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Abstract

We consider a time-dependent shortest path problem with possible waiting at each node and
a global bound W on the total waiting time. The goal is to minimize only the time traveled
along the edges of the path, not including the waiting time. We prove that the problem can be
solved in polynomial time when the travel time functions are piecewise linear and continuous.
The algorithm relies on a recurrence relation characterized by a bound ω for the total waiting
time, where 0 ≤ ω ≤ W . We show that only a small numbers of values ω1, ω2, . . . , ωK need to
be considered, which depends on the total number of breakpoints of all travel time functions.
keywords: Time-dependent networks; Shortest paths; Label-setting algorithms; Concavity;
Breakpoint; Wait.

1 Introduction

We consider in this paper a variant of the time-dependent shortest path problem (TDSP). Given a
graph G = (V,A) with n nodes and m arcs, the objective is to find the path from o ∈ V to d ∈ V
that has the lowest travel time. It is permitted to wait at the nodes, as long as the total waiting
time does not exceed a given bound W , and the waiting time is not considered in the travel time.
The problem has diverse applications in transport and logistics such as planning routes for truck
drivers while minimizing the fuel consumption.

The study of the TDSP (without waits) dates back to Cooke and Halsey [6] who introduced
an extension of Bellman’s equations [3] to the time-dependent context. This early work has been
followed by articles introducing an assumption, often referred to as the consistency assumption,
preventing from reaching the head of an arc earlier by departing later from its tail. Also called
FIFO (first-in first-out), the assumption leads to polynomial-time algorithms for the problem [8, 11].

Allowing to wait at nodes makes the problem more complex since one must decide how much
to wait at each node, in addition to choosing the path. A general approach to the TDSP with
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waiting has been proposed by Cai et al. [4] who consider that each arc has a time-dependent cost,
in addition to the time-dependent traversing time, and that waiting incurs a cost, also modeled
by a time-dependent function. Their model also requires that the path reaches the destination
within a given time horizon. Different dynamic programming algorithms have been proposed for
this variant [4, 5, 7], resulting algorithms running in time polynomial in n,m, and the length of the
time horizon, making them pseudo-polynomial. Related works consider alternative settings such
as minimizing the excess time (over the minimum travel time) [2] or road networks with traffic
lights [1].

Other variants of the TDSP with waiting have been considered by [9] and [12]. Both papers
consider only traversing time functions and relax the time horizon constraint. On the one hand,
if waiting is allowed only at the source node, Foschini et al. [9] show that the problem remains
polynomially solvable. On the other hand, if waiting is allowed at each node, and bounds not
greater than W are considered on each node, the problem becomes NP-hard [12] and can be solved
polynomially in n,m and W . Interestingly, the reduction provided in [12] does not extend to the
case where the waiting times are bounded only by one global constraint. The purpose of this paper
is to fill this gap: we prove that the TDSP allowing waiting at each node and bounding the waiting
time only by one global constraint can be solved in polynomial time.

We now provide a rough description of the algorithm proposed in this article. Similarly to
the method developed by Foschini et al. [9], our algorithm exploits the breakpoints of the travel
time functions. Yet, our problem needs to handle the possibility of waiting at every node of the
graph, unlike in [9] where it is allowed to wait only at the source node. Hence, even when the
path is given, the optimization problem considered herein involves n optimization variables, one
for each node, while the counterpart from [9] is a one-dimensional optimization problem. We
address this difficulty by introducing Tv(ω), the travel-time of the cheapest path to node v as a
function of the bound ω ≤W on the total waiting time. What is more, we are able to construct a
sequence of possible waits ω1 = 0, ω2, . . . , ωK = W such that {Tv(ωk+1), v ∈ V } can be computed
from {Tv(ωk), v ∈ V } by applying a variant of Dijkstra’s algorithm. We show that the values
ω1, . . . , ωK are the possible non-concavities of the function Tv(ω) and every such non-concavity can
be traced back to a distinct breakpoint of the transit times functions. Hence, K is bounded by
the total number of breakpoints. The overall algorithm is polynomial in n,m, and the number of
breakpoints of the travel time functions.

