
HAL Id: hal-02023116
https://hal.science/hal-02023116v2

Preprint submitted on 8 Sep 2021 (v2), last revised 26 Mar 2024 (v7)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

THE SOLUTIONS OF THE 3 RD AND 4 TH CLAY
MILLENNIUM PROBLEMS

Constantine Konstantinos Kyritsis

To cite this version:
Constantine Konstantinos Kyritsis. THE SOLUTIONS OF THE 3 RD AND 4 TH CLAY MILLEN-
NIUM PROBLEMS. 2021. �hal-02023116v2�

https://hal.science/hal-02023116v2
https://hal.archives-ouvertes.fr


THE SOLUTIONS OF THE 3RD AND 4TH CLAY MILLENNIUM 
PROBLEMS

Konstantinos E. Kyritsis*

* Associate Prof. of University of Ioannina (previous (TEI) of Epirus)  Greece. ckiritsi@uoi.gr
C_kyrisis@yahoo.com, Dept. Accounting-Finance Psathaki Preveza 48100

PROLOGUE

In this treatise we present the solutions of the 3rd Clay Millennium problem in the 
Computational Complexity and the 4th Clay Millennium problem in classical fluid dynamics.

The solution of the 3rd Clay Millennium problem has already been published in International
Journal of Pure and Applied Mathematics Volume 120 No. 3 2018, pp 497-510 ISSN: 1311-
8080  (printed  version);  ISSN:  1314-3395  (on-line  version)  url:  http://www.ijpam.eu  doi:
10.12732/ijpam.v120i3.1 (see also part A of the current  treatise)

The solution of the 4thClay Millennium problem is  in two papers the first  of which has
already been published , and the 2nd which is the final solution is still under referees review.
(see part B of the current treatise) 

Of course it is not a single man’s mind only that decides but the collective intelligence that
eventually validates and makes solutions accepted.

 It  seems that  at  the beginning of  each century has  become a tradition  to  state  a  list  of
significant and usually difficult problems in the mathematics, that it is considered that their
solution  will  advance  significantly the  mathematical  sciences.  At  the  begging of  the  20 th

century (1900) it was D. Hilbert who formulated and listed 23 problems that most of them
have been solved till today (see e.g.  https://en.wikipedia.org/wiki/Hilbert%27s_problems) .
Those problems from the 23 that have been solved proved to be indeed critical for the overall
evolution  of  mathematics  and  their  applications.  Continuing  this  tradition,  the  Clay
Mathematical  Instituted  formulated  in  2000,  7  critical  problems  and this  time  there  is  a
monetary award for their solution (see e.g.   http://www.claymath.org/millennium-problems) .
From them, the 6th problem (Poincare Hypothesis) it has been accepted that it has been solved
by Grigoriy Perelman in 2003. It is not presented here a common or joint method of solution
of the 3rd and 4th Clay millenniums problems. It is only because I am an interdisciplinary
researcher that I have worked , on both of them. And of course I had both the advantages and
disadvantages of an interdisciplinary researcher. The disadvantage was that I had to sharpen
by specialized  knowledge  in  two  different  areas  of  Computer  science  and Mathematical
physics , that specialist would not  need not do it, while  the advantage , that turned out to be
more important, were that  “I was not blinded by the trees so as to see the forest”; In other
words I used new heuristic  methods from other disciplines to discover the correct direction
of solutions and afterwards I  worked out a standard classical proof for each one of them.
This is well known in the history of mathematics. E.g. Archimedes found at first the correct
formulae of volumes of the sphere, cylinder etc with water, sand and balanced moments of
forces experiments before he worked out logically complete proofs of them in the context of
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Euclidean geometry.  Similarly,  Newton discovered the laws of gravitation  for earth,  sun,
moon etc with his, at that time unpublished calculus of fluxes or infinitesimals,  and then
worked strict proofs within Euclidean geometry in his famous Principia Mathematica. 

Similarly, I used myself a heuristic methodology that I call  “Digital Mathematics without
the infinite” that two initial papers on it can be found here

1) Digital continuous Euclidean Geometry without the infinite 
http://cris.teiep.gr/jspui/handle/123456789/1590
or
https://drive.google.com/open?id=1i4DnLBmf_2QDPGe-ZZO1iavuwyMogpdp

2) Digital differential and integral calculus 
http://cris.teiep.gr/jspui/handle/123456789/1679

or

https://drive.google.com/open?id=1lcgQ3YZJpfRZj7Wn0UC5P9ajVtEbPX-o

The above tools of digital mathematics are I believe a major millennium upgrade of
the classical mathematics which is still in infancy, with unpredictable good applications in
Artificial Intelligence too. Nevertheless, strictly speaking not results or theorems of the above
two papers  were  used  in  the  proofs  of  the  solutions  of  the  3 rd and  4th Clay  Millennium
problems  that  are  stated  in  an  independent  and  self-contained  manner  within  classical
mathematics. 

Roughly speaking, my heuristic methodology was to re-formulate the two problems in the
context  of  digital  mathematics  that  do  not  allow  for  the  infinite  which  complicated  the
ontology a lot, , discover the true direction of validity of their solution, diagnose the nature of
their difficulty and then attach them for a valid proof in the context of classical mathematics
with the infinite. Both problems had at least two different directions of solution. For the 3rd

Clay Millennium problem it is 

1)  that  the  non-deterministic  polynomial  complexity  symbolized  by  NP  is  equal  to  a
polynomial complexity symbolized by P (in which case the usual encryption of passwords
and messages might be unsafe) or 

2) to a higher e.g. EXPTIME (in which case the usual encryption of passwords and messages
is as expected safe). The heuristic analysis gave that it should hold NP=EXPTIME, which
was eventually proved. And for the 4th Clay Millennium problem two different directions of
solution would be that 

1) There exist a Blow-up of velocities in finite time

 2) No blow-up exist  in finite  time and the solutions  of the Navier-Stokes equations are
regular. 

The heuristic analysis within digital mathematics gave that because of finite initial energy
and energy conservation there cannot be a Blow-up which was eventually proved within the
context of classical fluid dynamics that allows for infinite limits etc. More on the logic and
strategy of proof for each problem in the next two parts of this treatise.
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PART A. 

THE SOLUTION OF THE 3RD CLAY MILLENNIUM PROBLEM

Prologue

The  standard  formulation  of  the  3rd  Clay  Millennium  problem  can  be  found  in
(Cook, Stephen April  2000  The P versus NP Problem (PDF), Clay Mathematics
Institute site. http://www.claymath.org/millennium-problems/p-vs-np-problem
http://www.claymath.org/sites/default/files/pvsnp.pdf)
My initial heuristic analysis of the problem gave in a few months that it was more
likely  (as  most  mathematicians  were expecting)  that  the  complexity  class  of  non-
determinist polynomial complexity NP was non-reducible to polynomial complexity
P. And it seemed to me that the difficulty in proving it, was hidden in that we already
use the countable infinite in the classical computational complexity theory, which is
more or less formulated with (Zermelo-Frankel) set theory. Strictly speaking there is
nothing infinite in the functions of a computer,  but the mathematical theory about
computational complexity is traditional to use the countable infinite as valid ontology.
So it seemed to me that the missing key abstraction was that we had to start with an
abstract EXPTIME computational complete problem, and transform it with classical
and elementary set  theoretic  methods   to  an NP-computational  complete  problem,
proving therefore that NP=EXPTIME. And the existence of an abstract EXPTIME
computational  complete  problem  is  guaranteed  by  the  classical  Time  hierarchy
theorem of Computational Complexity. The proof of the P versus NP problem in the
direction P ≠ NP, is supposed also to mean that the standard practice of encryption in
the internet, is safe. 

So here was my strategy. 

1) The P versus NP  is a  difficult problem, that has troubled the scientific community
for some decades

2) It may have simple proofs of a few paragraphs, hopefully not longer than the proof
of the Time Hierarchy theorem, which seems to be a deeper result.

3) But it can also have very lengthily and complex proofs, that may take dozens of
pages. 

What the final  proof in the next published is or is not:
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1) It  does  not   introduce  new  theoretical  concepts  in  computational  complexity
theory so as to solve the P versus NP.

2) It does not use relativization and oracles
3) It  does  not  use diagonalization  arguments,  although the main   proof,   utilizes

results from the time hierarchy theorem
4) It is not based on improvements of previous bounds of complexity on circuits
5) It is proved with the method of counter-example. Thus it is transparent short and

“simple”. It takes any Exptime-complete DTM decision problem, and from it, it
derives  in  the  context  of  deterministic  Turing  machines   a  decision  problem
language which it is apparent that it belongs in the    NP class decision problems
while it does not belong the class P of decision problems. 

6) It  seems  a  “simple”  proof  because  it  chooses  the  right  context  to  make  the
arguments and constructions and the key-abstraction mentioned above. So it helps
that the scientific community will accept that this 3rd Clay Millennium problem
has already been solved. 

The next paper is a preliminary version (submitted August 2017)  of the finally published
paper in International Journal of Pure and Applied Mathematics Volume 120 No. 3 2018, pp
497-510  ISSN:  1311-8080  (printed  version);  ISSN:  1314-3395  (on-line  version)  url:
http://www.ijpam.eu doi: 10.12732/ijpam.v120i3.1 (see also part A of the current  treatise)

 Before this final version there was one more version submitted during April 2017,
where it was only proved that P is not equal to NP but it was not proved that NP=EXPTIME,
and  was  published  in  the  proceedings  of  the  Conference:  1st  INTERNATIONAL
CONFERENCE  ON  QUANTITATIVE,  SOCIAL,  BIOMEDICAL  AND  ECONOMIC
ISSUES 2017 ,June 29-30, http://icqsbei2017.weebly.com At: STANLEY HOTEL,KARAISKAKI
SQUARE,METAXOURGIO,ATHENS,GREECE Volume: V 1,2

https://books.google.gr/books?
id=BSUsDwAAQBAJ&pg=PP1&lpg=PP1&dq=Proceedings+1st+conference+frangos&sour
ce=bl&ots=D4_tetxuxK&sig=ACfU3U3uOSgx1HQvKXQJkk3mbetw3FH_1w&hl=el&sa=X
&ved=2ahUKEwjVqc66qcPgAhUEKFAKHQ75DIcQ6AEwAXoECAUQAQ#v=onepage&q
=Proceedings%201st%20conference%20frangos&f=false
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ABSTRACT

            In this paper I provide a very short but decisive proof that P ≠ NP, and NP=EXPTIME   in the
context of the Zermelo-Frankel set theory and deterministic Turing machines. We discuss also the
subtle implications of  considering the P versus NP problem, in different axiomatic  theories.  The
results of the current paper  definitely solve the 3 rd Clay Millennium problem P versus NP, in a simple
and  transparent away that  the general scientific community, but also the experts of the area, can
follow, understand and therefore become able to accept. 

Key words: 3rd Clay Millennium problem, EXPTIME-complete problems, NP-complexity, P-complexity 

Mathematical Subject Classification: 68Q15

1. Introduction

In  the history  of  mathematics,  it  is  known that  difficult  problems that  have troubled a  lot  the
mathematicians, turned out to have different proofs one simple and one very complex. Such an
example is if the general 5th order polynomial equation can be solved with addition, subtraction,
multiplication , division and extraction of radicals starting from the coefficients. This was a problem
that troubled the mathematicians for centuries! No doubt a very difficult problem. Yet it was the
famous mathematician Niels  Henrik  Abel who gave a very simple proof that  a general the order
polynomial equations cannot be solved so, in  about 5-6 pages! On the other hand the proof of the
same, by the E. Galois theory, is a whole book of dozens  of pages! This is not strange, as it depends
on the right twist of semantics and symbols in mathematics. The proof in the way of E. Galois is
much longer as it shows also how to solve any such equation when it is solvable! The fact that N.  H.
Abel solved it in only 5-6 pages should not make us think that it was an easy problem! 

We may make the metaphor that the proof that a general polynomial equation of the 5 th order
cannot be solved with radicals, is like  a mountain path. It is not long , it is say only one kilometer,
but  at  a  particular  point  in  order  to  cross  it  ,  small  bridge  is  required  ,  that  no-one  has  ever
constructed  for...centuries!  The  unconstructed  bridge  is  the  metaphor  of  a  particular  type  of
abstract thinking, that non-one was able to compose so far, therefore no-one has been able to walk
this mountain path, or in other words non-one has been able to prove the particular problem. It was
N.H.Abel who though of the abstraction of the structure of the group of permutations of 5 symbols
(the missing  bridge)  who was able  to  prove it!  The proof  of  E.  Galois  may  correspond to our
metaphor, to another long mountain path, thus passes from the start and end points of the N.H.
Abel's  path, but also  climbs up all the mountain and it is of course longer say 10 kilometers.

It is the same with the solution of the P versus NP problem in this paper. We will utilize in our proofs,
the key abstraction of the existence of an EXPTIME complete language, (it is known that it exists)
without specifying which one, which will simplify much the arguments.  Then we synthesize other
languages and arguments over it, that will solve the problem.



A second issue that is important to mention, is a statement, that is usually attributed to the famous
mathematician Yuri Manin, that “A correct proof in mathematics is considered a proof only if it has
passed  the  social  barrier  of  being  accepted  and  understood  by  the  scientific  community  and
published in accepted Journals”

Passing  the  obstruction  of  the  social  barrier,  sometimes  is  more  difficult  than  solving  the
mathematical problem itself!

An example in the history of mathematics is the Hyperbolic or Bolyai–Lobachevskian geometry. If it
was not that the famous and well established J.C.F. Gauss , assured the mathematic community that
he himself had also discovered this geometry, the scientific community, would not accepted it so
easily. Gauss also mentioned that he refrain from publishing it for obvious reasons. It seems that he
was afraid that he might be ridiculed, and so although he himself seemed that he had solved the
very famous and century old problem of the independence of the 5th axiom of parallel lines in the
Euclidean geometry, he did not dare to try to pass also the social barrier.

These two observations seem  to apply also in the famous 3rd Clay millennium problem of P versus
NP. 

We must notice here that the P versus NP problem , is in fact a set of  different problems within
different axiomatic systems. And in the context of what axiomatic system is the Complexity Theory
of Turing machines? Since the complexity theory of Turing machines requires entities like infinite
sets of words etc  then it is in the context of some axiomatic set theory, together with the axiom of
infinite.  So we notice that the next are different problems:

1) The P versus NP problem in the Zermelo-Frankel axiomatic system of sets without
the axiom of choice and this axiomatic system formulated  in the 2rd order formal
languages.

2) The P versus NP problem in the Zermelo-Frankel axiomatic system of sets with  the
axiom of  choice  and  this  axiomatic  system  formulated   in  the  2rd  order  formal
languages.

3) Etc
We might try to think of the P versus NP problem within the context of the axiomatic system of
Peano Arithmetic with or without the axiom of induction and within second order formal languages.
But to do so, we must carefully define, what additional axioms or definitions give the existence of
infinite subsets of natural numbers that are used in the Complexity Theory.  

My main hidden guiding idea in searching for such a simple proof, was that what the
“arbitrary  human-like  free-will”   of  a  non-deterministic  Turing  machine  as  human-
machine interactive software (e.g. in password setting), can do in polynomial time cannot
be done by a purely mechanical deterministic Turing machine in polynomial time.  (See
also beginning of paragraph 4) After the Key-abstraction mentioned above  I had to find the
right  simple  argumentsto make a valid  proof  of this  idea.  The proof of the P versus NP
problem in the direction  P ≠ NP, is supposed also to mean  that the standard practice of
encryption in the internet , is safe. 

We notice also that the P versus NP : 



4) It  is  a   difficult  problem,  that  has  troubled  the  scientific  community  for  some
decades

5) It may have simple proofs of a few paragraphs, hopefully not longer than the proof
of the Time Hierarchy theorem, which seems to be a deeper result.

6) But it can also have very lengthily and complex proofs, than may take dozens of
pages. 

7) There many researchers (tens and tens of them) that have claimed to have solved it,
either as P=NP, or as P ≠ NP, and even as suggestions that neither are provable, but
only a handful of them seem to have been able to pass the preliminary social barrier
and publish their solution in conferences or Journals with referees. The rest of them
have published online only preprints (see e.g. the [16] P versus NP page). It seems
to  me  though  that  it  is  not  probable  that  all  of  them  have  correct  solutions.
Especially in the direction P=NP, there is a common confusion and mistake, that
has been pointed out by  Yannakakis M. 1998   in [17]. Furthermore this confusing
situation  has  contributed  so  that  although  there  are  publications  in  respectable
Journals, the experts and the scientific community does not seem of being  able to
decide if  the P versus NP problem has been solved or not. This is reasonable, as
there  are  proofs  of  close  to  100  pages,  and  no  average  reader  would  feel
comfortable  to go through them, and decide for himself  if  there a flaw or error
somewhere. Still it is better to have published results than non-published, and then
let the large number of readers to  try to find errors or flaws in the solutions if there
are any. 

So here comes the need of a more challenging problem: Not only to solve the P versus NP
problem, but also solve it in such an simple, elegant  and short way, so that the researchers
will know a decisive proof that can understand and control that P ≠ NP or not , so short that
anyone familiar with the area, would discover any flaw or error if it existed.

This is I believe the value of the present paper that provides such a proof in the context of
the Zermelo-Frankel set theory (we do not use the axiom of choice), formulated within 2nd

order formal languages. 

What this proof is or is not:

7) It  does  not   introduce  new  theoretical  concepts  in  computational  complexity
theory so as to solve the P versus NP.

8) It does not use relativization and oracles
9) It  does  not  use diagonalization  arguments,  although the main   proof,   utilizes

results from the time hierarchy theorem
10) It is not based on improvements of previous bounds of complexity on circuits
11) It is proved with the method of counter-example. Thus it is transparent short and

“simple”. It takes any Exptime-complete DTM decision problem, and from it, it
derives  in  the  context  of  deterministic  Turing  machines   a  decision  problem
language which it is apparent that it belongs in the    NP class decision problems
while it does not belong the class P of decision problems. 



12) It  seems  a  “simple”  proof  because  it  chooses  the  right  context  to  make  the
arguments and constructions and the key-abstraction mentioned above. So it helps
that the scientific community will accept that this 3rd Clay Millennium problem
has already been solved. 

In relation to the use of oracles, in arguments of complexity theory, we must notice, that
their use sometimes may be  equivalent to the introduction of new axioms that guarantee
their existence in complexity theory within the context of ZFC set theory, which sometimes
may lead to contradictions and non-consistent axiomatic system, that can prove anything. It
is known that often are claimed by authors oracles that decide non-decidable sets. In this
paper we do not use in the arguments oracles. 

In the paragraph 4, we give an advanced, full proof that P ≠ NP, in the standard context of
deterministic Turing machines, solving thus the 3rd Clay Millennium problem.

2. Preliminary  concepts,  and  the  formulation  of  the  3rd Clay  millennium
problem, P versus NP. 

In this  paragraph ,  for  the  sake of  the  reader,  we will  just  mention  the basics  to
understand  the  formulation  of  the  3rd Clay  Millennium  problem.  The  official
formulation  is  found  in  [3]  (Cook,  Stephen (April  2000), The  P  versus  NP
Problem (PDF), Clay Mathematics Institute site). Together with an appendix where
there  is  concise  definition  of  whar  are  the  Determinstic  Turing  machines,  that  is
considered that they formulate, in Computational Complexity theory , the notion and
ontology of the software computer programs. 
In the same paper are also defined the computational complexity classes P, NP. 
The elements of the classes P, NP etc strictly speaking are not only sets of words denoted by
L, that is not only languages, but also for each such set of words or language L at least one
DTM , M that decides it, in the specified complexity so they are pairs (L,M). Two such pairs
(L1, M1) (L2, M2) are called equidecidable if  L1 = L2  although it may happen that M1 ≠ M2 . E.g.
if the complexity of M1  is polynomial-time while that of M2  exponential-time choosing the
first pair instead of the second means that we have turned  an high complexity  problem to a
low complexity feasible problem. 

The definition of other computational complexity classes like EXPTIME etc can be found in
standard books like [6],[10],[11]. In the official formulation [3] there is also the definition of
the  concept  of  a  decision  problem  language  in  polynomial  time  reducible  to  another
decision problem language.

Based  on  this  definition  it  is  defined  that  an  EXPTIME-complete  decision  language  of
EXPTIME is  EXPTIME-complete,  when all  other  decision  problems languages  of  EXPTIME
have a polynomial time reduction to it. Here is the exact definition

Definition 2.1 Suppose that Li is a language over all words Σ i , i = 1, 2. Then L1 ≤p L2 
(L1  is p-reducible to L2) iff there is a polynomial-time computable function f : Σ1 -> Σ2 such that 
x є L1 if and only if  f(x) є L2, for all x є Σ1.

In the same books [6],[10],[11] can be found the concepts and definitions of  NP-complete
and EXPTIME-compete decision problems. See also [7], [11] where its proved that specific
decision problems are EXPTIME-complete. 

https://en.wikipedia.org/wiki/Clay_Mathematics_Institute
http://www.claymath.org/millennium/P_vs_NP/Official_Problem_Description.pdf
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For simplicity we will consider here only binary alphabets {0,1} and binary set of
words Σ. 

3. Well known results that will be used.

We will  not use too many results of the computational  complexity theory for our
proof that P ≠ NP.
A  very  deep  theorem  in  the  Computational  Complexity  is  the  Time  Hierarchy
Theorem (see e.g. [6],[10],[11],[9],[13]. This theorem gives the existence of decision
problems that cannot be decided by any other deterministic Turing machine in less
complexity than a specified.
Based on this theorem , it is proved that:

Proposition  3.1 There  is  at  least  one EXPTIME-complete  decision  problem,  that
cannot be decided in polynomial time, thus  P ≠EXPTIME.

The next two propositions indicate what is necessary to prove in order to give  the
solution of the P versus NP problem.
Proposition 3.2 If the class NP contains a language L which cannot be decided with
a polynomial time algorithm, then P ≠ NP.
Proposition 3.3 If the class NP contains a language L which is EXPTIME complete,
then  NP=EXPTIME.

4. The  solution:  P  ≠  NP=EXPTIME in  the  context  of  deterministic  Turing
machines.

We will prove in this paragraph that P ≠ NP  in the context of second order formal language
of the Zermelo-Frankel set theory. 

Since  we  are  obliged  to  take  strictly  the  official  formulation  of  the  problem  ,  rather  
than text books about it, we make the next clarifications. 

We will use the next conditions for a Language to be in the class NP, as stated in the
standard formulation  of  the P versus NP problem (see  [3]   Cook, Stephen (April
2000), The P versus NP Problem (PDF), Clay Mathematics Institute.).
We denote by Σ*all the words of an alphabet  Σ.

Definition 4.1 A language L of binary words is in the class NP if and only if the next conditions
hold

1) There is a deterministic Turing machine M that decides L. In other words for any
word x in L, when x is given as input to M, then M accepts it and if x does not
belong to L then  M rejects it.
In symbols: Ǝ a deterministic Turing machine M, such that ⱯxєΣ* , x is either
accepted or rejected by M and if M accepts x → xєL, and if M reject x → x ɇL

2) There is a polynomial-time checkable relation R(x,y), and a natural number k of
N, so that for every word x , x belongs to L if and only if there is a word y , with |y|
<=|x|k , and R(x,y) holds.



In symbols:Ǝ relation R which is polynomial-time checkable ,and Ǝ kєN, such that
ⱯxєΣ*, 
xєL↔ (Ǝ yє Σ*,   |y|<=|x|k  and  R(x,y) holds).

Remark  4.1. In  the  official  statement  of  the  P  versus  NP  problem (see  [3]   Cook,
Stephen (April  2000), The  P  versus  NP  Problem (PDF), Clay  Mathematics  Institute) the
condition 1) is not mentioned. But anyone that has studied complexity theory, knows that it is
required.  The  condition  2)  alone  cannot  guarantee  that  there  is  a  deterministic  Turing
machine that decides the language., as the polynomial checkable relation works only if we
provide it with certificate y, and not with only  x as input. Indeed we shall see below at the end
of the proposition in  Remark 4.4, that there is even an undecidable language L , for which
nevertheless there is a polynomial checkable relation R, so that condition R is satisfied.  The
languages of NP cannot be semidecidable (or undecidable). The NP class is also defined as  NP
=∪kєN  NTIME(nk),  but  this  definition  is  also  in  the  context  of  non-deterministic  Turing
Machines. The situation with P, is more clear, because the mere requirement that a language
of P is of polynomial time complexity as it standard to define it , involves already that there
exist a deterministic Turing machines that for every input word, it halts within polynomial time
steps  and  either  accepts  or  rejects  it,  therefore  it  decides  it.  And  not  that  is  simply  the
language of a deterministic Turing machine , and therefore maybe only semi-decidable. 

Remark  4.2.  Notice  that  in  the  condition  2)  the  k  depends  on  the  relation  R  and  is  not
changing as the certificate y changes.  In other words k does not depend on y and we did not
state the next:

There is a polynomial-time checkable relation R(x,y), so that for every word x , x belongs to L if
and only if there is a word y , and k in N ,with |y|<=|x|k  ,  and R(x,y) holds. In symbols: Ǝ
relation R which is polynomial-time checkable , such that ⱯxєΣ*, xєL↔ (ƎyєΣ* and ƎkєN such
that |y|<=|x|k   and R(x,y) holds).

