, quantum information and Riemannian geometry. See 

[5] for a recent exposition of this topic and for earlier references. Widely used are also the Kullback-Leibler 

divergence (a Bregman divergence) defined as 

      2 1 1, tr logdetKLd A B AB I AB      (8) 

and the Bhattacharyya divergence  

    
1 1

2 22 , logdet logdet
2

B

A B
d A B A B

 
  

 
.  (9) 

Sra [6] has recently shown that the square root of 2
Bd  is a metric. This is not true for 2

KLd . Chebbi and 

Moakher [7] have defined a parametrized family of log-determinant divergence functions that include (8) 

and (9). These are: 

 

   
   

   

1 1
2 2

2

1 14
2 21

2 1 1

1 1

logdet log det det ,     1 1

tr logdet ,                                         1

tr logdet ,                                         1

A B A B

d A B I A B

B A I B A

 
 











 
 



 

 

     



    


  


 . (10) 
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For α=0 this is 2
Bd  (up to a constant factor) and for α=1 this is 2

KLd . We will see that for any of the distances 

in (6)-(10) the Procrustes problem on P has the same solution as for the metric (4). 

Let  ,  1j A j n   , be the eigenvalues of A arranged in decreasing order and  j A
 be an 

enumeration of the same numbers in increasing order. (Thus    1j n jA A  
  for all 1 j n  .) We 

denote by  A  both the vector     1 , , nA A    and the diagonal matrix     1diag , , nA A   . 

It will be clear from the context which one of the two is meant. 

By the Spectral Theorem there exist unitary matrices V


and V


 such that 

    * *     and      V AV A V AV A          (11) 

  and unitary matrices W


and W


 such that 

    * *     and      W BW B W BW B        .  (12) 

Our main result is the following: 

 

Theorem 

Let A and B any two elements of P. Consider the function    *,f U d A U BU   defined on the manifold 

U of unitary matrices with  ,d    any of the metrics given in (6)-(10). Then the global extrema of  f U  

occur at points of UB commuting with A. Further, 

         *argmin ,           min ,
U

f U W V f U d A B        (13) 

and   

         *argmax ,           max ,
U

f U W V f U d A B      .  (14) 
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Comment 

The extreme points being the same for a variety of different metrics has a parallel in the celebrated 

Lidskii-Wielandt Theorem in matrix analysis. This says that for Hermitian matrices A and B we have 

        A B A B A B      

 
     ,  (15) 

for every unitarily invariant norm   


 . This statement can be reinterpreted to say that the distance 

*A U BU


 is minimized when *
minU W V   and maximized when *

maxU W V  .   

 

2. Proof of the Theorem 

We will use some standard results on majorization, log-majorization and eigenvalues. A standard 

reference for these topics is [2], Chapters II and III. Let  1, , nx x x  and  1, , ny y y  be real vectors 

and let 
1 , , nx x   be the components of x arranged in decreasing order. The same numbers arranged in 

increasing order are denoted as 
1 , , nx x  . We say that x is majorized by y, is symbols x y , if for all 

1 k n   we have 
1 1

k k

j jj j
x y 

 
  , with equality when k=n. Let A and B be two positive definite 

matrices. According to a famous Theorem of Gel’fand, Naimark and Lidskii we have 

          log log log log logA B AB A B         .  (16) 

See p.73 in [2] or p. 228 in [3]. Changing B to B-1 leads to 

          1log log log log logA B AB A B          .  (17) 

Hence for every symmetric gauge function Φ 

             1log log log log logA B AB A B             .  (18) 
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This is the same as saying 

            , , ,A B A B A B         
    .  (19) 

The left and right hand sides of this inequality do not change when B is replaced by any other matrix in its 

unitary orbit. This shows that the minimum of  *,A U BU  is attained with *
minU W V   and the 

maximum with *
maxU W V  . This proves the Theorem for the metrics Φ defined in (6). 

Next, we turn to the Bures-Wasserstein metric defined in (7). Since    *tr trA B A U BU    for 

every unitary U, we need to consider only the term 

      
11 1

22 2F , tr trA B A BA AB   . (20) 

This is called the fidelity between A and B in physics literature and the problem of finding its extreme values 

on unitary orbits has been studied, for example, in [8, 9]. For the reader’s convenience we give a proof 

following the same arguments as above. Since    
1

2 1
2

log logA A   and log is a monotone function, we 

obtain from (16)  

          
11 1 1 1

22 2 2 2log log log log logA B AB A B          .  (21) 

As a corollary 

          
11 1 1 1

22 2 2 2, tr , .A B AB A B          (22) 

 It follows that 

           
1 1

2 2*max F , F , ,A U BU A B A B        ,  (23) 

           
1 1

2 2*min F , F , ,A U BU A B A B        .  (24) 

This proves the Theorem for the distance dW. 
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Now we consider the Kullback-Leibler divergence defined in (8) and as the limit cases 1    in (10)

. Since    * 1 1det detAU B U AB   for every unitary U, we need to consider only the term  * 1tr AU B U
 

in (8). The statement of the Theorem follows from von Neumann’s trace inequality ([2], p. 78): 

          , tr , .A B AB A B          (25) 

This inequality is a special corollary of (16). 

Finally, we look at the log-determinant α-divergence for 1 1   , which reduces to the divergence 

(9) when 0  . In this case for every unitary U,    
1

1 1 1
2

2 2 2*logdet logdet .A U BU A B


  


   
 

 
 The 

statement of the Theorem follows from an inequality due to Fiedler that says ([2] p. 182) 

            
1 1

det
n n

j j j jj j
A B A B A B      

 
      ,  (26) 

upon replacing A and B with 
1

2A


and 
1

2B


. 

 

3.  Remarks 

1) We present another argument for solving the minimization problem in our theorem for the metrics 

Φ. This invokes the fundamental exponential metric increasing inequality (EMI): 

  , log logA B A B 
  .  (27) 

(See [4].) Combining this with the first of the Lidskii-Wielandt inequalities (15) one sees that 

   

   

   

    

* *, log log

log log

log log

,

A U BU A U B U

A B

A B

A B



 

 

  




 



 



 


 

 

 



 . 
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2) In another approach, one may study the extremal problem for the function    *,f U d A U BU  

on UB as a calculus problem. One can write out the derivatives  Df U  for the different metrics in (6)-

(10) and show that if U0 is any local extremum for  f U , then *
0 0U BU  commutes with A. In particular 

this is true for the global minimum Umin and for the global maximum Umax. 
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