The rest of the paper is structured as follows. In the next section, we define the problem
formally. Section 3 introduces basic properties of the problem. Section 4 analyzes the structure of
optimal paths and introduces a key property that must be satisfied by the sequence ω1, ω2, . . . , ωK .
Section 5 proposes an algorithm building a sequence satisfying this property.

2 Problem definition

The travel time of each arc is given by a non-negative continuous piecewise linear function Ce :
R+ → R+ defined by re pieces. Each piece s = 1, . . . , re is an affine function cse + ρset defined on
the interval [τ s−1

e , τ se ], where cse, ρ
s
e ∈ R, τ se ∈ R+, τ0

e = 0 and τ ree = +∞.
Let Pv be the set of all paths from o to v ∈ V . We further define PWv(ω) as the sets of paths-

with-waits π = (p,w), where p = (v1(= o), v2, . . . , v|p|(= v)) belongs to Pv, and w = (w1, . . . ,w|p|−1)

is the vector of waiting times, which satisfies
∑|p|−1

i=1 wi ≤ ω. Since we wish to minimize total travel
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time, the cost of (p,w) can be expressed as

C(π) =

|p|−1∑
i=1

Ci(ti), (1)

where Ci is a shorthand notation for Cvivi+1 and ti is the departure time from node vi, which can
be computed using the recursion

ti = ti−1 + Ci−1(ti−1) + wi. (2)

Let Tv(ω) = minπ∈PWv(ω)C(π) be the minimum travel time among all paths from o to v with
total waiting time at most ω. We note that the value of Tv(ω) is different from the departure time
at node v, tv, which includes the total waiting time up to node v (see (2)). For π∗ = (p∗,w∗) ∈
arg minπ∈PWv(ω)C(π), the two quantities are related through the equation Tv(ω) = tv −

∑|p∗|
i=1 w∗i ,

or equivalently,

C(π∗) = tv −
|p∗|∑
i=1

w∗i . (3)

The aim of the article is to provide a polynomial-time algorithm for the optimization problem.

Td(W ) = min
π∈PWd(W )

C(π). (TDSPW )

In most applications, we can assume that entering an arc e at time t′ ≥ t leads to leaving the
arc at time t′ + Ce(t′) ≥ t+ Ce(t), which can be equivalently stated as follows.

Assumption 1 (Consistency assumption). Let ρmin = mine,s ρ
s
e. We have ρmin ≥ −1.

The purpose of the article is to prove the following theorem.

Theorem 1. Problem (TDSPW ) can be solved in polynomial time with respect to n, m and
maxe∈E re.

In what follows, we shall refer to the left and right derivatives of a one-variable function f(x)
as ∂−f(x) and ∂+f(x).

3 Preliminaries

Let v ∈ V and ω ≤ W , our algorithm is based on the recurrence relation that relates Tv(ω) to the
minimum travel time to the predecessors of v. To derive the relation, we introduce T̃v(ω) as the
minimum travel time among all paths from o to v with total waiting time exactly ω, not including
the time waited at v. Formally,

T̃v(ω) = min
π:=(p,w)∈PWv(ω)

C(π) :

|p|−1∑
i=1

wi = ω

 .

For this quantity, one can verify that the following recurrence holds.

T̃v(ω) = min
(u,v)∈E

{
min
ω′≤ω

T̃u(ω′) + Cuv(T̃u(ω′) + ω)

}
.
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Using the consistency assumption, we observe that T̃u(ω′)+Cuv(T̃u(ω′)+ω) is minimum if T̃u(ω′) is
minimum. Since Tu(ω) = minω′≤ω T̃u(ω′), the above recurrence relation can be equivalently written
as

T̃v(ω) = min
(u,v)∈E

Tu(ω) + Cuv(Tu(ω) + ω). (4)

As a consequence, we can distinguish two cases in the computation of Tv(ω), depending on
whether it is achieved with a total wait equal to or lower than ω. If there exists ω′ < ω such that
Tv(ω) = T̃v(ω

′), then
Tv(ω) = Tv(ω

′). (5)