In the official statement of the P versus NP problem (see [3]  Cook, Stephen (April 2000), The
P versus NP Problem (PDF), Clay Mathematics Institute) this is not made clear, in the natural
language that the definition is stated. But that k does not depend on the certificate, but on the
polynomial checkable relation becomes clear, when we look at the proof in any good textbook
about complexity theory, of how a non-deterministic Turing machine which runs in polynomial
time, can define a deterministic Turing machine with a polynomial time checkable relation,
which is considered that replaces it. 

Remark 4.3 : My main intuition to find a proof that  
P ≠ NP=EXPTIME .The password setting. 
Le us make the next thought-experiment: Imagine a human Mr H who has available
infinite time , and has infinite mental capabilities. No the world asks Mr H to set
passwords on all lenths of words! So Mr H sets a password p(l) for words of length
l=1,2,3,...n,...etc. Next let us imagine the problem of finding the password of length
say x=153. Mr H has an arbitrary free will and he is honest not to give his passwords
, in addition  Mr H has provided us with a device D(l)  for each length l, that unlocks
if we give to it the password p(l), so we will know if w is the password or not. So the
only  way to  discover  if  particular  word w of  length  |w|= l=153 is  the  password
p(153) or not, it is to search all the words of length l in an exhaustive way and try
them on the device D(l). This is of course a an EXPTIME complexity problem, that



cannot be reduced to a polynomial time problem. Therefore  finding the language LP
of passwords p(l) of Mr H, cannot be a problem of polynomial time complexity. If in
addition , we assume that the blind exhaustive search of all words of length l, is an
EXPTIME-complete  complexity  problem on  the  initial  data  l,  then  finding  the
language of passwords of Mr H is also an EXPTIME-complete problem. Nevertheless
for each word w of length l,  the Device(l) is the polynomial  time on the length l,
checkable relation  (certificate for each word w) , that can decide if w is a password
or not, therefore the problem of finding the language L, is in the NP class complexity.
But the above then after Propositions 3.2 and 3,3, indicate that  P ≠ NP=EXPTIME.

Now this intuitive idea, is obviously not a formal proof at all, as we are taking about
“human Mr H” , “arbitrary human free will” etc.  Besides we are taking about the
complexity of problems here rather than the complexity of languages. How can we
turn this intuition to  strict and formal proof, without using oracles, or non-formal
arguments? The solution is the key-abstraction that I mentioned in the Introduction,
that is to start with the existence of an EXPTIME-complete complexity language, that
we know it exists, without specifying which one. Then define other languages over it
and make simple arguments that solve to P versus NP problem.

      

The  strategy  to  do so  is  quite  simple:  We will  start  with  an exptime-complete  decision
problem and its  language Lexp  and we will derive from it an NP class decision problem than
cannot be solved in the polynomial time (it does not belong to the class P). 

The next proposition sets the existence of an EXPTIME-complete complexity language of the
EXPTIME complexity class (Proposition 3.1) in a convenient form, that can be used for further
compositions of other languages over it.

Proposition 4.1.  There is at least one infinite binary sequence, that can be computed and
decided in exptime-complete   complexity.

Proof.

 Let   an  exptime-complete  decision  problem  A  ,  that  its  existence  is  guaranteed  by
Proposition 3.1 ,and its  language Lexp   є EXPTIME. We will  need for the sake of symbolic
convenience this language and decision problem , in the form of a binary sequence. If  Σ*  is
the set of all words of the binary alphabet Σ of the language Lexp , then we give a linear order
to the binary alphabet Σ={0,1} 0<1, and then the inherited linear lexicographic order to the
set of words Σ*

 . Since Σ*
  is linearly and well ordered with a first element and after excluding

all words with a left sequence of consecutive zeros (which is obviously a polynomial time
decision on the length of the words) reducing to the set denoted by Σ** ,we fix the identity
map as  an arithmetization  with an 1-1 and on to correspondence F: Σ**

 -> N to the set of
natural numbers, so that the language Lexp  can be considered after this fixed arithmetization
identity mapping correspondence F, as a subset of the natural numbers.  So let Char(L exp) : N-
>{0,1} be the characteristic function of the set Lexp in the Natural numbers encoded thus in  a
binary base. Then Char(Lexp) consists of di, for  i є N, and di is binary digit, that is equal to 0 or



1. A first finite 7-digits segment of it, would seem for example like (0010110...).  Since Lexp  is
an  exptime-complete  decision  problem  Lexp   є EXPTIME,  its  characteristic  function  is
computable  with  an  exptime-complexity  too  on  the  length  of  the  binary  words  ,  and
conversely any Turing machine computation of this characteristic function and also infinite
binary sequence Char(Lexp) :  N->{0,1}: consisting from di/ for all i  є N, and di is binary digit,
that is equal to 0 or 1, is also a Turing machine   decision computation of the language Lexp.
Therefore  there  is  no  polynomial  time  complexity  computation  of  this  infinite  binary
sequence, as this would make EXPTIME=P and we know that P ≠EXPTIME. For the sake of
intuitive  understanding  of  the  following  arguments  we  call  this  binary  sequence  “An
exptime-compete binary DNA sequence” and we denote it by DNAexp. This simplification from
the original exptime-complete decision problem and Language Lexp  of Σ* to the DNAexp  of N
can be considered also as a polynomial time reduction  of decision problem and languages
Lexp ≤p DNAexp (Lexp is p-reducible to DNAexp)(see Definition 2.1). QED.

Proposition  4.2  (3rd Clay  Millennium  problem)  There  is  at  least  one  decision  problem
language of the class NP which is not also in the class P. Therefore  P ≠ NP.

1st Proof. 

 In the next we show that there is a language Lnp  belonging to the class NP  that cannot also
belong to the class  P  without  making,  the previous binary sequence in the proof  of  the
Proposition 4.1  called  “exptime-complete  binary DNA sequence”  and denoted  by  DNAexp,
computable in polynomial time complexity! To ensure that a language Lnp   belongs to the
class NP it must hold that there is a polynomial-time checkable relation R(x,y) and a natural
number k, so that for every word  x, it holds that x belongs to the language Lnp  if and only if
there is another word y, called “certificate” with length |y|<=|x| k ,so that R(x,y) holds. Here
by |x| we denote the length of the word x, which is a natural number. 

Now comes the intuition behind calling the binary sequence DNAexp of the previous proof, a
DNA sequence: The trick here is to define this language denoted by Lnp with the information
encoded in the binary sequence DNAexp so that, although a human with deterministic Turing
machines and exptime-time complexity can compute DNAexp and therefore decide Lnp  ,  no
deterministic  Turing machine within polynomial-time complexity can compute and decide
the Lnp. In addition for every word x,   if a human will give to such deterministic machines the
necessary information in the form of a  “certificate” y, then a deterministic Turing machine
can decide if x belongs or not to Lnp within polynomial-time complexity. 

We define such a language Lnp with the previous requirements simply as follows:

For any word x  є Σ* ,x  єLnp   if and only if , the word is an initial word of the infinite  binary
sequence DNAexp and the d|x| =1 , where  d|x| is the |x|-order binary digit  of the infinite
binary sequence DNAexp  . And of course x does not belong to Lnp   if and only if this does not
happen. If we re-phrase the condition “d|x| =1”, as “DNAexp  acceptable” , then the definition
can be rephrased as that a word x belongs to the  language Lnp  if its length and itself is DNAexp

acceptable. 



Then we define as “certificate” y of the word x, the finite sequence y=(d1, d2,...,d|x|) , and as
polynomial time checkable relation R(x,y), and  that R(x,y) holds , the fact that given x , and y,
the last digit of y is 1 and the rest of the digits agree too. Notice that here a human gives a lot
of information to a Turing machine that will check if x belongs or not to L np , in the form of
the |x|-length initial segment y of the infinite binary sequence DNAexp  that we know that no
Turing machine can compute within polynomial-time complexity. 

That this relation R(x,y) is checkable in polynomial time relative to the length |x| of x, is
obvious as the Turing machine with input x and y, will have only go through |x|-many steps
to check the last digit of y. 

Now no deterministic Turing machine M can decide the language Lnp , in other words decide
given as input only the word x (without its “certificate” y), if x  єLnp   or not. And this is so,
because  if  it  exist  such  a  deterministic  Turing  machine M,  then it  could  also decide (or
compute) the digit d|x|  of DNAexp  which we know that is not computable in polynomial-time
complexity. Thus Lnp does not belong to P, and therefore P ≠ NP

QED.

2nd Proof

We may define, in a simpler way, the language Lpasswords  (the index passwords , is so as to
follow the intuition of password setting as in the Remark 4.3) as the set of all binary  
words, that are the successive n-initial segments of the infinite binary sequence  DNAexp.

Then this language is obviously  (after Proposition 4.1) an EXPTIME-complete
language. Nevertheless the language Lpasswords   also belongs to the class NP, because  for
each word w, of length |w|=n, a “certificate” y of it is the word w itself  y=w, and the
polynomial time checkable relation R(w,y) , y=w , is checkable  in  polynomial  time,
relative to the length |w|=n. Notice that we have here one  only  word  w  for  each  word-
length n.  But then from the  Proposition 3.3 NP=EXPTIME, and thus  P ≠ NP.  QED. 

Corollary 4.1. It holds that NP=EXPTIME

Proof: Direct from  the Proposition 3.3, and that the language Lpasswords    in the 2nd proof of the
Proposition 4.2 is also EXPTIME-complete language , besides belonging in the class NP. 

QED

Remark 4.4 Notice that instead of taking, the characteristic function DNAexp  of an exptime-
complete  language,  we  could  have  taken  the  characteristic  function  DNAund  of  an
undecidable language and we know that, there is at least one, and repeat the definition of
the Language Lnp , deriving thus an undecidable language , which still it has a polynomial time
checkable relation, that nevertheless works only if a human feeds it with a certificate y and
there is not  a Turing machine that can decide it by taking as input the word x alone. This
confirms  that  in  the  definition  of  NP  in,  Definition  4.1,  the  condition  1)  is  required.
Alternatively we may prove the same thing in a different way. By using the axiom of choice
of  the  ZFC  set  theory  we  may  define  for  example  an  arbitrary  infinite  sequence  Lp of



passwords pn , each one of length exactly n, from the infinite set of the sets of words Σn of
length n. It is known that the axiom of choice of the ZFC set theory, gives no information at
all about what are the elements of such a set, besides that each p n belongs to Σn . We cannot
expect  that  any  such  infinite  choice  Lp  of  n-length  passwords  pn  can  be decided  by   a
deterministic Turing machine. If it was so, as such Turing machines are countable, we order
all such languages Lp,i ,iєN in a sequence and with the diagonal method we define a new and
different such language L0 of passwords , differing to at least one password from all those
Lp,i , thus this L0 is undecidable. Still again there is a polynomial-time checkable relation R(x,p |

x|), which simply is checking if x= p|x| ,so that for every word x, there is a  “certificate”, here
the password  p|x| , and x belongs to the language L0 of passwords iff R(x,p|x|) holds. 

5. Conclusions
Sometimes great problems have relatively short and elegant solutions provided we
find the  key-abstractions and convenient context , symbols and semantics to solve
them. But even relatively simple paths of reasoning, may be difficult to travel, if there
is not, at a certain point of them, the necessary “bridge” , that is the necessary key-
abstraction or the right conceptual “coins” of symbols and semantics to exchange and
convert.  Here  the  key-abstraction  was  to  start  from the  class  EXPTIME  and  an
EXPTIME-complete language of it , witgout specifying which one instead starting
from the class NP. If the P versus NP problem is researched without a main strategy,
that would require a short proof, it might become a very complex problem to solve.
My main hidden guiding idea in searching for such a simple proof, was that what
the “arbitrary human-like free-will”   of a non-deterministic  Turing machine as
human-machine  interactive  software  (e.g.  in  password  setting),  can  do  in
polynomial  time  cannot  be  done  by  a  purely  mechanical  deterministic  Turing
machine in polynomial  time.   Since in  my opinion the Hierarchy Theorem is  a
deeper result than the P versus NP problem, in principle there should exist a not much
more complicated proof of the P versus NP problem, compared to the proof of the
Hierarchy Theorem. The proof of the P versus NP problem in the direction P ≠ NP, is
supposed also to mean  that the standard practice of encryption in the internet , is safe.
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PART B THE SOLUTON OF THE 4TH CLAY MILLENNIUM 
PROBLEM

Prologue.

The standard formulation of the 4th Clay Millennium problem can be found in the site 
of the Clay Mathematical Institute here http://www.claymath.org/millennium-
problems/navier%E2%80%93stokes-equation

http://www.claymath.org/sites/default/files/navierstokes.pdf

Roughly  speaking  it  asks  if  in  classical  3  dimensional   incompressible  fluids  ,
(governed by the Navier-Stokes equations) with finite initial energy and smooth initial
conditions  (with pressures and velocities  falling to zero faster than all  polynomial
powers  as  we  go  to  infinite  distances  away  or  in  short  smooth  Schwartz  initial
conditions) the flow will continuous forever smooth or would there be a finite time,
where velocities and pressures will blow-up to infinite and smoothness will break?
The standard formulation is both with periodic initial conditions or not periodic. 

Most of the mathematicians were expecting that, since it has been proved that there  is
no blow-up in 2-dimensions , this should hold in 3 dimensions too. But as more than
half  a century has passed with not being able to prove it  many researchers sarted
believing that because of the vortex stretching which is possible only in 3-dimasions
and not in 2-dimensions a blow-up might exist.

Because it was easier to do at the beginning,  I spent about half a year discovering
more than a dozen of explicitly formulated cases of axial symmetric flows that lead to
blow-up in finite time. Nevertheless, for all  of them, it was necessary that they start
with infinite initial energy. 

So I went back to the more probable case that no Blow-up can occur in finite time.

My heuristic analysis which took 1-2 years, with statistical mechanics and classical
fluid dynamics in digital differential and integral calculus suggested to me that there
should not exist in finite time a blow-up. The naïve and simple argument was that a
blow up would give that at least one particle of the fluid (and in statistical mechanics
or classical fluid dynamics in digital  differential  and integral calculus,  finite many
finite particles do exist) would exhibit infinite kinetic energy. Nevertheless, what is
easy to prove in heuristic context is not at all easy to prove in the classical context of
fluid dynamics where there are not finite many particles of finite and lower bounded
size, but infinite many points with zero size. 

http://www.claymath.org/sites/default/files/navierstokes.pdf
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation


In this strategy my interdisciplinary approach was an advantage. I did not considered
as consistent for sciences that e.g. statistical mechanics would give that there is no-
blow up in finite time,  while classical  fluid dynamics  would prove that there is a
blow-up in finite time. 

The next  table  makes  the  comparisons  in  statistical  mechanics  and classical  fluid
dynamics

Table 0

COMPARISON AND 
MUTUAL SIGNIFICANCE OF 
DIFFERENT TYPES OF 
MATHEMATICAL MODELS 
FOR THE 4TH CLAY PROBLEM 
(NO EXTERNAL FORCE) 

CONTINUOUS  FLUID 
MECHANICS MODEL

STATISTICAL MECHANICS 
MODEL

SMOOTH SCHWARTZ    
INITIAL CONDITIONS

YES POSSIBLE TO  IMPOSE

FINITE INITIAL ENERGY YES YES

CONSERVATION OF THE  
PARTICES

YES(NON-OBVIOUS 
FORMULATION)

YES  (OBVIOUS 
FORMULATION)

LOCAL SMOOTH 
EVOLUTION IN A INITIAL 
FINITE TIME INTERVAL

YES POSSIBLE TO DERIVE

EMERGENCE OF A BLOW-UP
IN FINITE TIME

IMPOSSIBLE TO OCCUR IMPOSSIBLE TO OCCUR

So as it was easy to prove in statistical mechanics that there is no blow-up in finite
time, I thought , so as to increase our confidence for the correct side of the solution of
the   problem  ,  to  add  hypotheses  to  the  standard  formulation  of  the  4 th Clay
Millennium problem  that correspond to the conservation of particles  during the flow,
and which would lead to an accessible solution of this problem (that there is no Blow-
up in finite) dew to finite initial energy and energy and particle conservation. This of
course was not the solution of the 4th Clay Millennium problem,  and the solution
finally is presented in the 3rd and last paper in this part B of this treatise.

The next 1st  paper here is an initial version (uploaded in ) of the published paper in
the  Journal of Scientific Research and Studies Vol. 4(11), pp. 304-317, November,
2017 ISSN 2375-8791 Copyright © 2017 



So once my confidence was in strength that the correct solution is that there is no
Blow-up in finite time I started attacking the problem for a proof in the classical fluid
dynamics  only  with  the  hypotheses  of  the  standard  formulation  of  the  4th Clay
Millennium problem. 
The first thing to do was to get rid of the infinite space in the initial conditions of the fluid,
and substitute them with smooth compact support initial conditions.  In  many books of
fluid  dynamics  where  most  of  the  results  are  stated  for  smooth   Schwartz  initial
conditions and infinite space , the authors often make arguments that as they say “for
simplicity we assume compact support initial conditions” It is therefore a common
expectation in fluid dynamics although I found no proof for this anywhere. Happily, a
rather recent work by Terence Tao gave to me the idea of how this could be proved by
arguments that are used in wavelet theory and in particular here in the theorem 12.2  of
Tao’s paper  (TAO, T. 2013 Localisation and compactness properties of the Navier-
Stokes   global regularity problem.  Analysis & PDE 6 (2013), 25-107)

The  next  2nd paper  is  a  preprint  version  (submitted  Wednesday,  July  26,  2017  -
10:56:46 AM) of the published paper in the. 1st INTERNATIONAL CONFERENCE
ON QUANTITATIVE, SOCIAL, BIOMEDICAL AND ECONOMIC ISSUES 2017 –
ICQSBEI  2017.  http://icqsbei2017.weebly.com/,  Jun  2017,  Athens,  Stanley  Hotel,
Greece.  1  (1),  pp.146,  2017,  PROCEEDINGS  OF  THE  26  Ιουν 2017  -  1st
INTERNATIONAL  CONFERENCE  ON  QUANTITATIVE,  SOCIAL,
BIOMEDICAL AND ECONOMIC ISSUES 2017 – ICQSBEI 2017. 

Having reduced the 4th Clay Millennium problem to an equivalent with the same
hypotheses of finite initial energy but on compact support initial conditions too,
made all sorts of arguments easier or possible to do. 
It was not obvious how the finite initial energy and the energy conservation could be
used to prove the non-existence of a Blow-up in finite time. To surround carefully the
problem I proved more than 8 different necessary and sufficient conditions of non-
existence of a Blow-up in finite time. Finally, it was that the pressures must remain
bounded in finite time intervals which proved that there cannot be a Blow-up in finite
time. Anthe pressures must remain bounded because of the conservation of energy ,
the initial finite energy and that pressures as it known define a conservative field of
forces in the fluid all the times.

The  next  3rd paper  which  was  completed  and  uploaded  in  the  internet  during  25
February 2018 is I believe the final solution of the 4th Clay Millennium problem, and
it  has  been  published  in  the  World  Journal  of  Research  and  Review
https://www.wjrr.org/ during August 2021. 

1st paper

https://www.wjrr.org/


On  the  solution  of  the  4th clay  millennium  problem.  Proof  of  the
regularity of the solutions of the Euler and Navier-Stokes equations,
based on the conservation of particles as a local structure of the fluid,
formulated in the context of continuous fluid mechanics.
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ABSTRACT

             As more and more researchers tend to believe that with the
hypotheses  of  the  official  formulation  of  the  4th Clay  Millennium
problem a blowup may occur, a new goal is set: to find the simplest and
most physically natural enhancement of the hypotheses in the official
formulation  so  that  the  regularity  can  be  proved  in  the  case  of  3
dimensions  too. The  position  of  this  paper  is  that  the  standard
assumptions  of   the  official  formulation  of  the  4th Clay  millennium
problem, although they reflect, the finiteness and the conservation of
momentum  and  energy  and  the  smoothness  of  the  incompressible
physical flows, they do not reflect the conservation of  particles as local
structure.  By  formulating the later  conservation and adding it  to  the
hypotheses,   we  prove  the  regularity  (global  in  time  existence  and
smoothness) both for the Euler and the Navier-Stokes equations.  

Key words:  Incompressible flows,  regularity,  Navier-Stokes equations, 4th Clay millennium
problem

Mathematical Subject Classification: 76A02

1. Introduction
The famous problem of the 4th Clay mathematical Institute as formulated in FEFFERMAN C. L.
2006   , is considered  a significant challenge to the science of mathematical physics of fluids,
not only because it has withstand the efforts  of the scientific community for decades to
prove it (or types of converses to it) but also because it is supposed to hide a significant
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missing perception about the nature of our mathematical formulations of the physical flows
through the Euler and the Navier-Stokes equations. 

When the 4th Clay Millennium problem was officially formulated the majority was hoping
that the regularity was holding also in 3 dimensions as it had been proved to hold also in 2
dimensions. But as time passed more and more mathematicians started believing that a
Blowup can occur with the hypotheses of the official formulation. Therefore a new goal is
set to find the simplest and most physically natural enhancement of the hypotheses in the
official formulation so that the regularity can be proved in the case of 3 dimensions too. This
is done by the current paper.  

After 3 years of research, in the 4th Clay Millennium problem, the author came to believe
that, what most of the mathematicians would want, (and seemingly including the official
formulators of the problem too), in other words a proof of the regularity in 3 dimensions as
well, cannot be given merely by the assumptions of the official formulation of the problem.
In other words a Blow-up may occur even with compact support smooth initial data with
finite energy. But solving the 4th Clay Millennium problem, by designing such a case of Blow-
up is I think not interesting from the physical point of view, as it is quite away from physical
applications and a mathematical pathological curiosity. On the other hand discovering what
physical aspect of the flows is not captured by the mathematical hypotheses, is I believe a
more significant contribution to the science of mathematical physics in this area.  Although
the mathematical  assumptions  of  the  official  formulation  reflect,  the finiteness  and the
conservation of momentum and energy and the smoothness of the incompressible physical
flows, they do not reflect the conservation of particles as local  structure. By adding this
physical  aspect  formulated  simply  in  the  context  of  continuous  fluid  mechanics,  the
expected result of regularity can be proved.

In statistical mechanical models of incompressible flow, we have the realistic advantage of
finite many particles, e.g. like balls B(x,r) with finite diameter r.  These particles as they flow
in time,  remain particles of the same nature and size and the velocities and inside them
remain approximately constant. 

Because space and time dimensions in classical fluid dynamics goes in orders of smallness ,
smaller and at least as small as the real physical molecules , atoms and particles of the fluids,
this might suggest  imposing too,  such conditions resembling  uniform continuity conditions.
In the case of continuous fluid dynamics models such natural conditions, emerging from the
particle  nature  of  material  fluids,  together  with  the  energy  conservation,  the
incompressibility and the momentum conservation,  as laws conserved in time, may derive
the regularity of the local smooth solutions of the Euler and Navier-Stokes equations.  For
every atom or material  particle of a material  fluid, we may assume around it a ball  of
fixed radius,  called  particle  range depending  on  the  size of  the atom or  particle,  that
covers  the  particle  and  a  little  bit  of  the  electromagnetic,  gravitational  or  quantum
vacuum field around it, that their velocities and space-time accelerations are affected by
the motion of the molecule or particle.  E.g. for the case water, we are speaking here for
molecules of H2O, that are estimated to have a diameter of 2.75 angstroms or 2r= 2.75*10^(-
10)  meters,  we  may  define  as  water  molecule  particle  range the  balls  B(r0)   of  radius
r0=3*10^(-10) meters around the water molecule.  As the fluid flows, especially in our case
here of incompressible fluids, the shape and size of the molecules do not change much,



neither there are significant differences of the velocities and space-time accelerations of
parts of the molecule. Bounds δu δω  of such differences remain  constant as the fluid flows.
We may call this effect as the principle of conservation of particles as a local structure. This
principle must be posed in equal setting as the energy conservation and incompressibility
together with the Navier-Stokes or Euler equations. Of course if  the fluid is  say of  solar
plasma matter, such a description would not apply. Nevertheless then incompressibility is
hardly a property of it.  But if we are talking about incompressible fluids that the molecule is
conserved as well  as the atoms and do not change atomic number (as e.g.  in fusion or
fission) then this principle is physically valid.  The principle of conservation of particles as a
local structure, blocks the self-similarity effects of concentrating the energy and turbulence
in very small areas and creating thus a Blow-up. It is the missing invariant in the discussion of
many  researchers  about   superctitical,  critical  and  subcritical  invariants  in  scale
transformations of the solutions. 

The exact definition of the conservation of particles as local structure Is in DEFINITION 5.1
and it is as follows:

 (Conservation of particles as local structure in a fluid)

Let  a  smooth  solution  of  the  Euler  or  Navier-Stokes  equations  for  incompressible
fluids, that exists in the time interval [0,T). We may  assume initial data on all of R3 or
only on a connected compact support V0 . For simplicity let us concentrate only on the
latter simpler case. Let us denote by F  the displacement transformation of the flow.
Let us also denote by g the partial derivatives of 1 st order in space and time  , that is

)(xub
t

a
x ,  |α|=1, |b|<=1,and call  then space-time accelerations . We say that

there  is  conservation  of  the  particles in  the  interval  [0,T)  in  a  derivatives
homogenous setting,  as a  local structure of the solution if and only if:

There is a small radius r, and small constants δx ,  δu  ,  δω , >0 so that for all t in [0,T)
there is a finite cover Ct  (in the case of initial data on R3 , it is infinite cover, but finite
on  any  compact  subset)  of  Vt   ,  from balls  B(r)  of  radius  r,  called  ranges  of  the
particles , such that:

1) For an x1 and x2  in a ball B(r) of Vs , s in [0,T), ||F(x1 )-F(x2)||<=r+ δx  for all t>=s  in
[0,T).