Otherwise, Tv(ω) = T̃v(ω), so we can directly rewrite (4) as

Tv(ω) = min
(u,v)∈E

Tu(ω) + Cuv(Tu(ω) + ω). (6)

Grouping relations (5) and (6), Tv(ω) satisfies the recurrence relation

Tv(ω) = min

{
inf

0≤ω′<ω
Tv(ω

′), min
(u,v)∈E

Tu(ω) + Cuv(Tu(ω) + ω)

}
. (7)

The bottom line of our algorithm is to build a sequence with polynomial length 0 = ω1, ω2, . . . , ωK =
W such that relation (7) can be simplified to

Tv(ωk+1) = min

{
Tv(ωk), min

(u,v)∈E
Tu(ωk+1) + Cuv(Tu(ωk+1) + ωk+1)

}
, (8)

which can be equivalently formulated as

Tv(ωk+1) = min
{
Tv(ωk), T̃v(ωk+1)

}
. (9)

Indeed, for such sequence, {Tu(ωk+1)}u∈V can be computed in polynomial time from {Tu(ωk)}u∈V
using the variant of Dijkstra’s algorithm presented in Algorithm 1.

Proposition 1. Let ωk, ωk+1 ∈ [0,W ] such that ∀v ∈ V , ωk+1 satisfies (8). Then, the label setting
algorithm defined by Algorithm 1 returns Tv(ωk+1),∀v ∈ V, in at most O(n log(n) +m) operations.

Proof. The algorithm is an adaptation of Dijkstra’s algorithm for shortest paths and the proof is
similar. The time complexity of the algorithm is the same as that of Dijkstra’s algorithm, and
using a Fibonacci heap [10] yields the desired complexity.

We conclude the section by introducing two useful properties. First, we show that the consis-
tency assumption implies that the right-derivative of T (ω) is bounded below by −1.

Proposition 2. ∂+Tv(ω) ≥ −1 for all ω ∈ [0,W [.

Proof. Consider ω̃ > 0 and let π̃ = (p̃, w̃) ∈ PWv(ω̃) be a path-with-waits from o to v that achieves
Tv(ω̃), so C(p̃, w̃) = Tv(ω̃). Let vj be the last node along p̃ for which w̃j > 0 and define w ∈ Rn as

wi = w̃i for i 6= j and wj = w̃j − δ for some 0 < δ ≤ w̃j , as well as ω =
∑|p̃|−1

i=1 wi = ω̃ − δ. We
claim that

C(p̃, w̃)− C(p̃,w)

δ
≥ −1. (10)
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input : ωk, ωk+1 ∈ [0,W ], ωk < ωk+1

Tv(ωk), ∀v ∈ V
Tv ← Tv(ωk),∀v ∈ V
S ← {o} // set of marked vertices

u← o // last marked vertex

while S 6= V do
for (u, v) ∈ E do Tv ← min{Tv;Tu + Cuv(Tv + ωk+1)} // update minimum travel times

u← arg minv∈V \S{Tv} // mark the vertex with minimum travel time

S ← S ∪ {u}
output: Tv, v ∈ V

Algorithm 1: Adaptation of Dijkstra’s label setting algorithm for the computation of
T (ωk+1) provided T (ωk)

Therefore,

Tv(ω + δ)− Tv(ω)

δ
=

C(p̃, w̃)− min
π∈PWv(ω)

C(π)

δ

≥ C(p̃, w̃)− C(p̃,w)

δ
≥ −1.

and the results follows by taking the limit.
Let us now prove the claim (10), defining t̃ and t as the vectors of departure times for w̃ and

w, respectively. By definition, tj = t̃j − δ and, since ρmin ≥ −1, t` ≤ t̃` for any j ≤ l ≤ |p̃|. In
particular, t|p̃| ≤ t̃|p̃|, and the claim follows from (3).

Next we show that we can restrict our attention to acyclic solutions.

Proposition 3. TDSPW admits an acyclic optimal solution.