2) For an x1 and x2  in a ball B(r) of Vs ,s in [0,T), ||u(F(x1 ))-u(F(x2))||<= δu  for all t >=s
in [0,T).

3) For an x1 and x2  in a ball B(r) of Vs , s in [0,T), ||g(F(x1 ))-g(F(x2))||<= δω  for all t >=s
in [0,T).
If we state the same conditions 1) 2) 3) for all times t in [0,+∞) , then we say that
we have the strong version of the conservation of particles as  local structure. 

We prove in paragraph 5 in PROPOSITION 5.2 that indeed adding the above conservation
of particles as local structure in the hypotheses of the official formulation of the 4 th Clay
Millennium problem, we solve it, in the sense of proving the regularity (global in time
smoothness) of the locally in time smooth solutions that are known to exist.  



A short outline of the logical structure of the paper is the next.

1) The paragraph 3, contains the official formulation of the 4th Cay millennium problem
as  in  FEFFERMAN  C.  L.  2006.  The  official  formulation  is  any  one  of  4  different
conjectures, that two of them, assert the existence of blow-up in the periodic and
non-periodic case, and two  of them the non-existence of blow-up , that is the global
in time regularity in the periodic and non-periodic case. We concentrate on to prove
the  regularity  in  the  non-periodic  case  or  conjecture  (A)  with  is  described  by
equations 1-6 after adding the conservation of particles as a local structure. The
paragraph 3 contains definitions, and more modern symbolism introduced by T, Tao
in  TAO T. 2013. The current paper follows the formal and mathematical austerity
standards that the official formulation has set, together with the suggested by the
official formulation relevant results in the literature like in the book  MAJDA A.J-
BERTOZZI A. L. 2002 . 
But we try also not to lose the intuition of the physical interpretation, as we are in
the area of mathematical physics rather than pure mathematics. 

The goal is that reader after reading a dozen of mathematical propositions and their
proofs ,  he must be able at  the end to have simple physical  intuition ,  why the
conjecture (A) of the 4th Clay millennium together with the conservation of particles
in the hypotheses problem holds. 

2) The paragraph 4 contains some known theorems and results, that are to be used in
this paper, so that the reader is not searching them in the literature and can have a
direct, at a glance, image of what holds and what is proved. The most important are
a list of necessary and sufficient conditions of regularity (PROPOSITIONS 4.5-4.10)
The same paragraph contains also some well known and very relevant results that
are not used directly but are there for a better understanding of the physics. 

3) The paragraph 5 contains the main idea that the conservation of particles during the
flow can be approximately formulated in the context of continuous fluid mechanics
and that is the  key missing concept of conservation that acts as subcritical invariant
in other words blocks the self-similar concentration of energy and turbulence that
would create a Blowup. With this new invariant we prove the regularity in the case
of 3 dimensions: PROPOSITIONS 5.2 .

4) The  paragraph  6  contains  the  idea  of  defining  a  measure  of  turbulence in  the
context of deterministic mechanics based on the total variation of the component
functions or norms (DEFINITION 6.1) It is also made the significant observation that
the smoothness of the solutions of the Euler and Navier-Stokes equations is not a
general type of smoothness but one that would deserve the name  homogeneous
smoothness (Remark 6.2)  .

According to  CONSTANTIN P.  2007 “..The blowup problem for the Euler equations is  a
major open problem of PDE, theory of far greater physical importance that the blow-up
problem of the Navier-Stokes equation, which is of course known to non specialists because
of the Clay Millennium problem…” 

Almost all of our proved propositions and in particular the regularity in paragraphs 4 , 5 and
6 (in particular PROPOSITION 4.11 and PROPOSITION 5.2) are stated not only for the Navier-
Stokes but also for the Euler equations. 



2. The ontology of the continuous fluid mechanics models versus the
ontology of statistical  mechanics models.  The main physical  idea of
the proof of the regularity in 3 spatial dimensions.
                                                                          

 All researchers discriminate between the physical reality with its natural physical ontology
(e.g. atoms, fluids etc) from the mathematical ontology (e.g. sets, numbers, vector fields
etc). If we do not do that much confusion will arise. The main difference of the physical
reality ontology, from the mathematical reality ontology, is what the mathematician  D.
Hilbert had remarked in his writings about the infinite. He remarked that nowhere in the
physical reality there is anything infinite, while the mathematical infinite, as formulated in a
special  axiom  of  the  infinite  in  G.  Cantor’s  theory  of  sets,  is  simply  a  convenient
phenomenological  abstraction, at a time that the atomic theory of matter was not well
established yet in the mathematical community. In  the  physical  reality  ontology,  as
best captured by statistical mechanics models, the  problem of the global 3-dimensional
regularity  seems easier  to  solve.  For  example  it  is  known (See PROPOSITION 4.9   and
PROPOSITION 4.12 maximum Cauchy development, and it  is referred also in the official
formulation of the Clay millennium problem in C. L. FEFFERMAN 2006 ) that if the global 3D
regularity does not hold then the velocities become unbounded or tend in absolute value to
infinite as time gets close to the finite Blow-up time. Now we know that a fluid consists
from a finite number of atoms and  molecules, which also have finite mass and with a lower
bound in their size. If such a phenomenon (Blowup) would occur, it would mean that for
at least one particle the kinetic energy, is increasing in an unbounded way. But from the
assumptions (see paragraph 3) the initial energy is finite, so this could never happen. We
conclude that  the  fluid  is  3D globally  in  time regular.  Unfortunately  such  an argument
although valid in statistical mechanics models (see also  MURIEL A  2000 ), in not valid in
continuous fluid mechanics models,  where there are not atoms or particles  with lower
bound of  finite mass, but only points with zero dimension, and only mass density. We must
notice also here that this argument is not likely to be successful if the fluid is compressible.
In fact it has been proved that a blow-up may occur even with smooth compact support
initial data, in the case of compressible fluids. One of the reasons is that if there is not lower
bound in the density of the fluid, then even without violating the momentum and energy
conservation, a density converging to zero may lead to velocities of some points converging
to infinite. 

Nevertheless if we formulate in the context of continuous fluid mechanics the conservation
of particles as a local structure (DEFINITION 5.1) then we can derive a similar argument (see
proof of PROPOSITION 5.1) where if a Blowup occurs in finite time then the kinetic energy
of a finite small ball  (called in  DEFINITION 5.1 particle-range) will  become unbounded,
which  is  again  impossible,  due  to  the  hypotheses  if  finite  initial  energy  and  energy
conservation. 

The  next  table  compares  the  hypotheses  and  conclusions  both  in  continuous   fluid
mechanics models and statistical mechanics models of the  4 th Clay millennium problem in
its officially formulation together with the hypothesis of conservation of particles. It would
be paradoxical that we would be able to prove the regularity in statistical mechanics and we
would not be able to prove it in continuous fluid mechanics.  



Table 1

COMPARISON AND 
MUTUAL SIGNIFICANCE OF 
DIFFERENT TYPES OF 
MATHEMATICAL MODELS 
FOR THE 4TH CLAY PROBLEM 
(NO EXTERNAL FORCE) 

CONTINUOUS  FLUID 
MECHANICS MODEL

STATISTICAL MECHANICS 
MODEL

SMOOTH SCHWARTZ    
INITIAL CONDITIONS

YES POSSIBLE TO  IMPOSE

FINITE INITIAL ENERGY YES YES

CONSERVATION OF THE  
PARTICES

YES(NON-OBVIOUS 
FORMULATION)

YES  (OBVIOUS 
FORMULATION)

LOCAL SMOOTH 
EVOLUTION IN A INITIAL 
FINITE TIME INTERVAL

YES POSSIBLE TO DERIVE

EMERGENCE OF A BLOW-UP
IN FINITE TIME

IMPOSSIBLE TO OCCUR IMPOSSIBLE TO OCCUR

3. The  official  formulation  of  the  Clay  Mathematical  Institute  4th

Clay  millennium  conjecture   of  3D  regularity  and  some
definitions. 

In  this  paragraph we highlight  the basic  parts  of  the official  formulation of  the 4 th Clay
millennium problem, together with some more modern, since 2006, symbolism, by relevant
researchers, like T. Tao. 

In this paper I consider  the conjecture (A) of C. L. FEFFERMAN 2006 official formulation of
the 4th Clay millennium problem , which I indentify throughout the paper as  the 4  th   Clay
millennium problem. 

The Navier-Stokes equations are given by  (by R we denote the field of  the real
numbers, ν>0 is the viscosity coefficient )
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with initial conditions  u(x,0)=u0(x)  xR3

and u0 (x)  C divergence-free vector field on R3                    
(eq.3)  


 




n

i ix1
2

2

 is the Laplacian operator .The Euler equations are when  ν=0 

 For physically meaningful solutions we want to make sure that u0(x) does not grow
large  as  |x|.  This  is  set  by  defining  u0(x)   and  called  in  this  paper
Schwartz initial conditions  , in other words 
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0  on R3   for any α and K                                       (eq.4 )

(Schwartz used such functions to define the space of Schwartz distributions) 

We accept as physical meaningful solutions only if it satisfies 

p, u C(R3 [0,))                            (eq.5 )

and 

Cdxtxu 


2

3

),(   for all t>=0 (Bounded or finite energy)                               (eq.6 )

The  conjecture  (A)  of  he  Clay  Millennium  problem  (case  of  no  external  force,  but
homogeneous and regular velocities) claims that for the Navier-Stokes equations , v>0, n=3 ,
with divergence free , Schwartz initial velocities , there are for all times t>0 , smooth velocity
field and pressure, that are solutions of the Navier-Stokes equations with bounded energy ,
in other words satisfying the equations eq.1 , eq.2 , eq. 3, eq.4  , eq.5  eq.6 . It is stated in
the same formal formulation of the Clay millennium problem by C. L. Fefferman see C. L.
FEFFERMAN 2006 (see page 2nd line 5 from below) that the conjecture (A) has been proved
to holds locally. “..if the time internal  [0,), is replaced by a small time interval [0,T), with T
depending  on  the  initial  data....”.  In  other  words  there  is  >T>0,  such  that  there  is
continuous and smooth  solution  u(x,t)C(R3 [0,T)). In this paper, as it is standard almost
everywhere, the term smooth refers to the space C



Following TAO, T 2013, we define some specific terminology , about the hypotheses of the
Clay millennium problem, that will be used in the next.

We must notice that the definitions below can apply also to the case  of  inviscid flows, 
satisfying the Euler equations.                   

DEFINITION 3.1 (Smooth solutions to the Navier-Stokes system). A smooth set of data for the
Navier-Stokes system up to time T is a triplet (u0, f, T), where 0 < T < ∞ is a time, the initial
velocity vector field u0 : R3  → R3  and the forcing term f : [0, T] × R3  → R3  are assumed to be
smooth on R3  and [0, T] × R3  respectively (thus, u0 is infinitely differentiable in space, and f is
infinitely differentiable in space time), and u0 is furthermore required to be divergence-free: 

∇ · u0 = 0. 

 If f = 0, we say that the data is homogeneous.

In the proofs of the main conjecture  we will not consider any external force, thus the data
will  always  be  homogeneous.  But  we  will  state  intermediate  propositions  with  external
forcing. Next we are defining simple diffentiability of the data by  Sobolev spaces. 

DEFINITION 3.2 We define the H1 norm   (or enstrophy norm)  H1 (u0, f, T) of the data to be
the quantity 

H1 (u0, f, T) :=   )()(0 3131 RHLRH XtX
fu  and say that (u0, f, T) is H1 if

 H1 (u0, f, T) < ∞. 

DEFINITION 3.3 We say that a smooth set of data (u0, f, T) is Schwartz if, for all integers α, m,
k ≥ 0, one has 
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Thus, for instance, the solution or initial data having Schwartz property implies having the
H1 property. 

DEFINITION 3.4 A  smooth solution to the Navier-Stokes system, or a  smooth solution for
short, is a quintuplet (u, p, u0 , f, T), where (u0, f, T) is a smooth set of data, and the velocity
vector field u : [0, T] × R3  → R3  and pressure field p : [0, T]× R3  → R  are smooth functions on
[0, T]× R3  that obey the Navier-Stokes equation (eq. 1) but with external forcing term f, 
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and also the incompressibility  property  (eq.2) on all  of [0, T] × R3 ,   but also the initial

condition u(0, x) = u0(x)   for all x ∈ R3

DEFINITION 3.5 Similarly, we say that (u, p, u0, f, T) is H1 if the associated data (u0, f, T) is H1 ,
and in addition one has 
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We say that the solution is incomplete in [0,T), if it is defined only in [0,t] for every t<T.

We use here the notation of mixed norms (as e.g. in TAO, T 2013). That is if )(k
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classical Sobolev norm ,of smooth function of a spatial domain Ω,  Ru : ,  I is a time
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Similar instead of the Sobolev norm for other norms of function spaces.

We also denote by   )(k
xC  ,  for  any natural  number  0k ,  the space of  all  k  times

continuously differentiable functions  Ru : , with finite the next norm






 


k

j
L

j

C
x

k
x

uu
0

)()(
:

We use also the next notation for hybrid norms. Given two normed spaces X, Y on the same
domain (in either space or time), we endow their intersection YX  with the norm 

YXYX
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In particular in the we will use the next notation for intersection functions spaces, and their
hybrid norms. 
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We also use the big O notation, in the standard way, that is X=O(Y) means 

CYX  for some constant C. If the constant C depends on a parameter s, we denote it by
Cs  and we write X=Os(Y).

We denote the difference of two sets A, B by A\B. And we denote  Euclidean balls

by }:{:),( 3 raxRxraB  , where |x| is the Euclidean norm. 

With the above terminology the target  Clay millennium conjecture in this  paper can be
restated as the next proposition

The 4th Clay millennium problem (Conjecture A)

(Global  regularity  for  homogeneous  Schwartz  data).  Let  (u0,  0,  T)  be  a  homogeneous
Schwartz set of data. Then there exists a smooth finite energy solution (u, p, u0, 0, T) with the
indicated data (notice it is  for any T>0, thus global in time).

4.  Some  known or  directly  derivable,  useful  results  that  will  be
used.



In this  paragraph I state ,some known theorems and results, that are to be used in this
paper, so that the reader is not searching them in the literature and can have a direct, at a
glance, image of what holds and what is proved. 

A review of this paragraph is as follows:

Propositions  4.1,  4.2  are  mainly  about  the  uniqueness  and  existence  locally  of  smooth
solutions  of  the  Navier-Stokes  and  Euler  equations  with  smooth  Schwartz  initial  data.
Proposition  4.3  are  necessary  or  sufficient  or  necessary  and  sufficient  conditions  of
regularity (global in time smoothness) for the Euler equations without viscosity. Equations 8-
15 are forms of the energy conservation and finiteness of the energy loss in viscosity or
energy  dissipation.  Equations  16-18  relate  quantities  for   the  conditions  of  regularity.
Proposition  4.4  is the equivalence of smooth Schwartz  initial data with smooth compact
support initial data for the formulation of the 4th Clay millennium problem. Propositions 4.5-
4.9 are necessary  and sufficient conditions  for regularity,  either for  the Euler  or Navier-
Stokes  equations,   while  Propositions  4.10  is  a  necessary  and  sufficient  condition  of
regularity for only the Navier-Stokes with non-zero viscidity.  

In the next I want to use, the basic local existence and uniqueness of smooth solutions to the
Navier-Stokes (and Euler) equations , that is usually referred also as the well posedness, as it
corresponds to the existence and uniqueness of the physical reality causality of the flow. The
theory of well-posedness for smooth solutions is summarized in an adequate form for this
paper by the Theorem 5.4 in TAO, T. 2013.

I give first the definition of  mild solution  as in TAO, T. 2013 page 9. Mild solutions must
satisfy   a  condition on the pressure  given by  the  velocities.  Solutions  of  smooth initial
Schwartz data are always mild, but the concept of mild solutions is a generalization to apply
for non-fast decaying in space initial data , as the Schwartz data, but for which data we may
want also to have local existence and uniqueness of solutions. 

DEFINITION 4.1

We  define a  H1 mild solution (u, p, u0, f, T) to be fields u, f :[0, T] × R3  → R3, 

p : :[0, T] × R3  → R, u0 : R3  → R3, with 0 < T < ∞ , obeying the regularity hypotheses
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with the pressure p being given by (Poisson)
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(Here the summation conventions is used , to not write the Greek big Sigma).

which obey the incompressibility conditions  (eq. 2), (eq. 3)  and satisfy the integral form of 
the Navier-Stokes equations
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with initial conditions   u(x,0)=u0(x) .

We notice that the definition holds also for the in viscid flows, satisfying the Euler equations.
The viscosity coefficient here has been normalized to  ν=1.              

In   reviewing the local well-posedness theory of H1  mild solutions, the next can be said. The
content of the theorem 5.4 in TAO, T. 2013  (that I also state here for the convenience of the
reader and from which derive our  PROPOSITION 4.2)  is largely standard (and in many cases
it has been  improved by  more powerful  current well-posedness theory). I mention here for
example the relevant research by  PRODI G 1959 and  SERRIN,J 1963, The local existence
theory follows from the work of KATO, T.  PONCE, G. 1988  , the regularity of mild solutions
follows  from  the  work  of  LADYZHENSKAYA,  O.  A.  1967  .  There  are  now  a  number  of
advanced local well-posedness results at  regularity, especially that of  KOCH, H., TATARU,
D.2001.

There  are  many  other  papers  and  authors   that  have  proved  the  local  existence  and
uniqueness of smooth solutions with different methods. As it is referred  in C. L. FEFFERMAN
2006 I refer too  the reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4,

I state here for the convenience of the reader the summarizing theorem 5.4 as in TAO T.
2013. I omit the part (v) of Lipchitz stability of the solutions  from the statement of the
theorem. I  use the standard O()  notation here, x=O(y) meaning x<=cy for some absolute
constant c. If the constant c depends on a parameter k, we set it  as index of  Ok(). 

It is important to remark here that the existence and uniqueness results locally in time (well-
posedness) ,  hold also not only for the case of viscous flows following the Navier-Stokes
equations, but also for the case of inviscid flows under the Euler equations. There are many
other papers and authors  that have proved the local existence and uniqueness of smooth
solutions  both for the Navier-Stokes and the Euler equation with the same methodology ,
where the value of the viscosity coefficient v=0, can as well be included. I refer e.g.   the
reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4 , paragraph 3.2.3, and
paragraph 4.1 page 138. 

PROPOSITION  4.1       (Local well-posedness in H1). Let (u0,  f, T) be H1 data.



(i) (Strong solution) If (u, p, u0, f, T) is an H1 mild solution, then
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(ii) (Local existence and regularity) If
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for a sufficiently small absolute constant c > 0, then there exists

a H1 mild solution (u, p, u0, f, T) with the indicated data, with
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for each k>=1 . In particular, one has local existence whenever

T is sufficiently small,  depending on the norm H1(u0, f, T).

(iii) (Uniqueness) There is at most one H1 mild solution (u, p, u0, f, T)

with the indicated data.

 (iv) (Regularity) If (u, p, u0, f, T ) is a H1 mild solution, and (u0, f, T)

is (smooth) Schwartz data, then u and p is smooth solution; in fact, one has 
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t   for all j, K >=0.

For the proof of the above theorem, the reader is referred to the  TAO, T. 2013 theorem 5.4,
but also to the papers and books , of the above mentioned other authors. 



Next I state the local existence and uniqueness of smooth solutions of the Navier-Stokes
(and Euler) equations with smooth Schwartz initial conditions , that I will use in this paper ,
explicitly as a PROPOSITION  4.2 here. 

 PROPOSITION  4.2 Local  existence and uniqueness of smooth solutions or smooth well
posedness. Let  u0(x) , p0(x) be  smooth and Schwartz initial data at t=0 of the Navier-Stokes
(or Euler) equations, then there is a finite time interval [0,T] (in general depending on the
above initial conditions) so that there is a unique smooth local in time solution of the Navier-
Stokes (or Euler) equations

  u(x) , p(x) C(R3 [0,T])

Proof: We simply apply the PROPOSITION 4.1 above and in particular , from the part (ii) and
the assumption in the PROPOSITION  4.2, that the initial data are smooth Schwartz , we get
the local existence of H1 mild solution (u, p, u0, 0, T). From the part (iv) we get that it is also a
smooth solution. From the part (iii), we get that it is unique. 

As an alternative we may apply the theorems in MAJDA A.J-BERTOZZI A. L. 2002  page 104
Theorem  3.4  ,  paragraph  3.2.3,  and  paragraph  4.1  page  138,  and  getthe  local  in  time
solution, then derive from the part (iv) of the PROPOSITION 4.1 above, that they are also in
the classical sense smooth. QED.

Remark 4.1 We remark here that the property of  smooth Schwartz initial data, is not in
general  conserved  in  later  times  than  t=0,  of  the  smooth  solution  in  the  Navier-Stokes
equations,  because it  is a very strong fast  decaying property at  spatially  infinity.  But for
lower rank derivatives of the velocities (and vorticity) we have the (global and) local energy
estimate , and (global and) local enstrophy estimate theorems that reduce the decaying of
the solutions at later times than t=0,  at spatially infinite to the decaying of the initial data at
spatially  infinite.  See  e.g.  TAO,  T.  2013,  Theorem  8.2  (Remark  8.7)  and  Theorem  10.1
(Remark 10.6).

Furthermore in the same paper of formal formulation of the Clay millennium conjecture , L.
FEFFERMAN 2006 (see page 3rd line 6 from above),  it is stated that the 3D global regularity
of such smooth solutions is controlled by the bounded accumulation in finite time intervals
of the vorticity  (Beale-Kato-Majda).  I  state this also explicitly for the convenience of the
reader, for smooth solutions of the Navier-Stokes equations with smooth Schwartz initial
conditions, as the PROPOSITION 4.6 When we say here bounded accumulation e.g. of the
deformations D,  on finite internals, we mean in the sense e.g. of the  proposition 5.1    page
171 in the book MAJDA A.J-BERTOZZI A. L. 2002 , which is a definition designed to control
the existence or not of finite blowup times. In other words  for any finite time interval 

[0, T], there is a constant M such that 
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I  state  here  for  the convenience of  the reader,  a  well  known proposition of  equivalent
necessary and sufficient conditions of existence globally in time of solutions of the Euler
equations, as inviscid smooth flows. It is the   proposition 5.1 in MAJDA A.J-BERTOZZI A. L.
2002 page 171.

The stretching is defined by 

  DtxS :),(  if 0  and 0:),( txS  if 0  where 
 : , ω being the vortcity.  

 PROPOSITION  4.3   Equivalent Physical Conditions for Potential Singular Solutions of the
Euler equations . The following conditions are equivalent for smooth Schwartz initial data:

(1) The time interval, [0, T*) with T* < ∞ is a maximal interval of smooth Hs

existence of solutions for the 3D Euler equations.

(2) The vorticity ω accumulates so rapidly in time that
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(3) The deformation matrix D accumulates so rapidly in time that
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 as t tends to T*

 (4) The stretching factor S(x, t)  accumulates so rapidly in time that
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The next theorem establishes the equivalence of smooth connected compact support initial
data with the smooth Schwartz initial data, for the homogeneous version  of the 4  th   Clay
Millennium problem. It can be stated either for local in time smooth solutions or global in
time smooth solutions. The advantage assuming connected compact support smooth initial
data, is obvious, as this is preserved in time by smooth functions and also integrations are
easier when done on compact connected sets.

PROPOSITION  4.4.  (3D  global  smooth  compact  support  non-homogeneous  regularity
implies  3D  global  smooth  Schwartz  homogeneous  regularity) If  it  holds  that  the
incompressible viscous (following the Navier-Stokes equations) 3 dimensional  local in time
[0,T] , finite energy, flow-solutions with smooth compact support (connected with smooth
boundary)  initial  data of velocities and pressures (thus finite initial  energy) and smooth
compact support (the same connected support with smooth boundary) external forcing for
all times t>0,  exist also globally in time t>0 (are globally regular) then it also holds that the
incompressible viscous (following the Navier-Stokes equations) 3 dimensional  local in time
[0,T]  ,  finite  energy,  flow-solutions  with  smooth  Schwartz   initial  data  of  velocities  and
pressures  (thus finite  initial  energy)  ,   exist  also globally  in  time for  all  t>0 (are  regular
globally in time).

(for a proof see KYRITSIS, K. 2017, PROPOSITION 6.4)

Remark 4.2 Finite initial energy and energy conservation equations:

When we want to prove that the smoothness in the local in time solutions of the Euler or
Navier-Stokes equations is conserved, and that they can be extended indefinitely in time, we
usually apply a  “reduction ad absurdum” argument:  Let the maximum finite time T* and
interval [0,T*) so that the local solution can be extended smooth in it.. Then the time T* will
be a blow-up time, and if we manage to extend smoothly the solutions on [0,T*]. Then there
is no finite Blow-up time T* and the solutions holds in [0,+∞). Below are listed necessary and
sufficient conditions for this extension to be possible. Obviously not smoothness assumption
can be made for the time T*, as this is what must be proved. But we still can assume that at
T* the energy conservation and momentum conservation will hold even for a singularity at
T*, as these are  universal laws of nature, and the integrals  that calculate them, do not
require  smooth  functions  but  only  integrable  functions,  that  may  have  points  of
discontinuity.  

A very  well  known form of  the energy  conservation  equation and accumulative  energy
dissipation is the next:
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is the initial finite energy


3

2
),(

2

1
)(

R
dxTxuTE                  (eq. 10) 

 is the final finite energy
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is the accumulative finite energy dissipation from time 0 to time T , because of viscosity in to
internal heat of the fluid. For the Euler equations it is zero. Obviously

ΔΕ<=Ε(0)>=E(T)                     (eq. 12) 

The rate of energy dissipation is given by
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                                                                   (eq. 13)

(v, is the viscosity coefficient. See e.g.  MAJDA, A.J-BERTOZZI, A. L. 2002  Proposition 1.13,
equation (1.80) pp. 28)

At  this  point  we  may  discuss,  that  for  the  smooth  local  in  time  solutions  of  the  Euler
equations,  in other words for  flows without viscosity,  it  is  paradoxical  from the physical
point of view to assume, that the total accumulative in time energy dissipation is zero while

the time or space-point density of the energy dissipation (the former is the  Ltxu
2

),( ), is

not zero! It is indeed from the physical meaningful point of view unnatural, as we cannot
assume that there is a loss of energy from to viscosity at a point and a gain from “anti-



viscosity” at another point making the total zero. Neither to assume that the time and point
density of energy dissipation is non-zero or even infinite at a space point, at a time, or in
general at a set of time and space points of measure zero and zero at all other points, which
would still  make the total accumulative energy dissipation zero. The reason is of course that
the  absence  of  viscosity,  occurs  at  every  point  and  every  time,  and  not  only  in  an
accumulative energy level. If a physical researcher does not accept such inviscid solutions of
the Euler equation as having physical meaning, then for all other solutions that have physical

meaning and the  Ltxu
2

),(  is zero (and come so from appropriate initial data), we may

apply  the  PROPOSITION  4.7  below and  deduce  directly,  that  the  local  in  time  smooth
solutions  of  the  Euler  equations,  with  smooth  Schwartz  initial  data,  and  finite  initial
energy, and zero time and space point energy dissipation density due to viscosity, are also
regular (global in time smooth).  For such regular inviscid solutions, we may see from the
inequality in (eq. 15) below, that the total L2-norm of the vorticity is not increasing by time.
We capture this remark in PROPOSITION 4.11 below.

Remark 4.3 The next are 3 very useful inequalities for the unique local in time [0,T], smooth
solutions u of the Euler and Navier-Stokes equations with smooth Schwartz initial data and
finite initial energy  (they hold for more general conditions on initial data, but we will not
use that):

By ||.||m   we denote the Sobolev norm of order m. So if m=0 itis essentially the L 2-norm. By
||.||L∞  we denote the supremum norm, u is the velocity,  ω is the vorticity, and cm, c are
constants.
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(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp117, equation (3.79))
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(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp117, equation (3.80))
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(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp118, last equation of the
proof)



The next are a list of well know necessary and sufficient conditions , for regularity (global in
time  existence  and  smoothness)  of  the  solutions  of  Euler  and  Navier-Stokes  equations,
under the standard assumption in  the 4  th   Clay  Millennium problem of  smooth Schwartz
initial data, that after theorem Proposition 4.4 above can be formulated equivalently with
smooth compact connected support data. We denote by T* be the maximum Blow-up time
(if it exists) that the local solution u(x,t) is smooth in [0,T*).

1) PROPOSITION 4.5 (Necessary and sufficient condition for regularity)
The local solution u(x,t)  ,  t  in [0,T*)  of the Euler or Navier-Stokes equations,  with
smooth Schwartz initial data, can be extended to [0,T*], where T* is the maximal time
that the local solution u(x,t) is smooth in [0,T*), if and only if the  Sobolev norm ||
u(x,t)||m  ,  m>=3/2+2 ,  remains bounded , by the same bound in all of [0,T*), then ,
there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

Remark  4.4 See e.g. . MAJDA, A.J-BERTOZZI, A. L. 2002  , pp 115, line 10 from below)

2) PROPOSITION 4.6 (Necessary and sufficient condition for regularity. Beale-Kato-
Majda)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact connected support initial data, can be extended to [0,T*], where T*
is the maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for
the finite time interval [0,T*], there exist a bound M>0, so that the  vorticity has
bounded by M, accumulation in [0,T*]:

 


*

0

),(
T

L
Mdttx (eq17)

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

 Remark 4.5 See e.g. . MAJDA, A.J-BERTOZZI, A. L. 2002  , pp 115, Theorem 3.6. Also
page 171 theorem 5.1 for the case of inviscid flows.   . See also LEMARIE-RIEUSSET
P.G. 2002 .  Conversely if regularity holds, then in any interval from the smoothness
in  a  compact  connected  set,  the  vorticity  is  supremum  bounded.  The  above
theorems in  the book MAJDA A.J-BERTOZZI  A.  L.  2002 guarantee that the above
conditions extent the local in time solution to global in time , that is to solutions (u,
p, u0, f, T ) which is    H1 mild solution, for any T. Then applying the part (iv) of the
PROPOSITION  4.1  above, we get that this solutions is also smooth in the classical
sense, for all T>0, thus globally in time smooth.



3) PROPOSITION 4.7 (Necessary and sufficient condition for regularity)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact connected support initial data, can be extended to [0,T*], where T*
is the maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for
the  finite  time  interval  [0,T*],  there  exist  a  bound  M>0,  so  that  the  vorticity  is
bounded by M, supremum norm L∞ in [0,T*]:

Mtx
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),(  for all t in [0,T*)                                                (eq. 18)

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

 Remark  4.6 Obviously  if  Mtx
L
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Mdttx  and  the  previous  proposition  4.6  applies.

Conversely if regularity holds, then in any interval from smoothness in a compact
connected set, the vorticity is supremum bounded.

4) PROPOSITION 4.8 (Necessary and sufficient condition for regularity)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact connected support initial data, can be extended to [0,T*], where T*
is the maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for
the  finite  time  interval  [0,T*],  there  exist  a  bound  M>0,  so  that  the  space
accelerations are bounded by M, in the supremum norm L∞ in [0,T*]:

Mtxu
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),(  for all t in [0,T*)  (eq. 19)

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

Remark  4.7 Direct  from  the  inequality  (eq.14)    and  the  application  of  the
proposition 4.5.   Conversely if regularity holds, then in any finite time interval from
smoothness, the accelerations are  supremum bounded.

5)  PROPOSITION 4.9 (FEFFERMAN C. L. 2006. Necessary and sufficient condition for 
regularity)
The local solution u(x,t) , t in [0,T*)  of the Navier-Stokes equations with non-zero
viscosity, and with smooth compact connected support initial data, can be extended
to [0,T*], where T* is the maximal time that the local solution u(x,t) is smooth in
[0,T*), if and only if 

the velocities ||u(x,t)|| do not get unbounded as t->T*.

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞).



Remark 4.8.This is mentioned in the Official formulation of the 4 th Clay Millennium
problem FEFFERMAN C. L. 2006 pp.2 , line 1 from below: quote “...For the Navier-
Stokes equations (v>0) , if there is a solution with a finite blowup time T, then the
velocities ui(x,t), 1<=i<=3 become unbounded near the blowup time.” The converse-
negation of this is that if the velocities remain bounded near the T*, then there is no
Blowup at T* and the solution is regular or global in time smooth. Conversely of
course  ,  if  regularity  holds,  then  in  any  finite  time  interval,  because  of   the
smoothness, the velocities, in a compact set are  supremum bounded.

I did not find a dedicated such theorem in the books or papers that I studied, but
since  prof.  C.L  Fefferman  ,  who  wrote  the  official  formulation  of  the  4 th Clay
Millennium problem, was careful to specify that is in the case of non-zero viscosity
v>0, and not of the Euler equations as the other conditions,  I  assume that he is
aware of a proof of it. 

 

6) PROPOSITION 4.10. ( Necessary  condition for regularity)
Let  us  assume  that  the  local  solution  u(x,t)  ,  t  in  [0,T*)   of  the   Navier-Stokes
equations  with  non-zero  viscosity,  and  with  smooth  compact  connected  support
initial data, can be extended to [0,T*], where T* is the maximal time that the local
solution  u(x,t)  is  smooth  in  [0,T*),  in  other  words  that  are  regular,  then   the
trajectories-paths length  l(a,t) does not get unbounded as 

t->T*.

Proof:  Let  us  assume  that  the  solutions  is  regular.  Then  also  for  all  finite  time
intervals  [0,T]  ,  the  velocities  and  the  accelerations  are  bounded  in  the  L ∞   ,
supremum norm, and this holds along all trajectory-paths too. Then also the length
of the trajectories , as they are given by the formula
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are also bounded and finite (see e.g.  APOSTOL T. 1974  ,  theorem 6.6 p128 and
theorem 6.17 p 135). Thus if at a trajectory the lengths becomes unbounded as t
goes to  T*, then there is a blow-up.      QED.

7) PROPOSITION 4.11.( Physical meaningful inviscid solutions of the Euler equations 
are regular)
Let us consider the local solution u(x,t) , t in [0,T*)  of the  Euler  equations with zero
viscosity, and with smooth compact connected support initial data.  If we conside,r
because  of  zero-viscosity  at  every  space  point  and  at  every  time,  as  physical
meaningful solutions those that also the time and space points energy dissipation

density, due to viscosity, is zero or   Ltxu
2

),( =0  , then , they  can be extended

smooth  to all times [0,+∞), in other words they are regular. 

Proof: Direct from the PROPOSITION 4.8.       QED.



            

Remark 4.9. 

Similar results about the local smooth solutions, hold also for the non-homogeneous case
with external forcing which is nevertheless space-time smooth of bounded accumulation in
finite time intervals.  Thus an alternative formulation to see that the velocities and their
gradient , or in other words up to their 1 st derivatives and the external forcing also up to the
1st derivatives , control the global in time existence  is the next proposition. See TAO. T. 2013
Corollary 5.8

PROPOSITION 4.12  (Maximum Cauchy development)

Let (u0, f, T) be H1  data. Then at least one of the following two statements hold:

1) There exists a mild H1 solution (u, p, u0, f, T) in [0,T] ,with the given data.

2)There exists a blowup time 0 < T*< T and an incomplete mild H1 solution 

(u, p, u0, f, T* ) up to time T* in [0, T*), defined as complete on every [0,t], t<T *  which blows
up in the enstrophy  H1 norm in the sense that
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Remark 4.10 The term “almost smooth”  is defined in TAO, T. 2013, before Conjecture 1.13. 
The only thing that almost smooth solutions lack when compared to smooth solutions is a 
limited amount of time differentiability at the starting time t = 0;

The  term  normalized  pressure,  refers  to  the  symmetry  of  the  Euler  and  Navier-Stokes
equations to substitute the pressure, with another that differs at, a constant in space but
variable in time measureable function. In particular normalized pressure is one that satisfies
the (eq. 7) except for a measurable at  a, constant in space but variable in time measureable
function. It is proved in TAO, T. 2013, at Lemma 4.1, that the pressure is normalizable (exists
a normalized pressure) in almost smooth  finite energy solutions, for almost all times.  The
viscosity coefficient in these theorems of the above TAO paper has been normalized to  ν=1.

                                                          

5.  Conservation of the particles as a local structure of fluids in the
context of continuous fluid mechanics. Proof of the regularity for
fluids with conservation of particles as a local structure, and the



hypotheses of the official formulation of the 4th Clay millennium
problem, for the Euler and Navier-Stokes equations. 

         Remark 5.1  (Physical interpretation of the definition 5.1) The smoothness of the
particle-trajectory mapping (or displacement transformation of the points), the smoothness
of the velocity field and vorticity field, is a condition that involves statements in the orders of
micro scales  of  the fluid,  larger,  equal  and also by  far  smaller  that  the size  of  material
molecules, atoms and particles, from which it consists. This is something that we tend to
forget in continuous mechanics, because continuous mechanics was formulated before the
discovery of the existence of material atoms. On the other-hand it is traditional to involve
the atoms and particles of the fluid, mainly in mathematical models of statistical mechanics.
Nevertheless we may formulate properties of material fluids in the context of continuous
fluid  mechanics,  that  reflect  approximately  properties  and  behavior  in  the  flow  of  the
material atoms. This is in particular the DEFINITION 5.1. For every atom or material particle
of a material fluid, we may assume around it a ball of  fixed radius, called particle range
depending on the size of the atom or particle, that covers the particle and a little bit of the
electromagnetic, gravitational or quantum vacuum field around it, that their velocities and
space-time accelerations are affected by the motion of the molecule or particle.  E.g. for
the case water, we are speaking here for molecules of H2O, that are estimated to have a
diameter of 2.75 angstroms or 2r= 2.75*10^(-10) meters, we may define as water molecule
particle range the balls B(r0)  of radius r0=3*10^(-10) meters around the water molecule.  As
the fluid flows, especially in our case here of incompressible fluids, the shape and size of the
molecules do not change much, neither there are significant differences of the velocities and
space-time accelerations of parts of the molecule. Bounds δu δω  of such differences remain
constant as the fluid flows.  We may call  this  effect  as the  principle of  conservation of
particles as a local structure.  This principle must be posed in equal setting as the energy
conservation and incompressibility together with the Navier-Stokes or Euler equations. Of
course  if  the  fluid  is  say  of  solar  plasma  matter,  such  a  description  would  not  apply.
Nevertheless then incompressibility is hardly a property of it.  But if we are talking about
incompressible fluids that the molecule is conserved as well as the atoms and do not change
atomic number (as e.g. in fusion or fission) then this principle is physically valid. The principle
of  conservation   of  particles  as  a  local  structure,  blocks  the  self-similarity  effects  of
concentrating the energy and turbulence in very small areas and creating thus a Blow-up. It
is the missing invariant in the discussion of many researchers about  superctitical, critical and
subcritical invariants in scale transformations of the solutions. 

The next DEFINITION 5.1 formulates precisely mathematically this principle for the case of
incompressible fluids. 

DEFINITION 5.1. (Conservation of particles as local structure in a fluid)

Let  a  smooth  solution  of  the  Euler  or  Navier-Stokes  equations  for  incompressible
fluids, that exists in the time interval [0,T). We may  assume initial data on all of R3 or



only on a connected compact support V0 . For simplicity let us concentrate only on the
latter simpler case. Let us denote by F  the displacement transformation of the flow
Let us also denote by g the partial derivatives of 1st order in space and time , that is

)(xub
t

a
x ,  |α|=1, |b|<=1,and call  then space-time accelerations . We say that

there  is  conservation  of  the  particles in  the  interval  [0,T)  in  a  derivatives
homogenous setting,  as a  local structure of the solution if and only if:

There is a small radius r, and small constants δx ,  δu  ,  δω , >0 so that for all t in [0,T)
there is a finite cover Ct  (in the case of initial data on R3 , it is infinite cover, but finite
on  any  compact  subset)  of  Vt   ,  from balls  B(r)  of  radius  r,  called  ranges  of  the
particles , such that:

4) For an x1 and x2  in a ball B(r) of Vs , s in [0,T), ||F(x1 )-F(x2)||<=r+ δx  for all t>=s  in
[0,T).

5) For an x1 and x2  in a ball B(r) of Vs ,s in [0,T), ||u(F(x1 ))-u(F(x2))||<= δu  for all t >=s
in [0,T).

6) For an x1 and x2  in a ball B(r) of Vs , s in [0,T), ||g(F(x1 ))-g(F(x2))||<= δω  for all t >=s
in [0,T).
If we state the same conditions 1) 2) 3) for all times t in [0,+∞) , then we say that
we have the strong version of the conservation of particles as  local structure. 

                  

PROPOSITION 5.1 (Velocities on trajectories in finite time intervals with finite total
variation, and bounded in the supremun norm uniformly in time.)

Let ut : V(t) -> R3   be  smooth local in time in [0,T*) ,velocity fields solutions of the
Navier-Stokes or Euler equations, with compact connected support V(0) initial data,
finite initial energy E(0) and conservation of particles in [0,T*)  as a local structure .
The [0,T*) is the maximal interval that the solutions are smooth. Then for t in [0,T*)
and  x in V(t), the velocities are uniformly in time bounded in the supremum norm by
a bound M independent of time t.  
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  for all t in  [0,T*).

Therefore the velocities on the trajectory paths, in finite time intervals are of bounded
variation and the trajectories in finite time interval, have finite length.

1st Proof (Only for the Navier-Stokes Equations):  Let us assume, that the velocities
are  unbounded  in  the  supremum  norm,  as  t  converges  to  T*.  Then  there  is  a
sequence of times tn  with tn converging to  time T* , and sequence of corresponding



points xn  (tn  ),  for which the norms of the velocities ||u( xn  (tn  ),  tn)|| converge to
infinite. 




n
nnn ttxxuLim ||)),,((|| . (eq.21) 

From  the  hypothesis  of  the  conservation  of  particles  as  a  local  structure  of  the
smooth solution in [0,T*), for every tn There is a finite cover Ctn  of particle ranges, of
Vtn   so that xn  (tn  ) belongs to one such ball or particle-range Bn(r) and for any other
point y(tn) of Bn(r), it holds that ||u(xn (tn ), tn)-u(y(tn),tn)||<= δu . Therefore

       ||u(xn (tn ), tn)||- δu <= ||u(y(tn),tn)||<= ||u(xn (tn ), tn)||+ δu                        (eq.22) 

for all times tn in [0,T*) .

By integrating spatially on the ball Bn(r), and taking the limit as n->+∞ we deduce that
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But this also means as we realize easily, that also 
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(eq. 23)

Which nevertheless means that the total kinetic energy of this small, but finite and of
constant radius, ball, converges to infinite, as tn converges to T*. This is impossible by
the finiteness of the initial energy, and the conservation of energy. Therefore the
velocities are bounded uniformly ,in the supremum norm, in the time interval [0,T*). 

Therefore the velocities on the trajectory paths, are also bounded in the supremum
norm , uniformly in the time interval [0,T*). But this means by PROPOSITION 4.9  that
the  local  smooth  solution  is  regular  ,  and  globally  in  time  smooth,  which  from
PROPOSITION  4.8  means  that  the  Jacobian  of  the  1st order  derivatives  of  the
velocities are also bounded in the supremum norm uniformly in time bounded in
[0,T*).    Which in its turn gives that the  velocities are of bounded variation on the
trajectory paths (see e.g. APOSTOL T. 1974  , theorem 6.6 p128 and theorem 6.17 p
135)  and  that  the  trajectories  in  have  also  finite  length  in  [0,T*),  because  the



trajectory length is given by the formula 
T
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       QED.

2nd Proof (Both for the Euler and Navier-Stokes equations):  Instead of utilizing the
condition  2)  of  the definition  5.1,  we  may utilize  the  condition  3).  And we start
assuming that the Jacobian of the velocities is unbounded in the supremum norm
(instead of the velocities), as time goes to the Blow-up time T*. Similarly we conclude
that the energy dissipation density at a time on balls that are particle-ranges goes to
infinite, giving the same for the total accumulative in time energy dissipation (see
(eq. 11), which again is impossible from the finiteness of the initial energy and energy
conservation. Then by PROPOSITION 4.8 we conclude that the solution is regular, and
thus also that the velocities are bounded in the supremum norm, in all finite time
intervals. Again we deduce in the same way, that the total variation of the velocities
is finite in finite time intervals and so are the lengths of the trajectories too. 
               QED.

PROPOSITION 5.2 (Global regularity as in the 4th Clay Millennium problem).

Let the Navier-Stokes or Euler equations with smooth compact connected initial data ,
finite initial energy and conservation of particles as local structure. Then the unique
local in time solutions are also regular (are smooth globally in time).

Proof:  We  apply  the  PROPSOITION  5.1   above  and  the  necessary  and  sufficient
condition  for  regularity  in  PROPSOITION 4.9  (which  is  only  for  the  Navier-Stokes
equations).  Furthermore we apply the part of the 2d proof of the PROPOSITION 5.1 ,
that concludes regularity from PROPSOITION 4.8 which holds for both the Euler and
Navier-Stokes equations           QED.  

6. Bounds of measures of the turbulence from length of the trajec-
tory paths, and the total variation of the velocities, space accel-
eration and vorticity. The concept of homogeneous smoothness. 

Remark 6.1 In  the  next  we  define  a  measure  of  the  turbulence of  the
trajectories,  of  the  velocities,  of  space-time  accelerations  and  of  the  vorticity,
through the total variation of the component functions in finite time intervals. This is
in the context of deterministic fluid dynamics and not stochastic fluid dynamics. We
remark that in the case of a blowup the measures of turbulence below will become
infinite. 



DEFINITION 6.1 (The variation measure of turbulence )

 Let smooth local in time in [0,T] solutions of the Euler or Navier-Stokes equations. The
total length L(P) of a trajectory path P, in the time interval [0,T] is defined as the variation
measure  of  turbulence  of  the  displacements on  the  trajectory  P,  in  [0,T].The  total
variation TV(||u||)  of  the norm of  the velocity  ||u||  on  the  trajectory  P  in  [0,T]  is
defined as  the variation measure of turbulence  of the velocity  on the trajectory P in
[0,T]. The total variation TV(g) of the space-accelerations g (as in DEFINITION 5.1) on the
trajectory P in [0,T] is defined as the variation measure of turbulence of the space-time
accelerations on the trajectory P in [0,T]. The total variation TV(||ω||) of the norm of the
vorticity  ||ω||   on  the  trajectory  P  in  [0,T]  is  defined  as  the  variation  measure  of
turbulence of the vorticity on the trajectory P in [0,T]. 

          

 PROPOSITION  6.1  Conservation  in  time  of  the  boundedness  of  the  maximum
turbulence, that depend only on the initial data and time lapsed.

Let the  Euler  or  Navier-Stokes equations  with  smooth compact connected initial  data
finite initial  energy and conservation of the particles as a local structure. Then for all
times t, there are bounds M1  (t),  M2  (t),  M3(t),  so that the maximum turbulence of the
trajectory paths , of the velocities and of the space accelerations are bounded respectively
by the above universal bounds, that depend only on the initial data and the time lapsed. 

Proof:  From  the  PROPOSITIONS  5.1,  5.2  we  deduce  that  the  local  in  time  smooth
solutions are smooth for all times as they are regular. Then in any time interval [0,T], the
solutions are smooth, and thus from the PROPOSITION 4.8, the space acceleration g, are
bounded in [0,T], thus also as smooth functions their total variation TV(g) is finite, and
bounded. (see e.g. APOSTOL T. 1974  , theorem 6.6 p128 and theorem 6.17 p 135).From
the PROPOSITION 4.7, the vorticity is smooth and bounded in [0,T], thus also as smooth
bounded functions its total variation TV(||ω||) is finite, and bounded on the trajectories.
From the PROPOSITION 4.9, the velocity is smooth and bounded in [0,T], thus also as
smooth bounded functions its  total  variation TV(||u||) is  finite,  and bounded on the
trajectories.  From  the  PROPOSITION  4.10,  the  motion  on  trajectories  is  smooth  and
bounded in [0,T], thus also as smooth bounded functions its total variation which is the
length of the trajectory path L(P) is finite, and bounded in [0,T].In the previous theorems
the bounds that we may denote them here by M1 (t), M2 (t),  M3(t),  respectively as in the
statement of the current theorem, depend on the initial data, and the time interval [0,T]. 

        QED.

Remark 6.2.  (Homogeneity of smoothness relative to a property P.)  There are many
researchers that they consider that the local smooth solutions of the Euler or Navier-
Stokes equations with smooth Schwartz initial data and finite initial energy,(even without
the  hypothesis  of  conservation  of  particles  as  a  local  structure)  are  general  smooth
functions.  But  it  is  not  so!  They  are  special  smooth  functions  with  the  remarkable
property that there are some critical properties P i that if such a property holds in the time



interval [0,T) for the coordinate partial space-derivatives of 0, 1, or 2 order , then this
property holds also for the other two orders of derivatives. In other words if it holds for
the 2 order then it holds for the orders 0, 1 in [0,T) . If it holds for the order 1, then it
holds for the orders 0, 2 in [0,T]. If it holds for the order 0, them it holds also for the
orders  1,2 in  [0,T].  This  pattern e.g.  can be observed for  the property  P1 of  uniform
boundedness in the supremum norm, in the interval [0,T*) in the PROPOSITIONS 4.5-4.10
. But one might to try to prove it also for a second property P2  which is the finitness of
the total variation of the coordinates of the partial derivatives, or even other properties
P3 like local in time Lipchitz conditions.  This creates a strong bond or coherence among
the derivatives and might be called homogeneous smoothness relative to a property P.
We  may  also  notice  that  the  formulation  of  the  conservation  of  particles  as  local
structure is in such a way, that as a property, it shows the same pattern of homogeneity
of smoothness relative to the property of uniform in time bounds P4  ,1), 2), 3)   in the
DEFINITION 5.1.  It seem to me though that even this strong type of smoothness is not
enough to derive the regularity, unless the homogeneity of smoothness is relative to the
property  P4 , in other words the conservation of particles as a local structure. 

7. Epilogue

I believe that the main reasons of the failure so far in proving of the 3D global regularity of
incompressible flows, with reasonably smooth initial conditions like smooth Schwartz initial
data, and finite initial energy, is hidden in the difference of the physical reality ontology that
is  closer  to  the  ontology  of  statistical  mechanics  models  and   the  ontology  of  the
mathematical models of continuous fluid dynamics.

Although energy and momentum conservation and finiteness of the initial energy are easy to
formulate  in  both  types  of  models,  the  conservation  of  particles  as  type  and  size  is
traditionally  formulated  only  in  the  context  of  statistical  mechanics.    By  succeeding  in
formulating approximately in the context of the ontology of continuous fluid mechanics the
conservation of particles during the flow, as local structure, we result in being able to prove
the regularity in the case of 3 dimensions which is what most mathematicians were hoping
that it holds. 
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So once my confidence was in strength that the correct solution is that there is no
Blow-up in finite time I started attacking the problem for a proof in the classical fluid
dynamics  only  with  the  hypotheses  of  the  standard  formulation  of  the  4th Clay
Millennium problem. 
The first thing to do was to get rid of the infinite space in the initial conditions of the fluid,
and substitute them with smooth compact support initial conditions.  In  many books of
fluid  dynamics  where  most  of  the  results  are  stated  for  smooth   Schwartz  initial
conditions and infinite space , the authors often make arguments that as they say “for
simplicity we assume compact support initial conditions” It is therefore a common
expectation in fluid dynamics although I found no proof for this anywhere. Happily, a
rather recent work by Terence Tao gave to me the idea of how this could be proved by
arguments that are used in wavelet theory and in particular here in the theorem 12.2  of
Tao’s paper  (TAO, T. 2013 Localisation and compactness properties of the Navier-
Stokes   global regularity problem.  Analysis & PDE 6 (2013), 25-107)
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Abstract

             In this paper I prove, using some relatively recent ideas suggested by T. Tao , that the
Schwartz initial conditions of the its official formulation of the problem in the direction of
regularity are equivalent to the simpler compact support  initial  conditions.  I  prove also,
using   the  Helmholtz-Hodge  orthogonal  decomposition  of  vector  fields,  a  powerful
fundamental decomposition of the Euler and Navier-Stokes equations which is significant for
the  internal symmetries of the equations.
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6. Introduction
A short outline of the logical structure of the paper is the next.

4) The paragraph 3, contains the official formulation of the 4th Cay millennium problem
as  in  FEFFERMAN  C.  L.  2006.  The  official  formulation  is  any  one  of  4  different
conjectures, that two of them, assert the existence of blow-up in the periodic and
non-periodic case, and two  of them the non-existence of blow-up , that is the global
in  time regularity  in the periodic  and non-periodic  case.  We concentrate on the
regularity in the non-periodic case or conjecture (A) with is described by equations
1-6. The paragraph 3 contains definitions like that of deformations, “shape” of a flow
(see DEFINITION 3.6) , and more modern symbolism introduced by T, Tao in TAO T.
2013. The current paper follows the formal and mathematical austerity standards
that  the official  formulation has  set,  together with  the suggested by  the official
formulation relevant results in the literature like in the book  MAJDA A.J-BERTOZZI
A. 
L. 2002 . But we try also not to lose the intuition  of the physical interpretation,  as

we are in the area of mathematical physics rather than pure mathematics.  The  goal  is
that reader after reading a dozen of mathematical propositions  and  their  proofs  ,  he
must be able at the end to have simple physical intuition , why the proposition holds.

5) The paragraph 4 contains some known theorems and results, that are to be used in
this paper, so that the reader is not searching them in the literature and

can have a direct, at a glance, image of what holds and what is proved. The same paragraph
contains also some well known and very relevant results that 

are not used directly but are there for a better understanding of the physics.
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 There are also some directly derivable results that will be used.

6) The paragraph 5 contains the fundamental decomposition of the Euler-Navier-stokes
equations  to  a  symmetric  (potential  flow)  and  anti-symmetric  set  of  equations.
(THEOREM 5.1)

7) The paragraph 6 contains:
The proof (following similar proofs as in TAO T. 2013) that also smooth compact

support initial data in the official formulation are equivalent with smooth  Schwartz
initial data (THEOREM 6.4).

In particular the significant results in this paper are the next.  

8) For  every  flow-solution  of  the  Navier-Stokes  equations  (viscous  case)  or  Euler
equations (inviscid case), with smooth compact support initial data and hypotheses
that  are  covered  by  the  hypotheses  of  the  official  formulation  of  the  4 th Clay
millennium problem, I prove that it holds a fundamental decomposition of the (Euler
or) Navier-Stokes equations THEOREM 5.1.  It is proved by applying  the Helmholtz-
Hodge decomposition both on velocities and accelerations-forces . But unlike other
known decompositions so far, we do not only decompose the solution but also the
equations. 

mailto:ckiritsi@teiep.gr


9) That the 3D global in time regularity of flow-solutions with smooth compact support
initial data implies the 3D global in time, regularity of flow-solutions with smooth
Schwartz   initial  data  (THEOREM  6.4).  Therefore  the  initial  smooth  Schwartz
conditions  of  the  official  formulation  of  the  4th Clay  millennium  problem  are
equivalent with the more restrictive smooth compact support initial conditions. 

In particular the 2) or theorem of the  fundamental decomposition of the Euler and Navier-
Stokes equations (THEOREM 5.1 ), is a significant internal symmetry of the above equations
with meaningful physical interpretation, which may be used to design new simpler and more
efficient methods of solving numerically, the Euler and Navier-Stokes  equations. But this is
not the subject of the current paper. 

The famous problem of the 4th Clay mathematical Institute as formulated in FEFFERMAN C. L.
2006   , is considered  a significant challenge to the science of mathematical physics of fluids,
not only because it has withstand the efforts  of the scientific community for decades to
prove it (or types of converses to it) but also because it is supposed to hide a significant
missing perception about the nature of the Navier-Stokes equations. 

7. The  discrimination  between  the  physical  reality  ontology  and
mathematical physics models ontology.  A  physical reality hint
for the global in time ,3D regularity of flows (Conjecture (A) in the
4th Clay millennium problem).

  We must discriminate between the physical reality with its natural physical
ontology (e.g. atoms, fluids etc) from the mathematical ontology (e.g. sets, numbers,
vector fields etc). If we do not do that much confusion will arise. The main difference
of the physical reality ontology, from the mathematical reality ontology, is what the
mathematician   D.  Hilbert  had  remarked  in  his  writings  about  the  infinite.  He
remarked that  nowhere in the physical  reality  there is  anything infinite,  while  the
mathematical infinite, as formulated in a special axiom of the infinite in G. Cantor’s
theory of sets, is simply a convenient  phenomenological abstraction, at a time that the
atomic theory of matter was not well established yet in the mathematical community.

In the physical  reality  ontology,  the   problem of  the global  3-dimensional
regularity seems easier to  solve . For example it is known (See maximum Cauchy
development PROPOSITION 4.9 , and it is referred also in the official formulation of
the Clay millennium problem in C. L. FEFFERMAN 2006 ) that if the global 3D
regularity does not hold then the velocities become unbounded or tend in absolute
value to infinite as time gets close to the finite Blow-up time. Now knowing that a
fluid consists from a finite number of atoms and  molecules , which also have finite
mass and with a lower bound in their size. If such a phenomenon would occur, it
would mean that their kinetic energy, is increasing in an unbounded way. But from
the assumptions  (see paragraph 3 ) the initial  energy is finite,  so this could never
happen. We conclude that the fluid is 3D globally in time regular. Unfortunately such
an argument although valid from the ontology of the physical reality, or within the
context of statistical mechanics of fluids (see also MURIEL A  2000 ) , but not within
the  context   classical   fluid  dynamics,  is  not  of  direct  use  for  the  mathematical
ontology of the fluids, where there are not atoms with lower bound of  finite mass, but
only  points  with  zero  dimension,  and  only  mass  density.  Besides  in  the  case  of



compressible flows, it has been proved for the formulation of classical fluid dynamics,
that a blow-up may occur. But in the case of incompressible blows is different as the
desnity of the fluid remains constant.

The next table compares the classical fluid mechanics model where the 4 th Clay millennium
problem  is  officially  formulated  and  a  more  realistic  statistical  mechanics  virtual
formulation. A solution in the context of statistical mechanics is obviously not accepted as a
solution of the 4th Clay millennium problem because part of the problem is not the physical
interpretation but also to deal with the difficulties of the mathematics of the classical fluid
dynamics. We notice that the ability to solve it is totally different. But if we accept that it is
possible to have somehow “equivalent” in some sense formulations of the problem, then a
solution to any of the two models should imply the solution to the other model. 

Table 1

COMPARISON AND MUTUAL 
SIGNIFICANCE OF DIFFERENT 
TYPES OF MATHEMATICAL 
MODEL THE 4TH CLAY 
PROBLEM (NO EXTERNAL 
FORCE) 

CLASSICAL FLUID 
DYNAMICS MODEL

STATISTICAL MECHANICS 
MODEL

SMOOTH SCHWARTZ    
INITIAL CONDITIONS

YES POSSIBLE TO  IMPOSE

FINITE INITIAL ENERGY YES YES

SMOOTH EVOLUTION IN A 
INITIAL FINITE TIME 
INTERVAL

YES POSSIBLE TO DERIVE

EMERGENCE OF A BLOW-UP ? IMPOSSIBLE TO OCCUR

8. The  standard  formal  assumptions  of  the  Clay  Mathematical
Institute 4th millennium conjecture  of 3D regularity of flows and
some definitions.

In this paper we will be concerned with  the conjecture (A) of the official formulation of the
4th Clay millennium problem in C. L.  FEFFERMAN 2006 . The Navier-Stokes equations are
given by  (by R we denote the field of  the real numbers, ν>0 is the viscosity coefficient
)
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with initial conditions  u(x,0)=u0(x)  xR3

and u0 (x) belongs to C ,a divergence-free vector field on R3     (eq.3)
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 is the Laplacian operator .The Euler equations are when  ν=0 

 For physically meaningful solutions we want to make sure that u0(x) does not grow
fast large as |x|.  This is set by defining  u0(x)  and called in this paper
Schwartz initial conditions  , in other words 
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0  on R3   for any α and K                                       (eq.4 )

(Schwartz used such functions to define the space of Schwartz distributions) 

We accept as physical meaningful solutions only if it satisfies 

p, u C(R3 [0,))                            (eq.5 )

and 
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),(   for all t>=0 (Bounded or finite energy)                               (eq.6 )

The  conjecture  (A)  of  he  Clay  Millennium  problem  claims  that  for  the  Navier-Stokes
equations , v>0, n=3 , with divergence free , Schwartz initial velocities as above , there are
for all  times t>0 , smooth velocity field and pressure, that are solutions of the Navier-
Stokes  equations  with bounded energy,  in  other  words satisfying the equations  eq.1  ,
eq.2 ,  eq. 3, eq.4  ,  eq.5  eq.6 . This is what is considered as a solution of the 4th Clay
millennium  problem  in  the  direction  of  the  global  in  time  regularity.  Global  in  time
regularity here means that the solution exists and is smooth in all the derivatives , that is , it
satisfies  eq.1 , eq.2 ,  eq. 3, eq.4  ,  eq.5  eq.6 and is defined for all  t>0. If the viscosity
coefficient v=0 ,is zero  this a corresponding conjecture for the Euler equations, which is not
included though in the official formulation of the 4 th Clay millennium problem. It is stated in
the same formal formulation of the Clay millennium problem by C. L. Fefferman see C. L.
FEFFERMAN 2006 (see page 2nd line 5 from below) that the conjecture (A) has been proved
to holds locally. “..if the time internal  [0,), is replaced by a small time interval [0,T), with T



depending  on  the  initial  data....”.  In  other  words  there  is  >T>0,  such  that  there  is
continuous and smooth  solution  u(x,t)C(R3 [0,T)). In this paper, as it is standard almost
everywhere, the term smooth refers to the space C

It is stated in the official formulation FEFFERMAN 2006 (see page 2nd line 16 from below)
that 

“....These problems are also open and very important for the Euler equations (v= 0),

although the Euler equation is not on the Clay Institute’s list of prize problems....”

Following TAO, T 2013, we define some specific terminology , about the hypotheses of the
Clay millennium problem, that will be used in the next.

We must notice that the definitions below can apply also to the case  of  inviscid flows, 
satisfying the Euler equations.                   

DEFINITION 3.1 (Smooth solutions to the Navier-Stokes system). A smooth set of data for the
Navier-Stokes system up to time T is a triplet (u0, f, T), where 0 < T < ∞ is a time, the initial
velocity vector field u0 : R3  → R3  and the forcing term f : [0, T] × R3  → R3  are assumed to be
smooth on R3  and [0, T] × R3  respectively (thus, u0 is infinitely differentiable in space, and f is
infinitely differentiable in space time), and u0 is furthermore required to be divergence-free: 

∇ · u0 = 0. 

 If f = 0, we say that the data is homogeneous.

In the proofs of the main conjecture  we will not consider any external force, thus the data
will  always  be  homogeneous.  But  we  will  state  intermediate  propositions  with  external
forcing. Next we are defining simple diffentiability of the data by  Sobolev spaces. 

DEFINITION 3.2 We define the H1 norm   (or enstrophy norm)  H1 (u0, f, T) of the data to be
the quantity 

H1 (u0, f, T) :=   )()(0 3131 RHLRH XtX
fu  and say that (u0, f, T) is H1 if

 H1 (u0, f, T) < ∞. 

DEFINITION 3.3 We say that a smooth set of data (u0, f, T) is Schwartz if, for all integers α, m,
k ≥ 0, one has 
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Thus, for instance, the solution or initial data having Schwartz property implies having the
H1 property. 

DEFINITION 3.4 A  smooth solution to the Navier-Stokes system, or a  smooth solution for
short, is a quintuplet (u, p, u0 , f, T), where (u0, f, T) is a smooth set of data, and the velocity
vector field u : [0, T] × R3  → R3  and pressure field p : [0, T]× R3  → R  are smooth functions on
[0, T]× R3  that obey the Navier-Stokes equation (eq. 1) but with external forcing term f, 
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and also the incompressibility  property  (eq.2) on all  of [0, T] × R3 ,   but also the initial

condition u(0, x) = u0(x)   for all x ∈ R3

DEFINITION 3.5 Similarly, we say that (u, p, u0, f, T) is H1 if the associated data (u0, f, T) is H1 ,
and in addition one has 
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We say that the solution is incomplete in [0,T), if it is defined only in [0,t] for every t<T.

We use here the notation of mixed norms (as e.g. in TAO, T 2013). That is if )(k
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classical Sobolev norm ,of smooth function of a spatial domain Ω,  Ru : ,  I is a time
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Similar instead of the Sobolev norm for other norms of function spaces.

We also denote by   )(k
xC  ,  for  any natural  number  0k ,  the space of  all  k  times

continuously differentiable functions  Ru : , with finite the next norm
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We use also the next notation for hybrid norms. Given two normed spaces X, Y on the same
domain (in either space or time), we endow their intersection YX  with the norm 

YXYX
uuu 


: .

In particular in the we will use the next notation for intersection functions spaces, and their
hybrid norms. 
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We also use the big O notation, in the standard way, that is X=O(Y) means 

CYX  for some constant C. If the constant C depends on a parameter s, we denote it by
Cs  and we write X=Os(Y).

We denote the difference of two sets A, B by A\B. And we denote  Euclidean balls

by }:{:),( 3 raxRxraB  , where |x| is the Euclidean norm. 

With the above terminology the 4th Clay millennium conjecture in the direction of regularity
of interest in this paper can be restated as the next proposition

DEFINITION 3.6  Let a solution in a time interval [0,T) to the Navier-Stokes or Euler equations
as above in eq1-eq6 with  smooth Schwartz   initial   data.  It  is  known that  local  in time
solutions exist.  Let us denote the Jacobian matrix of the velocities by V, and the symmetric

matrix  )(
2

1 tVVD   which  is  standard  in  the  literature  to   call  the  matrix  of

deformations of the flow. The space-time evolution of the deformations as a time-varying
matrix field, we call also “the shape” of the flow.



With the above terminology the relevant 4th  Clay millennium conjecture in this paper can
be restated as the next proposition

The 4th Clay millennium problem (Conjecture A)

(Global in time regularity for homogeneous Schwartz data). Let (u0, 0, T) be a homogeneous
Schwartz set of data. Then there exists a smooth finite energy solution (u, p, u0, 0, T) with the
indicated data (notice it is  for any T>0, thus global in time regular).

9. Some  known and useful results that will be used.

In this  paragraph I state ,some known theorems and results, that are to be used in this
paper, so that the reader is not searching them in the literature and can have a direct, at a
glance, image of what holds and what is proved. This paragraph contains also some well
known and very relevant results that are not used directly (like PROPOSITION  4.3, 4.4, 4.8)
but are there for a better understanding of the physics. There are  also directly derivable
results  (like  PROPOSITION  4.7, 4.10,4.11) that will be used.

There are various forms of Helmholtz   decomposition, that can be found e.g. in many
books, but also in the book MAJDA A.J-BERTOZZI A. L. 2002, as the more modern
form  of  Hodge  decomposition  in  COROLLARY   5.1.16  page  32,  and   also  in
proposition 2.16 page 71. The two classical versions of the Helmholtz  decomposition
(before Hodge) state the next 
PROPOSITION  4.1 Τhe  Helmholtz  fundamental  theorem  and  Ηelmholtz
decompositions of vector fields.  
Let F be  a  vector  field  on  a   R3 ,  which  is  twice  continuously  differentiable,
and F vanishes faster than 1/r   as r → ∞ . Then F can be decomposed into a curl-
free component and a divergence-free component:

AF                                                                                       (eq.7) 

where Φ is a scalar field and A is a vector field given by the well known appropriate
singular  integral formulae of F on all of  R3

2nd Helmholtz  decomposition.  A  second  type  of  converse  of  the  Helmhοltz

decomposition (2nd Helmhotz decompositio. )  is the next. Let C be a solenoidal vector

field (in  other  words  with  zero  divergence)  and d a  scalar  field  on R3 ,which  are

sufficiently smooth and which vanish faster than 1/r2  at infinity. Then there exists a

vector field F such that

dF       (eq.8)  



 and 

CF                                                                                       (eq.9) 

If additionally the vector field F vanishes as r → ∞, then F is unique.

I  state  also  two  more  theorems   from  MAJDA  A.J-BERTOZZI  A.  L.  2002
Proposition 1.16  page 32 and proposition 2.16 page 71,that reflect the more modern
form of the Helmholtz decomposition as the Hodge decomposition. 

PROPOSITION  4.2 Hodge’s Decomposition in Rn . Every vector field 

)()(2 nn RCRLu 

has a unique orthogonal in L2  decomposition:

u = w +∇q,          div w = 0,          (eq. 10)

and furthermore with the following properties:

(i) )()(, 2 nn RCRLqw  , q a scalar field,

 

(ii) w  ⊥∇q in L2 , i.e., (w,∇q)L
2 = 0,           (eq. 11)

(iii) for any multi-index β of the derivates Dβ  , |β| ≥ 0,
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222 LLL
qDwDuD                          (eq. 12)

.

The next proposition reflects the second or inverse form of the Helmholtz theorems in 
PROPOSITION  4.1, but in the more modern form as 2nd Hodge decomposition theorem

 PROPOSITION 4.3 2nd Hodge  decomposition in R3. Let )()( 332 RCRL   be a smooth 

vector field in R3 ,vanishing sufficiently rapidly as x . 

And to determine a velocity u in terms of the ω  as its vorticity, we solve the overdetermined
(four equations for the three unknown functions u1 , u2, u3) elliptic system

curl u = ω,

div u = 0, u, a vector field of  R3 . (eq. 13)



The  solution to this problem is summarized in the following statements.

(i) Eqs. (13) have a smooth solution u that vanishes as x  if and only if

div ω = 0; (eq. 14)

(ii) if div ω = 0, then the solution u is determined constructively by

u= −curlψ, (eq. 15)

where the vector-stream function ψ solves the Poisson equation

Δψ = ω. (eq. 16)

The explicit formula for u is a well known kernel integral. 

The Hodge decomposition is based on the next proposition-criterion of L2 -orthogonal
vector fields , that we will also utilize, later. 
So I state it  here for the convenience of the reader. It is the Lemma 1.5 in MAJDA
A.J-BERTOZZI A. L. 2002. 

PROPOSITION  4.4   Let w be a smooth, divergence-free vector field in R n and let q be a 
smooth scalar field of  R n  such that
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  as x           (eq. 17)

Then w and ∇q are L2 orthogonal:
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In the next I want to use, the basic local existence and uniqueness of smooth solutions to the
Navier-Stokes (and Euler) equations , that is usually referred also as the well posedness, as it
corresponds to the existence and uniqueness of the physical reality causality of the flow. The
theory of well-posedness for smooth solutions is summarized in an adequate form for this
paper by the Theorem 5.4 in TAO, T. 2013.

I give first the definition of  mild solution  as in TAO, T. 2013 page 9. Mild solutions must
satisfy   a  condition on the pressure  given by  the  velocities.  Solutions  of  smooth initial
Schwartz data are always mild, but the concept of mild solutions is a generalization to apply
for non-fast decaying in space initial data , as the Schwartz data, but for which data we may
want also to have local existence and uniqueness of solutions. 

DEFINITION 4.1    

We  define a  H1 mild solution (u, p, u0, f, T) to be fields u, f :[0, T] × R3  → R3, 

p : :[0, T] × R3  → R, u0 : R3  → R3, with 0 < T < ∞ , obeying the regularity hypotheses
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with the pressure p being given by (Poisson)
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(Here the summation conventions is used , to not write the Greek big Sigma).

which obey the incompressibility conditions  (eq. 2), (eq. 3)  and satisfy the integral form of 
the Navier-Stokes equations
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with initial conditions   u(x,0)=u0(x) .

We notice that the definition holds also for the in viscid flows, satisfying the Euler equations.
The viscosity coefficient here has been normalized to  ν=1.              

In   reviewing the local well-posedness theory of H1  mild solutions, the next can be said. The
content of the theorem 5.4 in TAO, T. 2013  (that I also state here for the convenience of the
reader and from which derive our  PROPOSITION  4.6)  is largely standard (and in many cases
it has been  improved by  more powerful  current well-posedness theory). I mention here for
example the relevant research by  PRODI G 1959 and SERRIN,J 1963, The local existence
theory follows from the work of KATO, T.  PONCE, G. 1988  , the regularity of mild solutions
follows  from  the  work  of  LADYZHENSKAYA,  O.  A.  1967  .  There  are  now  a  number  of
advanced local well-posedness results at  regularity, especially that of KOCH, H., TATARU,
D.2001  .

There  are  many  other  papers  and  authors   that  have  proved  the  local  existence  and
uniqueness of smooth solutions with different methods. As it is referred  in C. L. FEFFERMAN
2006 I refer too  the reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4,

I state here for the convenience of the reader the summarizing theorem 5.4 as in TAO T.
2013. I omit the part (v) of Lipschitz stability of the solutions  from the statement of the



theorem. I  use the standard O()  notation here, x=O(y) meaning x<=cy for some absolute
constant c. If the constant c depends on a parameter k, we set it  as index of  Ok(). 

It is important to remark here that the existence and uniqueness results locally in time (well-
posedness) ,  hold also not only for the case of viscous flows following the Navier-Stokes
equations, but also for the case of inviscid flows under the Euler equations. There are many
other papers and authors  that have proved the local existence and uniqueness of smooth
solutions  both for the Navier-Stokes and the Euler equation with the same methodology ,
where the value of the viscosity coefficient v=0, can as well be included. I refer e.g.   the
reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4 , paragraph 3.2.3, and
paragraph 4.1 page 138. 

PROPOSITION  4.5    (Local well-posedness in H1). Let (u0,  f, T) be H1 data.

13) (Strong solution) If (u, p, u0, f, T) is an H1 mild solution, then
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14) (Local existence and regularity) If
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for a sufficiently small absolute constant c > 0, then there exists

a H1 mild solution (u, p, u0, f, T) with the indicated data, with
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for each k>=1 . In particular, one has local existence whenever

T is sufficiently small,  depending on the norm H1(u0, f, T).

(iii) (Uniqueness) There is at most one H1 mild solution (u, p, u0, f, T)

with the indicated data.



 (iv) (Regularity) If (u, p, u0, f, T ) is a H1 mild solution, and (u0, f, T)

is (smooth) Schwartz data, then u and p is smooth solution; in fact, one has 
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For the proof of the above theorem, the reader is referred to the  TAO, T. 2013 theorem 5.4,
but also to the papers and books , of the above mentioned other authors. 

Next I state the local existence and uniqueness of smooth solutions of the Navier-Stokes
(and Euler) equations with smooth Schwartz initial conditions , that I will use in this paper ,
explicitly as a PROPOSITION  4.6  here. 

 PROPOSITION  4.6  Local existence and uniqueness of smooth solutions or smooth well
posedness  . Let  u0(x) , p0(x) be  smooth and Schwartz initial data at t=0 of the Navier-Stokes
(or Euler) equations, then there is a finite time interval [0,T] (in general depending on the
above initial conditions) so that there is a unique smooth local in time solution of the Navier-
Stokes (or Euler) equations

  u(x) , p(x) C(R3 [0,T])

Proof: We simply apply the PROPOSITION  4.5 above and in particular , from the part (ii) and
the assumption in the PROPOSITION  4.6, that the initial data are smooth Schwartz , we get
the local existence of H1 mild solution (u, p, u0, 0, T). From the part (iv) we get that it is also a
smooth solution. From the part (iii), we get that it is unique. 

As an alternative we may apply the theorems in MAJDA A.J-BERTOZZI A. L. 2002  page 104
Theorem 3.4  ,  paragraph 3.2.3,  and paragraph 4.1  page 138,  and get   the local  in time
solution, then derive from the part (iv) of the PROPOSITION  4.5 above, that they are also in
the classical sense smooth. QED.

We  remark  here  that  the  property  of   smooth  Schwartz  initial  data,  is  not  in  general
conserved in later times than t=0, of the smooth solution in the Navier-Stokes equations,
because it  is a very strong fast decaying property at spatially infinity. But for lower rank
derivatives of the velocities (and vorticity) we have the (global and) local energy estimate ,
and  (global  and)  local  enstrophy estimate theorems  that  reduce  the  decaying  of  the



solutions at later times than t=0,  at spatially infinite to the decaying of the initial data at
spatially  infinite.  See  e.g.  TAO,  T.  2013,  Theorem  8.2  (Remark  8.7)  and  Theorem  10.1
(Remark 10.6).

Furthermore  in  the  same  paper  of  formal  formulation  of  the  4th  Clay  millennium
conjecture , L. FEFFERMAN 2006 (see page 3rd line 6 from above),  it is stated that the 3D
global  regularity  of  such smooth solutions is  controlled by the bounded accumulation in
finite time intervals  of the vorticity  (Beale-Kato-Majda).  I  state this also explicitly for the
convenience of the reader, for smooth solutions of the Navier-Stokes equations with smooth
Schwartz initial conditions,  as the PROPOSITION  4.8. 

When we say here bounded accumulation e.g. of the deformations D,  on finite internals, we
mean in the sense e.g. of the  proposition 5.1    page 171 in the book MAJDA A.J-BERTOZZI A.
L. 2002 , which is a definition designed to control the existence or not of finite blowup times.
In other words  for any finite time interval 

[0, T], there is a constant M such that 
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I  state  here  for  the convenience of  the reader,  a  well  known proposition of  equivalent
necessary and sufficient conditions of existence globally in time of solutions of the Euler
equations, as inviscid smooth flows. It is the   proposition 5.1 in MAJDA A.J-BERTOZZI A. L.
2002 page 171.

Obviously after PROPOSITION  4.6, and 4.5, that  apply also for smooth solutions of the Euler
equations, with smooth Schwartz initial data. 

The stretching is defined by 

  DtxS :),(  if 0  and 0:),( txS  if 0  where 
 : , ω being the vortcity.  

PROPOSITION  4.7   Equivalent  Physical  Conditions  for  Potential  Singular  Solutions.  The
following conditions are equivalent for smooth Schwartz initial data :

(1) The time interval, [0, T*) with T* < ∞ is a maximal interval of smooth Hs

existence of solutions for the 3D Euler equations.



(2) The vorticity ω accumulates so rapidly in time that
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(3) The deformation matrix D accumulates so rapidly in time that
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 as t tends to T*

 (4) The stretching factor S(x, t)  accumulates so rapidly in time that



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)],([max  as t tends to T*

PROPOSITION  4.8 , A smooth solution viscous (or inviscid)  3D flow which is a solution of the
Navier-Stokes (or Euler) equations with smooth Schwartz initial conditions, is  globally in time
smooth,   if  and  only  if  its  vorticity  (Beale-Kato-Majda)  or  its  gradient  of  velocities  has
bounded accumulation in finite time intervals or the supremum   norm ||u(.,t)||∞

 
 of the

velocity remains  bounded  for each finite time interval.

Proof:  See the book MAJDA A.J-BERTOZZI A. L. 2002 page 114 line 12 from below for the
Sobolev norm of the velocity , and also page 116 theorem 3.6 and page 117  equations 3.79,
3.80  and the last two equations of the proof of theorem 3.6 in page 118, for the gradient of
the velocities and the vorticity (Beale-Kato-Majda).  The same result about the vorticity is
proved again in section 4.2 of the same book.  And in page 171 theorem 5.1 for the case of
inviscid flows. See also LEMARIE-RIEUSSET P.G. 2002 . It is directly derived therefore from
the above references  there that global regularity for smooth solutions  is equivalent to that
for any finite time interval  [0,T] , there is a constant M such that
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                                           (eq.19 )



And also that the 3D global regularity is also equivalent to that for any finite time interval
[0,T]  there is a constant M1 for such that
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For the case of inviscid flows , the reader is referred again to MAJDA A.J-BERTOZZI A. L.
2002, in page 171 in the same book , Theorem 5.1.

The above theorems in the book MAJDA A.J-BERTOZZI A. L. 2002 guarantee that the above
conditions extent the local in time solution to global in time , that is to solutions (u, p, u0, f,
T ) which is    H1 mild solution, for any T. Then applying the part (iv) of the PROPOSITION  4.5
above,  we get  that this  solutions  is  also smooth in  the classical  sense,  for  all  T>0,  thus
globally  in  time.  Conversely  a  global  in  time  smooth  solution  ,  will  have  all  the  above
conditions of boundedness in finite time intervals, otherwise, we would have the case of a
blow-up , for some maximal time T* which would spoil the C smoothness in (R3 [0,T*]). 

QED.

Similar  results  hold  also  for  the  non-homogeneous  case  with  external  forcing  which  is
nevertheless space-time smooth of bounded accumulation in finite time intervals. Thus an
alternative formulation to see that the velocities and their gradient , or in other words up to
their 1st derivatives and the external forcing also up to the 1st derivatives , control the global
in time existence  is the next proposition. See TAO. T. 2013 Corollary 5.8

PROPOSITION  4.9  (Maximum Cauchy development)

Let (u0, f, T) be H1  data. Then at least one of the following two statements hold:

1) There exists a mild H1 solution (u, p, u0, f, T) in [0,T] ,with the given data.

2)There exists a blowup time 0 < T*< T and an incomplete mild H1 solution 

(u, p, u0, f, T* ) up to time T* in [0, T*), defined as complete on every [0,t], t<T *  which blows 
up in the enstrophy  H1 norm in the sense that
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PROPOSITION  4.10 A smooth viscous flow which is a solution of the Navier-Stokes equations
with  smooth  Schwartz  initial  conditions  and  which   is  globally  in  time  smooth,  has
deformations of  bounded accumulation in finite time intervals. 



Proof: The inequalities 5.12 in page 171 in the MAJDA A.J-BERTOZZI A. L. 2002, hold for all
smooth flows, and show as in the proof of Theorem 5.1 in the same book , that a  finite time
blowup of the deformation matrix (unbounded accumulation of deformation in finite time
interval)   means  a  finite  time  blowup  of  the  flow.  We  may  apply  also  if  necessary
PROPOSITION  4.5 , (iv) to shift from H1 mild solutions in the above theorems of MAJDA A.J-
BERTOZZI A. L. 2002 , to smooth solutions. So that globall in time smooth viscous flows have
bounded accumulation of deformation in finite-time intervals.  QED

,PROPOSITION  4.11  A smooth inviscid Euler  3D flow is not globally in time smooth (3D
regular),  and  it has finite time blow-up if and only if  its deformation matrix field has also a
finite time blow-up.  Similarly if and only if its vorticity has unbounded accumulation in finite
time intervals, therefore a finite time blow-up. 

Proof.  (See proposition  5.1 in  MAJDA A.J-BERTOZZI A.  L.  2002 page 171 for
Euler  inviscid flows equivalent  criteria  for blowup. Also Theorem  3.6  Vorticity
Control  and  Global  Existence  page  115  in   the  same  book  for  the  vorticity
accumulation  in Euler and  Navier-Stokes equations. We may apply also if necessary
PROPOSITION  4.5 (iv), to shift from H1  mild solutions in the above theorems of
MAJDA A.J-BERTOZZI A. L. 2002 , to smooth solutions. QED.

The next lemma is technical, is the lemma  12.1 in TAO, T. 2013 and appears also in the work
of  BOGOVSKII M. E. 1980 . We need it  so as to have the proof of our THEOREM  7.3, which
is slightly  only different from the   proof of the Theorem 12.2 in TAO, T. 2013. 

PROPOSITION  4.12  (Localisation of divergence-free vector fields). Let T > 0, 0 < R1 < R2 < R3
< R4, and let u : [0, T)×(B(0, R4)\B(0, R1)) → R3 be spatially smooth and divergence-free, and
such that

)))1,0(\)4,0((),0([, RBRBTCLuu k
xtt    

for all k ≥ 0 and 
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 for all R1 < r < R4 and t ∈ [0, T), where n is the outward normal and dα is surface measure.

Then there exists a spatially smooth and divergence-free vector field 



~

u  : [0, T)×(B(0, R4)\B(0, R1)) → R3  which agrees with u on [0, T) × (B(0, R2)\B(0, R1)), but

vanishes on [0, T) × (B(0, R4)\B(0, R3)). Furthermore, we have 

)))1,0(\)4,0((),0([,
~~
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 for all k ≥ 0. 

The next propositions is  also technical  ,  it  is  the Proposition 11.6 in TAO. T 2013 and is
necessary so as to have the proof of our THEOREM  6.4.

PROPOSITION 4.13 (Uniform smoothness outside a ball). Let (u, p, u0, f, T
*
 ) be an incomplete

almost smooth H1 solution with normalised pressure for all times 0 < T < T
*
. Then there exists

a ball B(0, R) such that 

)),0([,,, * KTCLufpu k
xtt             (eq.21 )

for all k ≥ 0 and all compact subsets K of R3 \B(0, R).

The term “almost smooth” here is defined in TAO, T. 2013, before Conjecture 1.13. The only 
thing that almost smooth solutions lack when compared to smooth solutions is a limited 
amount of time differentiability at the starting time t = 0;

The  term  normalized  pressure,  refers  to  the  symmetry  of  the  Euler  and  Navier-Stokes
equations to substitute the pressure, with another that differs at  constant in space but
variable in time measureable function. In particular normalized pressure is one that satisfies
the (eq. 18) except for a measurable at  constant in space but variable in time measureable
function. It  is  proved in TEO, T.  2013, at Lemma 4.1,  that the pressure is  normalizeable
(exists a normalized pressure) in almost smooth  finite energy solutions, for almost all times.
The viscosity coefficient here has been normalized to  ν=1.              



10. The  theorem  of the fundamental decomposition of the Euler and
Navier-Stokes equations. 

The next  theorem, can possibly  be utilized  to  design new and more efficient  numerical
methods of solving the Navier-Stokes and Euler equations. But this issue is not the subject of
this paper. 

THEOREM  5.1 The theorem of the fundamental decomposition  of the Euler  and Navier-
Stokes equations. 

Let a smooth flow-solution of the Euler ( inviscid case)  or the Navier-Stokes ( viscous case)
equations in a finite time interval [0,T] , which has velocities , pressure and external forcing
with  first and second order partial derivatives of them that decay at spatial infinite at least
faster than the 1/r2

Then the  Euler  or  the  Navier-Stokes  equations  are equivalent  to  the  next  pair  of
vector equations 
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 (symmetric or ,potential or  irrotational part)

        (eq.23)
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)()()(  (antisymmetric or rotational part)

       (eq. 24).

Where  the  ),(),( txtxus   and  ),(),( txatxua   are  the   L2-orthogonal

Helmholtz-Hodge  decomposition  of  the  velocity  ),(),(),( txutxutxu as   ,  and

),(),( txtxf fs   ,  ),(),( txAtxfa   ,  ),(),(),( txftxftxf as   the   L2-
orthogonal Helmholtz-Hodge  decomposition  of  the  external  forcing  terms  and

**)( ppuu fas   .

REMARK 5.1 .  We must notice here that the fundamental decomposition of the Euler and
Navier-Stokes equations, holds also for the case of compressible flows. 

Variations of the idea of utilizing the Helmholtz-Hodge  decompostion of a flow, has
occurred to many researchers of numerical analysis when solving the Navier-Stokes
equations  (e.g. see references CHORIN A. J. 1968 and GATSKI T. B. GROSCH C.
E.ROSE M. E.1989 ). But  here I present a significant twist of the idea, which is not
simply  to  approximate  numerically  irrotational  flows with rotational  flows ,  or  to
decompose the solution by the Helmholtz-Hodge theorem, but also to decompose the
equations themselves 



Proof: I  write  here  as  equations  that  the  solution-flow   it  satisfies  the  Navier-Stokes
equations (including the case of Euler equations for ν=0 ) , 
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 We apply the 1st Helmholtz-Hodge  fundamental decomposition theorem (PROPOSITION
4.1)  and the 1st Hodge decomposition theorem (PROPOSITION  4.2) as in paragraph 4, which
decomposes in a unique way the vector field of  the velocities u(x,t)  of this flow to the L2 –
orthogonal sum

),(),(),( txutxutxu as              (eq.26)

where the  ),(),( txtxus  is the (symmetric) curl-free component which is the grad of

scalar  field  (scalar  stream  function)  ),( tx ,  and  the  ),(),( txatxua   is  the

(antisymmetric) divergence free component, which the curl of vector field ),( txa . 

As from the hypotheses of the present theorem the decay at spatial infinite of the velocities
filed u(x,t) is at least as fast as 1/r2 and the divu=0,  this is possible. 

And we apply also the  L2-orthogonal  Helholtz-Hodge decomposition for the forcing term,
),(),( txtxf fs   ,  ),(),( txAtxfa   ,  ),(),(),( txftxftxf as  ,  with  the  fits

being the curl-free and the second the div-free.  

From (eq 26) since divu=0 and divuα =0 then also 

0sdivu  !                                                                          (eq.27)

The original  Navier-Stokes would be now
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Let make here a remark about the case of incompressible flows-solutions with divu=0. 

From the identity  )()()( uuu  ,                         (eq.29)

and from  divu=0 in the case of incompressible flows ,   curluu , it is known that
the vicsosity term can be expressed also through as minus the rotation of the vorticity as 

)( uu                  (eq.30)

As (eq.28) can be rewritten as 
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and since div(us)=div(ua)=0 and  su curl(us)=0            (eq.32)

and from (eq.29)
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Nevertheless if the flow-solution is not assumed incompressible, the viscosity term for the
symmetric component us should be included. 

We start again with equations  (eq. 26), and (eq. 28). We apply direct calculation on the (eq.
28) which becomes
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And after distribution 
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             (eq. 35)

In addition we apply the vector identity,

)()()()()( ABBABAABBA                   (eq. 36)

to get (because su =0) ,

)()()()( asassaas uuuuuuuu                               (eq. 37)

so that the (eq. 35) becomes,
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                            (eq. 38)

Now, we observe that the terms split to curl-free and div-free. We denote again the

*)( puu fas   ,  where  ),(),( txtxf fs   and  we  move  it  to  the  right  hand,

together with the p , so after setting *** ppp  , the (eq. 38) becomes, 

)()()()( **
aasaa

a
ss

s upuuuu
t

u
uu

t

u









  + su + af

        (eq. 39)

Here we want to split this equation in to two, equivalent, by noticing that the left and right
hand sides split to tow groups of  curl-free and div-free,  L2-orthogonal components (as in

the unique  Hodge-decomposition). For the right hand side the curl-free is the **p  and the

div-free  is  the  fa Au  )(  (where  ),(),( txAtxf fa  )    because

0)()()(  aaa divuudivudiv   ,  and  0 fAdiv  .  And  since  by  the



hypothesis  of  the  present  theorem  decay  fast  enough  at  spatial  infinity  (from  the  L 2

-orthogonality of the Hodge decomposition , we have also uuu as , ), we can apply

the PROPOSITION  4.4, to get that they are also  L2-orthogonal. 

Similarly for the left side , the group of terms which are curl-free is the ss
s uu

t

u
)( 




 ,
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particular the curl-free group of terms can be written as the gradient of a scalar function,
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equations  (eq. 26), of the Hodge decomposition, so it is direct that it is curl-free.
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From the vector calculus identities 

)()()( BABABA  ,  )( aa uu   scurlu =0,   0adivu    we

derive that  0)(0))(()()((  aasasas divuuuucurluuudiv

Again as before by  the hypothesis of the present theorem they decay fast enough at spatial
infinity  (from  the  L2 -orthogonality  of  the  unique  Hodge  decomposition  we  have  also,

uuu as , ),  and we can apply the PROPOSITION  4.4, to get that they are also  L2-

orthogonal. Therefore from the uniqueness of the orthogonal decomposition  the equation
(eq. 39) splits in an equivalent way to a pair of equations
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 (symmetric, irrotational part)  (eq. 40)
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)()()(   (antisymmetric rotational part)

                                                                                               (eq. 41)

                                                                                       



We also notice that the (eq. 40) is the Euler equation of a potential flow.

If the flow-solution is also incompressible, then the viscosity term in (eq. 40) vanishes.  We
have completed the proof. QED. 

COROLLARY  5.1 For  a smooth  flow-solution of  the Euler  (invisid case) or  Navier-Stokes
(viscous case),  with smooth compact support initial data  , which exists as smooth solution
,locally in time in a finite time interval [0,T] and with smooth compact support (the same
support)  external  forcing   for  all  times  t  in  [0,T]   ,applies  the  previous  fundamental
decomposition.

REMARK 5.2 .We may assume that the compact support is an image by an smooth  1-1 onto
Diffeomorphism of the 3D spherical ball, thus simply connected and with smooth boundary,
if we want to have a  clear mental image. 

 

Proof: Since the solutions and external forcing is also of smooth compact support as it is
preserved, after the initial data, the velocities, pressures and external forcing have up to 2 nd

derivatives that decay spatially faster than 1/r2 , thus the above fundamental decomposition
applies. QED.

REMARK 5.3  On the physical meaning  of the theorem of the fundamental decomposition
of the Euler and Navier-Stokes equations.

The idea,  that we can , extract  from a massive motion of  particles  or bodies ,  a
simpler  massive  motion  where,  no  particle  or  body,  has  self-rotation  (spin  or
vorticity), is a fundamental concept in mathematical physics, and  is responsible for
the split  of the concept  of momentum to linear  and angular.  For example ,  let  us
imagine  the  massive  motion  of  the  stars  and  planets  in  the  galaxies  ,  where  no
collision is assumed possible but only interactions mainly through gravitation. It is
direct, that the shape of the massive motion , and therefore the shape of the galaxy,
will  not change, if we eliminate all  self-rotations of the stars a, planets and black
holes. The situation is not an exact analogue of the case of incompressible fluids, but
one gets the idea. 



11. Equivalence of smooth compact support and smooth Schwartz,
initial conditions.

I use here some arguments that exist in the work of TAO. T. 2013. 

 THEOREM  6.4.  (3D global smooth compact support non-homogeneous regularity implies
3D global  smooth  Schwartz  homogeneous  regularity)  If  it  holds  that  the  incompressible
viscous (following the Navier-Stokes equations) 3 dimensional   local  in  time [0,T]  ,  finite
energy,  flow-solutions  with  smooth  compact  support  (connected with  smooth  boundary)
initial  data  of  velocities  and  pressures  (thus  finite  initial  energy)  and  smooth  compact
support (the same connected support with smooth boundary) external forcing for all times
t>0,   exist  also  globally  in  time  t>0  (are  globally  regular)  then  it  also  holds  that  the
incompressible viscous (following the Navier-Stokes equations) 3 dimensional  local in time
[0,T]  ,  finite  energy,  flow-solutions  with  smooth  Schwartz   initial  data  of  velocities  and
pressures (thus finite  initial  energy) ,   exist also globally in time for all  t>0 (are globally
regular).

REMARK 6.3 .We may as in the previous theorems,  assume that the compact support is an
image  by  an  smooth   1-1  onto  Diffeomorphism  of  the  3D  spherical  ball,  thus  simply
connected and with smooth boundary, if we want to have a  clear mental image. 

 

Proof: We repeat here the proof of theorem 12.2 in TAO,T. 2013, except that we have the
luxury to utilize stronger hypotheses, and we stop when the solution with compact support
is created, rather than proceeding to embed it to a periodic solution. The reader is advised
to read the  proof of Theorem, 12.2 in TAO, T. 2013.  

Given the Cauchy maximum development as in TAO. T. 2013 Corollary 5.8

or  PRPOSITION 4.11 in this paper, it suffices to show that if there exists a  blowup time and
(u,p, u0, f, T*) , f=0, is an smooth incomplete , thus H1 solution , up to the blowup time T* with
(u0,  f,  T)  ,  T< T*   with  smooth Schwartz  initial  data ,  then u does not  blowup in  the H 1

(enstrophy ) norm, thus 
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tu         (eq.45)

(For the terminology and notations in this proof , see again DEFINITIONS 3.1-3.5.)

So we start by assuming the existence of a  blowup  time T* .



 Let R>0 be a sufficiently large radius. By arguing as in Corollary 11.1 in TAO, T. 2013, by the
monotone convergence theorem, we have that the next mixed norm of u is finite at the
large for all the interval [0, T*) , that is 

)),0(\( 31 RBRHLu xt
  for ),0[ *Tt  ,       (eq.46) 

where R is independed of t, depending only on  T* . To have this we may take the limit as t
converges to T*  in the inequality (78) of  δ  in TAO,T. 2013. This fact anyway is  proved in the
proof of theorem 12.2 in TAO,T. 2013.

This means that even if t convergences from the left to   T* the norm will remain bounded in
the large outside the ball B(0, R). So the blowup , might occur only locally inside the ball B(0,
R), in which case we have 
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By proposition 11.6 and remark 11.8 in TAO, T. 2013 (and increasing R if necessary) we also
have 

)))2,0(\)5,0((),0([,,, * RBRBTCLufpu k
xtt    for all k>=0            (eq. 48)

From the Stokes theorem, and  the divergence-free nature of the field u, we also have
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xndatxu 0)(),(  for all r>0, and t in [0,T*  ). Thus we can apply Lemma 12.1 in TAO, T.

2013  or  PROPOSITION  4.12  in  this  paper.  And  by  applying  it  we  can  find  a  smooth

divergence-free field  ~

u  :  )4,0())2,0(\)5,0((),0[ * RBRBRBT  , which agrees with u

on B(0,3R)\B(0,2R) and vanishes outside B(0,5R), with 
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We then extend ~

u  , by zero outside of B(0,5R) and by u inside of B(0,2R). Then

~

u  is now smooth on all of 3* ),0[ RT  .

Let η be a smooth function supported on B(0,5R) and equals 1 on B(0,4R).  We define a new

forcing term RRTf  3*
~

),0[:  by the formula (Navier-Stokes)
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~~~~~

 puuuuf t                          (eq. 50)

Then 
~

f  is smooth, supported on B(0,5R) and agrees with f =0 , on B(0,3R). From this and

(eq, 48), (eq.  49) we easily verify that 
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~

RTHLf xt   .

Note also that by taking divergences in (eq.  50)  and using the compact support

of pη, ~

u , 
~

f  that 

~
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Thus the ),),0(,,( *
~~~

Tfupu   is an smooth incomplete H1 , pressure normalized, (and hence

mild) solution with all components supported in B(0,5R).

Then by the hypotheses of the theorem, it is also a complete solution in [0,T*] ,  and in fact

existing  globally in time. This implies (since 
~

u  and u agree on B(0, R)) that



)),0(],0([ *1 RBTHLu xt                       (eq.51)

which,  contradicts  the  (eq.  47)  in  other  words the existence of  blowup.  Therefore  the
theorem holds. QED. 

12.Epilogue
In this paper I proved , using some relatively recent ideas suggested by T. Tao , that the
Schwartz initial conditions of the its official formulation of the problem in the direction
of regularity are equivalent to the simpler compact support initial conditions (THEOREM
6.4.). Finally I proved using  the Helmholtz-Hodge orthogonal decomposition of vector
fields, a powerful  fundamental decomposition of the Euler and Navier-Stokes equations
which is significant for the  internal symmetries of the equations (THEOREM 5.1).
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Having reduced the 4th Clay Millennium problem to an equivalent with the same
hypotheses of finite initial energy but on compact support initial conditions too,
made all sorts of arguments easier or possible to do. 
It was not obvious how the finite initial energy and the energy conservation could be
used to prove the non-existence of a Blow-up in finite time. To surround carefully the
problem I proved more than 8 different necessary and sufficient conditions of non-
existence of a Blow-up in finite time. Finally, it was that the pressures must remain
bounded in finite time intervals which proved that there cannot be a Blow-up in finite
time. Anthe pressures must remain bounded because of the conservation of energy ,
the initial finite energy and that pressures as it known define a conservative field of
forces in the fluid all the times.

The  next  3rd paper  which  was  completed  and  uploaded  in  the  internet  during  25
February 2018 is I believe the final solution of the 4th Clay Millennium problem, and
it  has  been  published  in  the  World  Journal  of  Research  and  Review
https://www.wjrr.org/ during August 2021. 
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ABSTRACT
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1. Introduction
The  famous  problem  of  the  4th  Clay  Mathematical  Institute  as  formulated  in
FEFFERMAN  CL  2006  is  considered  a  significant  challenge  to  the  science  of
mathematical  physics  of  fluids,  not  only  because  it  has  lasted  the  efforts  of  the
scientific community for decades to prove it (or converses to it) but also because it is
supposed  to  hide  a  significant  missing  perception  about  the  nature  of  our
mathematical  formulations  of  physical  flows through the Euler  and Navier-Stokes
equations.
When the 4th Clay Millennium Problem was formulated in the standard way,  the
majority was hoping that the regularity was also valid in 3 dimensions as it had been
proven to hold in 2 dimensions.
The main objective of this paper is to prove the regularity of the Navier-Stokes
equations  with  initial  data  as  in  the  standard  formulation  of  the  4 th Clay
Millennium  Problem. (see  PROPOSITION  5.2  (The  solution  of  the  4th Clay
Millennium problem).
The problem was solved in its present form during the spring 2017 and was uploaded
as a preprint in February 2018 (see KYRITSIS. K. Feb 2018). 
The main core of the solution is the paragraph 4, where a new  sufficient conditions of
regularity is proved based on the pressures and paragraph 5, where it is proven that
the  pressures  are  bounded  in  finite  time  intervals,  which  leads  after  the  previous
sufficient conditions to the proof of the regularity of the Navier-Stokes equations. The
paragraph  2  is  devoted  to  reviewing  the  standard  formulation  of  the  4 th Clay
Millennium problem, while the paragraph 3 is devoted in to collecting some well-
known results that are good for the reader to have readily available to follow the later
arguments.  
According to  CONSTANTIN P.  2007 “..The blow-up problem for the Euler equations is a
major open problem of PDE, theory of far greater physical importance that the blow-up
problem of the Navier-Stokes equation, which is of course known to non-specialists because
of the Clay Millennium problem…” For this reason, many of the propositions of this paper
are stated for the Euler equations of inviscid flows as well. 

2. The standard formulation of the Clay Mathematical Institute 4th

Clay  millennium  conjecture  of  3D  regularity  and  some
definitions. 

In this paragraph we highlight the basic parts of the standard formulation of the 4 th Clay
millennium problem, together with some more modern, since 2006, symbolism, by relevant
researchers, like T. Tao. 



In this paper I consider  the conjecture (A) of C. L. FEFFERMAN 2006 standard formulation
of the 4th Clay millennium problem , which I identify throughout the paper as the 4  th   Clay
millennium problem. 

The Navier-Stokes equations are given by  (by R we denote the field of  the real
numbers, ν>0 is the density normalized viscosity coefficient )
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with initial conditions  u(x,0)=u0(x)  xR3

and u0 (x)  C∞ divergence-free vector field on R3                    
(eq.3)  
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 is  the Laplacian operator  .The Euler  equations  are (eq1),  (eq2),  (eq3)

when  ν=0. 
It is reminded to the reader, that in the equations of Navier-Stokes, as in (eq. 1) the as the
density, is constant, it is custom to either normalised to 1, or it is divided out from the left
side and it is included in the pressures and viscosity coefficient.

 For physically meaningful solutions we want to make sure that u0(x) does not grow
large  as  |x|.  This  is  set  by  defining  u0(x)   and  called  in  this  paper
Schwartz initial conditions  , in other words 
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0  on R3   for any α and K                                            (eq.4 )

(Schwartz used such functions to define the space of Schwartz distributions) 

We accept as physical meaningful solutions only if it satisfies 

p, u C(R3 [0,))                              (eq.5 )

and 
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),(   for all t>=0 (Bounded or finite energy)                               (eq.6 )

The  conjecture  (A)  of  he  Clay  Millennium  problem  (case  of  no  external  force,  but
homogeneous and regular velocities) claims that for the Navier-Stokes equations , v>0, n=3 ,
with divergence free , Schwartz initial velocities , there are for all times t>0 , smooth velocity
field and pressure, that are solutions of the Navier-Stokes equations with bounded energy ,
in other words satisfying the equations eq.1 , eq.2 , eq. 3, eq.4  , eq.5  eq.6 . It is stated in
the same formal formulation of the Clay millennium problem by C. L. Fefferman see C. L.
FEFFERMAN 2006 (see page 2nd line 5 from below) that the conjecture (A) has been proved
to holds locally. “..if the time internal  [0,), is replaced by a small time interval [0,T), with T



depending  on  the  initial  data....”.  In  other  words  there  is  >T>0,  such  that  there  is
continuous and smooth  solution  u(x,t)C(R3 [0,T)). In this paper, as it is standard almost
everywhere, the term smooth refers to the space C

Following TAO, T 2013, we define some specific terminology, about the hypotheses of the
Clay millennium problem, that  will not be used in the next in the main solution of the 4th

Clay Millennium problem, but we include it just for the sake of the state of the art that TAO,
T, in 2013 (see references) has created in studying this 4th Clay Millennium problem. For
more details about the involved functional analysis norms, the reader should look in the
above paper TAO, T, in 2013 in the references. 

We must notice that the definitions below can apply also to the case  of  inviscid flows, 
satisfying the Euler equations.                   

DEFINITION 2.1 (Smooth solutions to the Navier-Stokes system). A smooth set of data for the
Navier-Stokes system up to time T is a triplet (u0, f, T), where 0 < T < ∞ is a time, the initial
velocity vector field u0 : R3  → R3  and the forcing term f : [0, T] × R3  → R3  are assumed to be
smooth on R3  and [0, T] × R3  respectively (thus, u0 is infinitely differentiable in space, and f is
infinitely differentiable in space time), and u0 is furthermore required to be divergence-free: 

∇ · u0 = 0. 

 If f = 0, we say that the data is homogeneous.

In the proofs of the main conjecture  we will not consider any external force, thus the data
will  always  be  homogeneous.  But  we  will  state  intermediate  propositions  with  external
forcing. Next we are defining simple diffentiability of the data by  Sobolev spaces. 

DEFINITION 2.2 We define the H1 norm   (or enstrophy norm)  H1 (u0, f, T) of the data to be
the quantity 

H1 (u0, f, T) :=   )()(0 3131 RHLRH xtX
fu  and say that (u0, f, T) is H1 if

 H1 (u0, f, T) < ∞. 

DEFINITION 2.3 We say that a smooth set of data (u0, f, T) is Schwartz if, for all integers α, m,
k ≥ 0, one has 
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Thus, for instance, the solution or initial data having Schwartz property implies having the
H1 property. 

DEFINITION 2.4 A  smooth solution to the Navier-Stokes system, or a  smooth solution for
short, is a quintuplet (u, p, u0 , f, T), where (u0, f, T) is a smooth set of data, and the velocity
vector field u : [0, T] × R3  → R3  and pressure field p : [0, T]× R3  → R  are smooth functions on
[0, T]× R3  that obey the Navier-Stokes equation (eq. 1) but with external forcing term f, 
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and also the incompressibility  property  (eq.2) on all  of [0, T] × R3 ,   but also the initial

condition u(0, x) = u0(x)   for all x ∈ R3

DEFINITION 2.5 Similarly, we say that (u, p, u0, f, T) is H1 if the associated data (u0, f, T) is H1 ,
and in addition one has 
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We say that the solution is incomplete in [0,T), if it is defined only in [0,t] for every t<T.

We use here the notation of mixed norms (as e.g. in TAO, T 2013). That is if )(k
xH
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classical Sobolev norm ,of smooth function of a spatial domain Ω,  Ru : ,  I is a time
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Similar instead of the Sobolev norm for other norms of function spaces.

We also denote by   )(k
xC  ,  for  any natural  number  0k ,  the  space of  all  k  times

continuously differentiable functions  Ru : , with finite the next norm
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We use also the next notation for hybrid norms. Given two normed spaces X, Y on the same
domain (in either space or time), we endow their intersection YX  with the norm 

YXYX
uuu 


: .

In particular in the we will use the next notation for intersection functions spaces, and their
hybrid norms. 
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We also use the big O notation, in the standard way, that is X=O(Y) means 

CYX  for some constant C. If the constant C depends on a parameter s, we denote it by
Cs  and we write X=Os(Y).

We denote the difference of two sets A, B by A\B. And we denote  Euclidean balls

by }:{:),( 3 raxRxraB  , where |x| is the Euclidean norm. 

With the above terminology the target  Clay millennium conjecture in this  paper can be
restated as the next proposition

The 4th Clay millennium problem (Conjecture A)

(Global  regularity  for  homogeneous  Schwartz  data).  Let  (u0,  0,  T)  be  a  homogeneous
Schwartz set of data. Then there exists a smooth finite energy solution (u, p, u0, 0, T) with the
indicated data (notice it is  for any T>0, thus global in time).

3. Some known or  directly  derivable,  useful  results  that  will  be
used.

In this paragraph I state, some known theorems and results,  that are to be used in this
paper, or is convenient for the reader to know , so that the reader is not searching them in
the literature and can have a direct, at a glance, image of what already holds and what is
proved. 

A review of this paragraph is as follows:

Propositions  3.1,  3.2  are  mainly  about  the  uniqueness  and  existence  locally  of  smooth
solutions  of  the  Navier-Stokes  and  Euler  equations  with  smooth  Schwartz  initial  data.
Proposition  3.3  are  necessary  or  sufficient  or  necessary  and  sufficient  conditions  of
regularity (global in time smoothness) for the Euler equations without viscosity. Equations 8-
13 are forms of the energy conservation and finiteness of the energy loss in viscosity or
energy  dissipation.  Equations  14-16  relate  quantities  for  the  conditions  of  regularity.
Proposition 3.4  is the equivalence of smooth Schwartz  initial data with smooth compact
support initial data for the formulation of the 4th Clay millennium problem. Propositions 3.5-
3.9 are necessary  and sufficient conditions  for regularity,  either for  the Euler  or Navier-



Stokes equations, while Propositions 4.10 is a necessary and sufficient condition of regularity
for only the Navier-Stokes with non-zero viscoidity.  

In the next I want to use, the basic local existence and uniqueness of smooth solutions to the
Navier-Stokes (and Euler) equations , that is usually referred also as the well posedness, as it
corresponds to the existence and uniqueness of the physical reality causality of the flow. The
theory of well-posedness for smooth solutions is summarized in an adequate form for this
paper by the Theorem 5.4 in TAO, T. 2013.

I give first the definition of  mild solution  as in TAO, T. 2013 page 9. Mild solutions must
satisfy   a  condition on the pressure  given by  the  velocities.  Solutions  of  smooth initial
Schwartz data are always mild, but the concept of mild solutions is a generalization to apply
for non-fast decaying in space initial data , as the Schwartz data, but for which data we may
want also to have local existence and uniqueness of solutions. 

DEFINITION 3.1

We  define a  H1 mild solution (u, p, u0, f, T) to be fields u, f :[0, T] × R3  → R3, 

p : :[0, T] × R3  → R, u0 : R3  → R3, with 0 < T < ∞ , obeying the regularity hypotheses
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with the pressure p being given by (Poisson)

fuup jiji   11 )(     (eq. 7) 

 

(Here the summation conventions is used , to not write the Greek big Sigma).

which obey the incompressibility conditions  (eq. 2), (eq. 3)  and satisfy the integral form of 
the Navier-Stokes equations
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with initial conditions   u(x,0)=u0(x) .

We notice that the definition holds also for the in viscid flows, satisfying the Euler equations.
The viscosity coefficient here has been normalized to  ν=1.              

In   reviewing the local well-posedness theory of H1  mild solutions, the next can be said. The
content of the theorem 5.4 in TAO, T. 2013  (that I also state here for the convenience of the
reader and from which derive our  PROPOSITION 3.2)  is largely standard (and in many cases
it has been  improved by  more powerful  current well-posedness theory). I mention here for



example the relevant research by  PRODI G 1959 and  SERRIN,J 1963, The local existence
theory follows from the work of KATO, T.  PONCE, G. 1988  , the regularity of mild solutions
follows  from  the  work  of  LADYZHENSKAYA,  O.  A.  1967  .  There  are  now  a  number  of
advanced local well-posedness results at  regularity, especially that of  KOCH, H., TATARU,
D.2001.

There  are  many  other  papers  and  authors   that  have  proved  the  local  existence  and
uniqueness of smooth solutions with different methods. As it is referred  in C. L. FEFFERMAN
2006 I refer too  the reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4,

I state here for the convenience of the reader the summarizing theorem 5.4 as in TAO T.
2013. I omit the part (v) of Lipchitz stability of the solutions  from the statement of the
theorem. I  use the standard O()  notation here, x=O(y) meaning x<=cy for some absolute
constant c. If the constant c depends on a parameter k, we set it  as index of  Ok(). 

It is important to remark here that the existence and uniqueness results locally in time (well-
posedness) ,  hold also not only for the case of viscous flows following the Navier-Stokes
equations, but also for the case of inviscid flows under the Euler equations. There are many
other papers and authors  that have proved the local existence and uniqueness of smooth
solutions  both for the Navier-Stokes and the Euler equation with the same methodology ,
where the value of the viscosity coefficient v=0, can as well be included. I refer e.g.   the
reader  to the MAJDA A.J-BERTOZZI A. L. 2002  page 104 Theorem 3.4 , paragraph 3.2.3, and
paragraph 4.1 page 138. 

PROPOSITION 3.1       (Local well-posedness in H1). Let (u0,  f, T) be H1 data.

(iii) (Strong solution) If (u, p, u0, f, T) is an H1 mild solution, then
)],0([ 310 RTHCu xt 

(iv) (Local existence and regularity) If
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for a sufficiently small absolute constant c > 0, then there exists

a H1 mild solution (u, p, u0, f, T) with the indicated data, with
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and more generally
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for each k>=1 . In particular, one has local existence whenever

T is sufficiently small,  depending on the norm H1(u0, f, T).



(iii) (Uniqueness) There is at most one H1 mild solution (u, p, u0, f, T)

with the indicated data.

 (iv) (Regularity) If (u, p, u0, f, T ) is a H1 mild solution, and (u0, f, T)

is (smooth) Schwartz data, then u and p is smooth solution; in fact, one has 
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t   for all j, K >=0.

For the proof of the above theorem, the reader is referred to the  TAO, T. 2013 theorem 5.4,
but also to the papers and books , of the above mentioned other authors. 

Next I state the local existence and uniqueness of smooth solutions of the Navier-Stokes
(and Euler) equations with smooth Schwartz initial conditions , that I will use in this paper ,
explicitly as a PROPOSITION  4.2 here. 

 PROPOSITION  3.2 Local  existence and uniqueness of smooth solutions or smooth well
posedness. Let  u0(x) , p0(x) be  smooth and Schwartz initial data at t=0 of the Navier-Stokes
(or Euler) equations, then there is a finite time interval [0,T] (in general depending on the
above initial conditions) so that there is a unique smooth local in time solution of the Navier-
Stokes (or Euler) equations

  u(x) , p(x) C(R3 [0,T])

Proof: We simply apply the PROPOSITION 3.1 above and in particular , from the part (ii) and
the assumption in the PROPOSITION  3.2, that the initial data are smooth Schwartz , we get
the local existence of H1 mild solution (u, p, u0, 0, T). From the part (iv) we get that it is also a
smooth solution. From the part (iii), we get that it is unique. 

As an alternative we may apply the theorems in MAJDA A.J-BERTOZZI A. L. 2002  page 104
Theorem  3.4  ,  paragraph  3.2.3,  and  paragraph  4.1  page  138,  and  getthe  local  in  time
solution, then derive from the part (iv) of the PROPOSITION 4.1 above, that they are also in
the classical sense smooth. QED.

Remark 3.1 We remark here that the property of  smooth Schwartz initial data, is not known
in general if is conserved in later times than t=0, of the smooth solution in the Navier-Stokes
equations,  because it  is a very strong fast  decaying property at  spatially  infinity.  But for
lower rank derivatives of the velocities (and vorticity) we have the (global and) local energy
estimate , and (global and) local enstrophy estimate theorems that reduce the decaying of
the solutions at later times than t=0,  at spatially infinite to the decaying of the initial data at
spatially  infinite.  See  e.g.  TAO,  T.  2013,  Theorem  8.2  (Remark  8.7)  and  Theorem  10.1
(Remark 10.6).

Furthermore in the same paper of formal formulation of the Clay millennium conjecture , L.
FEFFERMAN 2006 (see page 3rd line 6 from above),  it is stated that the 3D global regularity
of such smooth solutions is controlled by the bounded accumulation in finite time intervals
of the vorticity  (Beale-Kato-Majda).  I  state this also explicitly for the convenience of the



reader, for smooth solutions of the Navier-Stokes equations with smooth Schwartz initial
conditions, as the PROPOSITION 3.6 When we say here bounded accumulation e.g. of the
deformations D,  on finite internals, we mean in the sense e.g. of the  proposition 5.1    page
171 in the book MAJDA A.J-BERTOZZI A. L. 2002 , which is a definition designed to control
the existence or not of finite blowup times. In other words  for any finite time interval 

[0, T], there is a constant M such that 
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I  state  here  for  the convenience of  the reader,  a  well  known proposition of  equivalent
necessary and sufficient conditions of existence globally in time of solutions of the Euler
equations, as inviscid smooth flows. It is the   proposition 5.1 in MAJDA A.J-BERTOZZI A. L.
2002 page 171.

The stretching is defined by 

  DtxS :),(  if 0  and 0:),( txS  if 0  where 
 : , ω being the vortcity.  

 PROPOSITION  3.3   Equivalent Physical Conditions for Potential Singular Solutions of the
Euler equations . The following conditions are equivalent for smooth Schwartz initial data:

(1) The time interval, [0, T*) with T* < ∞ is a maximal interval of smooth Hs

existence of solutions for the 3D Euler equations.

(2) The vorticity ω accumulates so rapidly in time that
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  as t tends to T*

(3) The deformation matrix D accumulates so rapidly in time that
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 as t tends to T*

 (4) The stretching factor S(x, t)  accumulates so rapidly in time that
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The next theorem establishes the equivalence of smooth connected compact support initial
data with the smooth Schwartz initial data, for the homogeneous version  of the 4  th   Clay
Millennium problem. It can be stated either for local in time smooth solutions or global in
time smooth solutions. The advantage assuming connected compact support smooth initial
data, is obvious, as this is preserved in time by smooth functions and also integrations are
easier when done on compact connected sets.



PROPOSITION  3.4.  (3D  global  smooth  compact  support  non-homogeneous  regularity
implies  3D  global  smooth  Schwartz  homogeneous  regularity) If  it  holds  that  the
incompressible viscous (following the Navier-Stokes equations) 3 dimensional  local in time
[0,T] , finite energy, flow-solutions with smooth compact support (connected with smooth
boundary)  initial  data of velocities and pressures (thus finite initial  energy) and smooth
compact support (the same connected support with smooth boundary) external forcing for
all times t>0,  exist also globally in time t>0 (are globally regular) then it also holds that the
incompressible viscous (following the Navier-Stokes equations) 3 dimensional  local in time
[0,T]  ,  finite  energy,  flow-solutions  with  smooth  Schwartz   initial  data  of  velocities  and
pressures  (thus finite  initial  energy)  ,   exist  also globally  in  time for  all  t>0 (are  regular
globally in time).

Proof: see KYRITSIS, K. June 2017, or KYRITSIS, K. February 2019, PROPOSITION 6.4)

Remark 3.2 Finite initial energy and energy conservation equations:

When we want to prove that the smoothness in the local in time solutions of the Euler or
Navier-Stokes equations is conserved, and that they can be extended indefinitely in time, we
usually apply a  “reduction ad absurdum” argument:  Let the maximum finite time T* and
interval [0,T*) so that the local solution can be extended smooth in it.. Then the time T* will
be a blow-up time, and if we manage to extend smoothly the solutions on [0,T*]. Then there
is no finite Blow-up time T* and the solutions holds in [0,+∞). Below are listed necessary and
sufficient conditions for this extension to be possible. Obviously not smoothness assumption
can be made for the time T*, as this is what must be proved. But we still can assume that at
T* the energy conservation and momentum conservation will hold even for a singularity at
T*, as these are  universal laws of nature, and the integrals  that calculate them, do not
require  smooth  functions  but  only  integrable  functions,  that  may  have  points  of
discontinuity.  

A very  well  known form of  the energy  conservation  equation and accumulative  energy
dissipation is the next:

   
3 3 30

222
0,(

2

1
),(),(

2

1
R

T

R R
dxxudxdttxuvdxTxu                         (eq. 8 )   

where


3

2
)0,(

2

1
)0(

R
dxxuE                   (eq. 9 )  

is the initial finite energy
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 is the final finite energy
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is the accumulative finite energy dissipation from time 0 to time T , because of viscosity in to
internal heat of the fluid. For the Euler equations it is zero. Obviously

ΔΕ<=Ε(0)>=E(T)                     (eq. 12) 

The rate of energy dissipation is given by
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                                                                        (eq. 13)

(v, is the density normalized viscosity coefficient. See e.g. MAJDA, A.J-BERTOZZI, A. L. 2002
Proposition 1.13, equation (1.80) pp. 28)

Remark 3.3 The next are 3 very useful inequalities for the unique local in time [0,T], smooth
solutions u of the Euler and Navier-Stokes equations with smooth Schwartz initial data and
finite initial energy  (they hold for more general conditions on initial data, but we will not
use that):

By ||.||m   we denote the Sobolev norm of order m. So if m=0 itis essentially the L 2-norm. By
||.||L∞  we denote the supremum norm, u is the velocity,  ω is the vorticity, and cm, c are
constants.

1)  


T

Lmmm
dttxucxuTxu

0

)),((exp()0,(),(                                       (eq. 14) 

(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp117, equation (3.79))
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(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp117, equation (3.80))
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(see e.g. MAJDA, A.J-BERTOZZI, A. L. 2002  , proof of Theorem 3.6 pp118, last equation of the
proof)

The next are a list of well know necessary and sufficient conditions , for regularity (global in
time  existence  and  smoothness)  of  the  solutions  of  Euler  and  Navier-Stokes  equations,
under the standard assumption in  the 4  th   Clay  Millennium problem of  smooth Schwartz
initial data, that after theorem Proposition 4.4 above can be formulated equivalently with
smooth compact connected support data. We denote by T* be the maximum Blow-up time
(if it exists) that the local solution u(x,t) is smooth in [0,T*). 



DEFINITION 3.2 

When we write that a quantity Q(t)  of the flow ,in general depending on time, is uniformly
in time bounded during the flow, we mean that  there is a bound M independent from time ,
such that Q(t)<=M for all t in [0, T*).

8) PROPOSITION 3.5 (Necessary and sufficient condition for regularity)
The local solution u(x,t)  ,  t  in [0,T*)  of the Euler or Navier-Stokes equations,  with
smooth Schwartz initial data, can be extended to [0,T*], where T* is the maximal time
that the local solution u(x,t) is smooth in [0,T*), if and only if the  Sobolev norm ||
u(x,t)||m  ,  m>=3/2+2 ,  remains bounded , by the same bound in all of [0,T*), then ,
there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

Remark  3.4 See for a proof e.g. . MAJDA, A.J-BERTOZZI, A. L. 2002  , pp 115, line 10
from below)

9) PROPOSITION 3.6 (Necessary and sufficient condition for regularity. Beale-Kato-
Majda)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact support  initial data, can be extended to [0,T*], where T* is the
maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for the
finite  time  interval  [0,T*],  there  exist  a  bound  M>0,  so  that  the  vorticity  has
bounded by M, accumulation in [0,T*]:
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Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

 Remark 3.5 See e.g. . MAJDA, A.J-BERTOZZI, A. L. 2002  , pp 115, Theorem 3.6. Also
page 171 theorem 5.1 for the case of inviscid flows.   . See also LEMARIE-RIEUSSET
P.G. 2002 .  Conversely if regularity holds, then in any interval from the smoothness
in  a  compact  connected  set,  the  vorticity  is  supremum  bounded.  The  above
theorems in  the book MAJDA A.J-BERTOZZI  A.  L.  2002 guarantee that the above
conditions extent the local in time solution to global in time , that is to solutions (u,
p, u0, f, T ) which is    H1 mild solution, for any T. Then applying the part (iv) of the
PROPOSITION  4.1  above, we get that this solutions is also smooth in the classical
sense, for all T>0, thus globally in time smooth.

10) PROPOSITION 3.7 (Necessary and sufficient condition of vorticity for regularity)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact support  initial  data, can be extended to [0,T*],  where T* is  the
maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for the
finite time interval [0,T*], there exist a bound M>0, so that the vorticity is bounded
by M, in the supremum norm L∞ in [0,T*] and on any compact set:



Mtx
L




),(  for all t in [0,T*)                                                (eq. 18)

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

 Remark  3.6 Obviously  if  Mtx
L
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Conversely if regularity holds, then in any interval from smoothness in a compact
connected set, the vorticity is supremum bounded.

11) PROPOSITION 3.8 (Necessary and sufficient condition for regularity)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, with
smooth compact connected support initial data, can be extended to [0,T*], where T*
is the maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if for
the finite time interval [0,T*], there exist a bound M>0, so that the  space partial
derivatives or Jacobean is  bounded by M, in the supremum norm L∞ in [0,T*]:

Mtxu
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),(  for all t in [0,T*)  (eq. 19)

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞)

Remark  3.7 Direct  from  the  inequality  (eq.14)    and  the  application  of  the
proposition 3.5.   Conversely if regularity holds, then in any finite time interval from
smoothness, the space derivatives are  supremum bounded.

12)  PROPOSITION 3.9 (FEFFERMAN C. L. 2006. Velocities necessary and sufficient 
condition for regularity)
The local solution u(x,t) , t in [0,T*)  of the Euler or Navier-Stokes equations, and with
smooth compact connected support initial data, can be extended to [0,T*], where T*
is the maximal time that the local solution u(x,t) is smooth in [0,T*), if and only if 

the velocities ||u(x,t)|| do not get unbounded as t->T*.

Then  there is no maximal Blow-up time T*, and the solution exists smooth in [0,+∞).

Remark 3.8.This is mentioned in the Standard formulation of the 4 th Clay Millennium
problem FEFFERMAN C. L. 2006 pp.2 , line 1 from below: quote “...For the Navier-
Stokes equations (v>0) , if there is a solution with a finite blowup time T, then the
velocities ui(x,t), 1<=i<=3 become unbounded near the blowup time.” The converse-
negation of this is that if the velocities remain bounded near the T*, then there is no
Blowup at T* and the solution is regular or global in time smooth. Conversely of
course  ,  if  regularity  holds,  then  in  any  finite  time  interval,  because  of   the
smoothness, the velocities, in a compact set are  supremum bounded.

I did not find a dedicated such theorem in the books or papers that I studied, but I
take it for granted as the official formulation of the problem too. .  Furthermore, we
shall interpret the velocities either as coordinate or material fluid velocities. 



We notice that Fefferman C.L. states this condition only for the viscous flows, but
since PROPOSITION 3.7 holds for the inviscid flows under the Euler equations, this
necessary and sufficient condition holds also for the inviscid flows too.   

Remark 3.9. 

Similar results about the local smooth solutions, hold also for the non-homogeneous case
with external forcing which is nevertheless space-time smooth of bounded accumulation in
finite time intervals.  Thus an alternative formulation to see that the velocities and their
gradient , or in other words up to their 1 st derivatives and the external forcing also up to the
1st derivatives , control the global in time existence  is the next proposition. See TAO. T. 2013
Corollary 5.8

PROPOSITION 3.10  (Maximum Cauchy development)

Let (u0, f, T) be H1  data. Then at least one of the following two statements hold:

1) There exists a mild H1 solution (u, p, u0, f, T) in [0,T] ,with the given data.

2)There exists a blowup time 0 < T*< T and an incomplete mild H1 solution 

(u, p, u0, f, T* ) up to time T* in [0, T*), defined as complete on every [0,t], t<T *  which blows
up in the enstrophy  H1 norm in the sense that
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Remark 3.10 The term “almost smooth”  is defined in TAO, T. 2013, before Conjecture 1.13. 
The only thing that almost smooth solutions lack when compared to smooth solutions is a 
limited amount of time differentiability at the starting time t = 0;

The  term  normalized  pressure,  refers  to  the  symmetry  of  the  Euler  and  Navier-Stokes
equations to substitute the pressure, with another that differs at, a constant in space but
variable in time measureable function. In particular normalized pressure is one that satisfies
the (eq. 7) except for a measurable at  a, constant in space but variable in time measureable
function. It is proved in TAO, T. 2013, at Lemma 4.1, that the pressure is normalizable (exists
a normalized pressure) in almost smooth  finite energy solutions, for almost all times.  The
viscosity coefficient in these theorems of the above TAO paper has been normalized to  ν=1.

PROPOSITION 3.11  (Differentiation of a potential)

Let a sub-Newtonian kernel K(x,y), and f a bounded and integral  function on the οpen  set Ω,
of  Rn ,then for all  x in ΩᴗΣ , where Σ is a relatively open subset of ∂Ω, 

the ∫ΩK(x,y)F(y)dy is in C1(ΩᴗΣ) and 

Dxi  ∫ΩK(x,y)F(y)dy=∫Ω Dxi K(x,y)F(y)dy



Proof:  By Dxi   we denote the partial  derivative  relative  to  x i .  For  the definition  of  sub-
Newtonian kernel and a proof of the above theorem, see HELMS L.L.  (2009) paragraph 8.2
pp 303 and Theorem 8.2.7 pp 306. QED.

PROPOSITION 3.12  (Estimates of  partial derivatives of harmonic functions)

Assume u is harmonic function in the open set Ω of  Rn . Then

For each ball B(x0 , r)⸦ Ω and each multi-index a of order |a|=k. 

Here  , , k=1,…. 

In particular, for the fundamental harmonic function u=1/(||x-y||) the next estimates for the
partial derivatives hold:
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And in general there is constant C(n, β) such that 
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  if |β|=κ>=1        (eq.22)

Proof:  See  EVANS L.  C.  (2010)  chapter 2,  Theorem 7, pp 29. And for the fundamental
harmonic function also see  HELMS L.L.  (2009), pp 317 equations 8.18, 8.19, 8.20 

QED.

PROPOSITION 3.13 (The well-known divergence theorem in vector calculus)

Let an non-empty bounded οpen  set Ω, of  Rn    with  C1 boundary ∂Ω, and let 

F:  be  vector field that is continuously differentiable in Ω and continuous up to the
boundary. Then the divergence theorem asserts that

 


 FF (eq. 23)



where ν is the outward pointing unit normal to the boundary ∂Ω.

PROPOSITION  3.14  (Representation  formula  of  the  bounded  solutions  of  the  Poisson

equation.)  Let  .3),(2  nRCf n
c In other words f is with continuous second derivatives,

and of compact support. Then any bounded solution of the scalar Poisson equation

fu   in Rn   has the form
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Proof: See EVANS L. C.  (2010)  §2.2 Theorem 1 pp23 and mainly Theorem 9 pp 30. The proof
is a direct consequence of the Liouville’s theorem of harmonic functions. There is a similar
representation described e.g. in as in MAJDA, A.J-BERTOZZI, A. L. 2002  §1.9.2  Lemma 1.12
pp 38, where f is defined on all of Rn and not only on a compact support.  Notice also that
solutions of the above Poisson equation that are also of compact support are included in the
representation.  More  general  settings  of  the  Poisson  equation  with  solutions  only  on
bounded regions and with prescribed functions on the boundary of the region, do exist and
are unique but require correction terms and Green’s functions as described again in EVANS
L. C.  (2010)  §2.2 Theorem 5 pp28 QED.

Remark 3.11

Such  a  more  general  form  of  the  solution  of  the  Poisson  equations  as  in  MAJDA,  A.J-
BERTOZZI, A. L. 2002  §1.9.2  Lemma 1.12 pp 38, and in particular when smooth bounded
input data functions lead to smooth bounded output solutions,  could allow us to state the
new necessary and sufficient conditions of the next paragraph 4, with the more general
hypothesis  of  the smooth Schwartz  initial  data,  rather than compact support  initial  data
Nevertheless,  it  holds the equivalence of the smooth Schwartz initial  data with compact
support initial data holds after PROPOSITION  3.4.  and  KYRITSIS,  K.  June  2017,
PROPOSITION  6.4..  In  other  words,  we  could  proceed  and  try  to  prove  the  4th Clay
Millennium problem without utilizing the PROPOSITION 3.4. of the equivalence of smooth
Schwartz initial data and smooth compact support initial data for the 4th Clay Millennium
problem.  Still  it is simpler when thinking about the phenomena to have in mind simpler
settings like compact support flows and that is the mode in which we state our results in the
next in this paper.

4. The pressures sufficient condition of regularity.
In this paragraph we utilize one part of our main strategy to solve the 4 th Clay Millennium
problem, which is to use the Poisson equation as many times as we can, to express some
quantities of the flow by other quantities, and also apply the well-known solutions of the
Poisson equations through the special smooth harmonic functions. The second part of the
strategy is to integrate over trajectories, and derive integral equations of the velocities and
their partial spatial derivatives. Since integrals of velocities may turn out to involve the finite
energy which is invariant we hope so to bound the supremum norm of the special partial



derivatives of the velocities and use the very well-known necessary and sufficient condition
for regularity as in PROPOSITION 3.8

PROPOSITION 4.1. (The pressures, necessary and sufficient condition for 
regularity)
Let the local solution u(x,t) , t in [0,T*)  of the  Navier-Stokes equations with non-zero
viscosity, and with smooth compact connected support initial data, then it can be
extended to [0,T*], where T* is the maximal time that the local solution u(x,t)  is
smooth in [0,T*),  and thus to all times [0,+∞), in other words the solution is regular,
if and only there is a time uniform bound M for the pressures p , in other words such
that 

p  for all t in [0,T*)  Still in other words smoothness and boundedness of the
pressures  p  on  the  compact  support  V(t)  and  in  finite  time  intervals  [0,T]   is  a
characteristic condition for regularity.  

Proof: Let  us  start  from  this  characteristic  smoothness  and  boundedness  of  the
pressures p on the compact support V(t) and in finite time intervals [0,T] to derive
regularity. 

We notice that in the Navier-Stokes equations of incompressible fluids the pressure
forces defines a conservative force-field, as it is the gradient     of a scalar-field that
of the pressures p, which play the role of scalar potential. And this property, of being
a conservative force-field, is an invariant during the flow. It is an invariant even for
viscous flows, compared to other classical invariants, the Kelvin circulation invariant
and the Helmholtz vorticity-flux invariant which hold only for inviscid flows. That the
force-field Fp is a conservative field, means that if we take two points x1(0), x2(0), and
any one-dimensional path P(x1(0), x2(0)), starting and ending on them, then for any
test particle of mass m, the integral of the work done by the forces is independent
from the particular path, and depends only on the two points x1=x1(0), x2=x2(0), and
we denote it here by W(x1,x2).

        
)2,1(

21 ),(
xxP

pdsFxxW                (eq. 24)

In  particular,  it  is  known  by  the  gradient  theorem,  that  this  work  equals,  the
difference of the potential at these points, and here, it is the pressures:

W(x1, x2)=(1/c)||p(x2(0))-p(x1(0))|.     (eq. 25)

(The constant (1/c) here is set, because of the normalization of the constant density
in the equations of the Navier-Stokes, and accounts for the correct dimensions of
units of measurements of the pressure, force, and work).

Similarly, if we take a test-flow , of test particles instead of one test particle, in the
limit of points, again the work density, depends only on the two points x1, x2.



From the  hypothesis  that  the  pressure  are  time-uniformly  bounded by  the same
constant M in [0,T*)  we deduce that the integral on a trajectory in (eq24) is also time-
uniformly bounded by the same constant M in [0,T*). 

MdsF
xxP

p 
)1,0(

We may re-write this integral by changing integration parameter to be the time as 

Mdt
dt

ds
F

ttP

p 
)1,0(

 in [0,T*). Or as it is on a trajectory 

MdtuF
ttP

mp 
)1,0(

in [0,T*).                                                                (eq26) 

Where um is the material velocity on the trajectory. 

If the um->+∞ blows-up as t->T*, then also the convective acceleration 

Dt

Du
->+∞ will blowup as t->T*,

And from the Navier-Stokes equations

           iup
Dt

Du
  (eq. 27) 

The pressure forces pFp  -> +∞ will blowup as t->T*,

             as the friction term only subtracts from the pressure forces.  

Nevertheless if both Fp   and um  will blow-up, so also it will , the integral in 

(eq 15) which is a contradiction.  Thus the material velocities do not blowup! 

Thus  we  may  apply  the  necessary  and  sufficient  condition  for  regularity  as  in
PROPOSITION  3.6 (FEFFERMAN  C.  L.  2006. Velocities  necessary  and  sufficient
condition for regularity) and we derive the regularity.

QED.



PROPOSITION  4.2.  (Smooth  particle  Trajectory  mapping  and  Trajectories  finite
length, necessary condition of regularity)

Let the local solution u(x,t), t in [0,T*)  of the Euler or  Navier-Stokes equations of
inviscid  or  viscous  flows  correspondingly,  and  with  smooth  compact  connected
support initial data, then it can be extended to [0,T*], where T* is the maximal time
that the local solution u(x,t) is smooth in [0,T*), and thus to all times [0,+∞), in other
words  the  solution  is  regular,  if  and only  if    the  particle  trajectory  mapping  is
smooth in finite time intervals and the trajectories-paths are smooth and of length
l(a,t)<=M  that remains bounded by a constant M for all t in [0,T*). 

Proof: 

The particle trajectory mapping is the representation of the spatial flow in time of
the fluid per trajectories-paths. For a definition see MAJDA, A.J-BERTOZZI, A. L. 2002
§ 1.3 Equation 1.13 pp 4. Here we apply this mapping on the compact support V
initial data. 

Let us assume now that the solutions is regular. Then also for all finite time intervals
[0,T] , the velocities and the accelerations are bounded in the L ∞  , supremum norm,
and this holds along all trajectory-paths too. Then also the length of the trajectories,
as they are given by the formula


T

dttaxuTal
0

00 ),((),( (eq. 28)

are also bounded and finite (see e.g.  APOSTOL T. 1974  ,  theorem 6.6 p128 and
theorem 6.17 p 135). Thus if at a trajectory the lengths becomes unbounded as t
converges to  T*, then there is a blow-up.

QED.

5. The finite energy, bounded pressure variance theorem for inviscid
and  viscous  flows  and  the  solution  of  the  4th Clay  Millennium
problem.

Remark 5.1 This paragraph utilizes two  simple techniques

a) Energy conservation in various alternative forms and formulae.



b) The property of the pressures forces being conservative in the present situation
of incompressible flows (gradient theorem).

The 4th Clay Millennium problem is not just a challenging exercise of mathematical
calculations.  It  is  an  issue  of  the  standard  modelling  the  physical  reality,  and
therefore we may utilize all our knowledge of the underlying physical reality. 

 In the strategy that this paper has adopted here to solve the 4 th Clay Millennium
problem, in a short and elegant way, we will involve as much as possible intuitive
physical ideas that may lead us to choose the correct and successful mathematical
formulae and techniques, still everything will be within strict and exact mathematics.
As T. Tao has remarked in his discussion of the 4 thClay Millennium problem, to prove
that the velocity remains bounded (regularity) for all times, by following the solution
in the general case, seems hopeless due to the vast number of flow-solution cases.
And that the energy conservation is not of much help. And it seems that it is so!  But
we need more smart and shortcut ideas, through invariants of the flow. In particular,
we need clever techniques to calculate in alternative ways part of the energy of the
flow, with virtual-test flows, and alternative integrals of virtual work of the pressure
forces on instantaneous paths, and that still have the physical units’ dimensions of
energy.  We will base our strategy to the next three factors 

1) The conservation of energy and the hypothesis of finite initial energy. Then
as  by  proposition  3.8  ,  we  have  from  this   necessary  and  sufficient
condition of regularity that we need to have that the partial derivatives of

the Jacobean are bounded:  Mtxu
L




),(  , and are  uniformly in time

bounded in the maximal time interval [0, T*) that a solution exists, then we
need to highlight  a  formula  that  computes  the partial  derivatives  of  the
velocities  from  integrals  of  the  velocities in  space  and  time  till  then,
because  the  bounded  energy  invariant  is  in  the  form  of  integrals  of
velocities.   

2) The  shortcut  of  physical  magnitude  with  physical  units’  dimensions  of
energy as  indeed calculating  energy:  In  other  words  if  we reach in  the
calculations  to an expression which has as physical magnitude the physical
dimensions units of energy then the expression calculates indeed energy.
This  is  very  valuable  and  discriminates  the  solving  the  problem as
problem  of  mathematical  physics,  compared  to  solving  it  as  pure
mathematical problem in the context of partial differential equations. 

3)  The technique of virtual-test flows on instantaneous paths, to find special
formulas for the calculation of energy from alternative magnitudes. Instead
of  having to  recalculate  the  energy starting  from the  classical  formulae
based on the velocities and transform it  as the fluid flows, we may use
shortcuts to calculate parts of the energy of the fluid based on alternative
perceptions, like virtual test-particles flows, and work of the pressure forces
on instantaneous  paths.  Of course  the  alternative  formulae  must  always
have the physical units’ dimensions of energy. 

4) Meanwhile one smart idea to start is to think of alternative ways that forms
of energy and projections of them on to bundle of paths, can be measured,
even at single time moment and state of the fluid and relate it with its total
energy which  is  finite  and  remains  bounded  throughout  the  flow.  Such



alternative measurements of parts of the energy as projected on to a bundle
of paths, can be done by integrating the conservative pressure forces Fp of
the fluid (gradient of the pressures) on paths AB, of space, and relate the
resulting theoretical work of them with the pressure differences p(A)-p(B)
since the pressures are a potential to such conservative pressure forces. 

PROPOSITION  5.1.  (The finite  energy,  uniformly  in  time  bounded
pressure-variance, theorem).

 Let a local in time ,  t  in [0,T) ,  smooth flow solution with velocities u(x,t)  ,  with
pressures p(x,t), of the Navier-Stokes equations of viscous fluids or of Euler equations
of inviscid fluids, with smooth Schwartz initial data, and finite initial energy E(0), as in
the  standard  formulation  of  the  4th Clay  Millennium problem,. Then the  pressure
differences |p(x2(t))-p(x1(t))| for any two points x1(t), x2(t), for times  that the solution
exists,  remain  bounded by kE(0),  where k   is  a  constant  depending on the  initial
conditions, and E(0) is the finite initial energy.  

Proof:  Let us look again at the Navier-Stokes equations as in (eq. 1) that we bring
them here 

        iup
Dt

Du
  (eq. 29) 

Where 
Dt

Du
 is the material acceleration, along the trajectory path.

(It is reminded to the reader, that in the equations of Navier-Stokes, as in (eq. 1) as
the density, is constant, it is custom to either normalised to 1, or it is divided out
from the left side and it is included in the pressures and viscosity coefficient).

We may separate the forces (or forces  multiplied by a constant mass density) , that
act at a point, by the two terms of the right side as 

pFp  (eq. 30)

which is the force-field due the pressures and the 

uFv  (eq. 31)

which is the force-field due to the viscosity.

We notice that (eq. 30) defines a conservative force-field, as it is the gradient     of a
scalar-field that of the pressures p, which play the role of scalar potential. And this
property, of being a conservative force-field, is an invariant during the flow. It is an
invariant  even for viscous flows, compared to other classical invariants, the Kelvin
circulation invariant and the Helmholtz vorticity-flux invariant which hold only for
inviscid flows. That the force-field Fp is a conservative field, means that if we take two
points  x1(0), x2(0), and any one-dimensional path P(x1(0), x2(0)), starting and ending
on them, then for any test particle of mass m, the integral of the work done by the
forces is independent from the particular path, and depends only on the two points
x1=x1(0), x2=x2(0), and we denote it here by W(x1,x2).



        
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pdsFxxW                (eq. 32)

In  particular,  it  is  known  by  the  gradient  theorem,  that  this  work  equals,  the
difference of the potential at these points, and here, it is the pressures:

W(x1, x2)=(1/c)||p(x2(0))-p(x1(0))|.     (eq. 33)

(The constant (1/c) here is set, because of the normalization of the constant density
in the equations of the Navier-Stokes, and accounts for the correct dimensions of
units of measurements of the pressure, force, and work).

Similarly, if we take a test-flow , of test particles instead of one test particle, in the
limit of points, again the work density, depends only on the two points x1, x2.

Let now again the two points x1(0), x2(0), at the initial conditions of the flow then as
we assume Schwartz smooth initial conditions (and not connected compact smooth
initial  conditions)  , there  is  at  least  one  double  circular  cone  denoted  by
DC(x1(0),x2(0)), made by two circular cones united at their circular bases C and with
vertices x1(0), x2(0)  opposite to the plane of the common circular base C. And let us
take a bundle of paths, that start from x1(0),  and end at x2(0) and  fill all the double
cone  DC.   We may assume now a  test-fluid  (a  flow of  test-particles),  inside  this
double cone which has volume V  ,   that flows from  x1(0), to x2(0) along these paths.
Let us now integrate the work-density on paths done by the pressure forces Fp of the
original fluid, as they act on the test-fluid, and inside this 3 dimensional double cone
DC(x1(0),x2(0)).  This will give an instance of a spatial distribution of work done by
the pressure forces in the fluid as projected to the assumed paths. This energy is
from the instant action of the pressure forces spatially distributed, and depends not
only on the volume of integration but also on the chosen bundle of paths . It is a
double integral, 1 dimensional and 2 dimensional (say on the points of the circular
base C), covering all the interior of the double cone DC. Because the work-density per
path is constant on each such path, by utilizing the Fubini’s theorem (e.g. see SPIVAK,
M.   1965 pp 56  ), the final integral is:

 
C
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x

pdxdsFW
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1

  .|p(x1(0))-p(x2(0))||)0(  VcW (eq. 34)

On the other  hand  this  work that  would  be  done by  the pressure  forces  of  the
original fluid at any time t, is real energy, it is an instance of a spatial distribution of
work done by the pressure forces in the fluid as projected to the assumed paths
and it would be subtracted from the finite initial energy E(0). Although this energy is
only an instance at fixed time t as distributed in space of the action of pressure
forces  as  projected  on the assumed bundle  of  paths,  it  still  has  to be finite  as
calculated in the 3-dimesional double cone. This therefore translates in to that the
instance  in  time  of  energy  flow due  to  pressure  forces  as  projected  on  to  the
assumed bundle of paths, of the original fluid is uniformly in time bounded or in
other words bounded in every finite time interval.  Therefore:

W<=E(0).           (eq. 35)



And after combining the   (eq. 35), with (eq. 34), we get

E(0)|p(x1(0))-p(x2(0))|| Vc                         (eq. 36)

As we remarked that the force field Fd   due to pressures is conservative and is an
invariant of the flow, and so is the volumes , therefore we can repeat this argument
for later times t in [0,T), so that we also have 

E(t)|p(x1(t))-p(x2(t))||)(  VctW                           (eq. 37)

But since due to energy conservation we have E(t)<=E(0) (for inviscid fluids E(t)=E(0)),
then also it holds

E(0)|p(x1(t))-p(x2(t))|| Vc                (eq. 38)

Which is what it is required to prove for x1 , x2 and  k=1/(cV). 

In particular,  we notice that if  there is  a supremum sup(p) and infimum inf(p) of
pressures at time t, so that | sup(p)- inf(p) | is a measure of the variance of the
pressures at time t, then this variance is bounded up to a constant, by the initial finite
energy, justifying the title of the theorem. For the case of fluid with smooth compact
connected support initial data, the infimum of the pressures is zero, which occurs at
the boundary of the compact support.  So the pressures, in general, are uniformly
bounded  by  the  same  constant  throughout  the  time  interval  [0,T*).
(which includes the case T*=+∞) QED. 

Remark 5.2. It is interesting to analyse if we could prove the same proposition as the
above 5.1 , not for   smooth Schwartz initial data, on all the 3 dimensional space , but
for  connected  compact  Cp  region  smooth  Schwartz  initial  data.  Actually  the
PROPOSITION 3.4. or  in   KYRITSIS,  K.  June 2017,  PROPOSITION 6.4.  is  stated for
compact  support  which  is  simply  connected  and  of  smooth  boundary  and
homeomorphic under a smooth 1-1 correspondence with a 3-dimensional sphere. 

The arguments with the finite energy and the pressures is the same , except we must
be able to find for any two points x1(0),x2(0)  in the connect compact smooth region
Cp, a  double circular cone denoted by DC(x1(0),x2(0)),  made by two circular cones
united at their circular bases C and with vertices x1(0), x2(0)  opposite to the plane of
the common circular base C.   This is actually a matter of geometric topology. If the
compact  connected  region  Cp  is  also  simply  connected  and  there  is  a  smooth
homeomorphism F that  it  sends it  to a sphere S3 in  the 3  dimensional  space,  as
assumed  in  the  proof  of  the  PROPOSITION  3.4. or   in   KYRITSIS,  K.  June  2017,
PROPOSITION 6.4.  then of course for the points F(x1(0)), F(x2(0)) , there is such  a
double circular cone denoted by DC(F(x1(0)),F(x2(0))), and the inverse image F-1(DC) is
a curvilinear such double cone in the compact connected region Cp, Then we apply
the 3-dimensional integrations of eq(30) on it. In general, though the If we want to
prove the PROPOSITION 5.1. more generally for compact connected region Cp which
is not simply connected it is known that there is a smooth homeomorphism F that it
sends it to a sphere S3, with n-handles Hn in the 3 dimensional space, or in symbols. S3

U H1  U ….U Hn  .  Then again there is  a choice of the F (  a  matter of geometric 3-
dimensional topology) such that the images of he initial points F(x1(0)), F(x2(0)), are in
the interior of the sphere S3. And thus there is again a double circular cone denoted



by DC(F(x1(0)),F(x2(0))), and the inverse image F-1(DC) is a curvilinear such double cone
in the compact connected region Cp, to make the integrations as in eq(30). Therefore
we may remark that we may have the PROPOSITION 5.1 to hold not for   smooth
Schwartz initial data, on all the 3 dimensional space , but for connected compact Cp
region smooth Schwartz initial data.

PROPOSITION 5.2 (The solution of the 4th Clay Millennium problem).
Let a local in time , t in [0,T) ,  smooth flow solution with velocities u(x,t) ,  of the
Navier-Stokes equations of viscous fluids with smooth Schwartz initial data, and finite
initial energy E(0), as in the standard formulation of the 4 th Clay Millennium problem.
Then the solution is regular, in other words it can be extended as smooth solution for
all times t in [0,+∞). 

Proof: From the  previous  proposition  5.1,  we  have  that  the  pressures  are
smooth and bounded in finite time intervals (with smooth Schwartz initial data
either on all 3-space or with smooth compact support initial data on a 3-ball )
and therefore we apply the pressures sufficient condition of regularity as in
PROPOSITION  4.1.  (The  pressures sufficient  condition  for  regularity).
Hence the solution of the Clay Millennium problem in its original formulation.
We also have proved that not only there is not a  blow-up at finite time but also
that there is no blow-up even at time= +∞                                                 QED. 
Remark 5.3.  As we mentioned above and also in Remark 3.11, it was our choice to
prefer to use rather than not use, the PROPOSITION 3.4.  and KYRITSIS, K. June 2017,
PROPOSITION 6.4. in other words,  the equivalence of  the smooth Schwartz initial
data with smooth compact support initial data for the  Clay Millennium problem. But
as PROPOSITION 4.4 is stated only for the Navier-Stokes equations and viscous flows,
and not for the Euler equations. So we missed to prove the regularity of the Euler
equations with the previous method. It will be left for the future the investigation of
a different line of statements that might as well  prove the regularity of the Euler
equations under the standard hypotheses for initial data as in the  Clay Millennium
problem. 

6. Epilogue.  In this paper it is has been proved the regularity of the Navier-
Stokes  equations  and therefore  it  has  been  solved the  4th Clay  Millennium
problem.  To do so it was utilized mainly that the initial energy was finite, the
conservation of the energy, with alternative ways to compute parts of it, and
that many of the magnitudes of the flow are interrelated through the very well-
studied and regular Poisson equation through harmonic functions. Finite initial
energy,  conservation  of  energy  and  the  regularity  of  the  pressures  gave
finally  the  regularity  of  the  Navier-Stokes  equations  with  the  standard
hypotheses  for  initial  data  as  in  the  corresponding   Clay  Millennium
problem.
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