Proof. Consider a solution (p,w) where p = (v1, . . . , v|p|) contains a cycle c. Then, vi1 = vi2 for some

i1 < i2. Denote σj =
∑j

i=1 wi, ∀j ∈ {2, . . . , |p|}. Assumption 1 ensures that ∂+Cuv ≥ −1,∀(u, v) ∈
E. As a consequence,

Tvi1 (σi1) + Ci2(Tvi(σi1) + σi2) ≤ Tvi1 (σi1) + C(c) + Ci2(Tvi(σi1) + σi2 + C(c)) = Tvi2+1(σi2)

Stated otherwise, the cycle from vi1 to vi2 can be removed without increasing the total travel time
nor the total waiting by waiting an additional σi2 − σi1 at vi1 = vi2 .

4 Structure of optimal paths

The sequence ω1, . . . , ωK will be constructed so that for all k = 1, . . . ,K there is some arc (u, v)
such that a breakpoint of Cuv is reached at Tu(ωk) + ωk. The practical algorithm that identifies
this sequence is based on the structure of the paths-with-waits that realize the minimum travel
time Tv(ω). For this, if π = (p,w) ∈ PWv(ω), we define π(i) = (p(i),w(i)) and π(i) = (p(i),w(i))
as the subpaths-with-waits of π respectively ending and starting at the i-th node of p.
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Definition 1. Let v ∈ V , 0 ≤ ω ≤ W and π := (p,w) ∈ PWv(ω) where p = (v1 := o, v2, . . . , v|p|)

and w = (w1, . . . ,w|p|). If there is i ≤ |p| − 1 such that
∑i

k=1 wk = ω and
∑i−1

k=1 wk = ω′ < ω, then
π(i) is the saturated subpath of π. By extension the nodes vi, . . . , v|p| = v are said to be saturated
in π and vi is the first saturated node in π.

From this definition, one can notice that the first saturated node of a path-with-waits is also
the last one where the wait is positive. The introduction of this saturated subpath allows for a
more precise characterization of optimal paths.

Proposition 4. Let v ∈ V , 0 ≤ ω ≤W such that Tv(ω) = T̃v(ω). Then, there exists π := (p,w) ∈
PWv(ω) such that

• C(π) = Tv(ω),
∑|p|−1

k=1 wk = ω, and

• C(π(j)) = Tvj (ω) for every saturated node vj in π.

In particular, Tvj (ω) = T̃vj (ω) for every saturated node vj after the first saturated node.

Proof. Let π := (p,w) ∈ PWv(ω) such that C(π) = Tv(ω) and
∑|p|−1

k=1 wk = ω. Assume that there is
vj , a saturated node in π, such that C(π(j)) > Tvj (ω). There is πj := (pj ,wj) ∈ PWvj (ω) such that

C(πj) = Tvj (ω) and
∑|πj|−1

`=1 wj
` = ωj ≤ ω. We can then build a path-with-waits π′ from o to v with

total wait ω, by appending π̄(j) to πj and waiting an additional ω−ωj at vj . Node vj is saturated
in both π and π′, so the departure time from vj is C(π(j)) + ω in π and Tvj (ω) + ω in π′. And
since π and π′ are identical from vj to v, the consistency assumption and C(π(j)) +ω > Tvj (ω) +ω
yields C(π) ≥ C(π′). From C(π) = Tv(ω), we deduce that C(π′) = Tv(ω). We thus obtain the
desired path-with-waits by applying the above approach recursively on the saturated nodes until
C(π(j)) = Tvj (ω) for every saturated node vj .

The last assertion follows from the fact that the total wait along π(j) is exactly equal to ω.

Remark 1. We observe that if i is the first saturated node in π, there is no wait from vi+1 to v
in π. If C(π) = Tv(ω), this means that p(i) is a shortest path (without wait) from vi to v among
those departing from vi at Tvi(ω) + ω.

Remark 2. In the proof of Proposition 4, we use the consistency assumption to show that C(π(j))+
ω > Tvj (ω) + ω implies C(π) ≥ C(π′). Actually, it can happen that C(π) = C(π′) only if there
is an arc (v`, v`+1) in π such that ` ≥ j and C`,`+1 has a slope equal to −1 at C(π(`)) + ω. As a
consequence, if there is no such arc in the saturated subpath of π, we can show that C(π) = Tv(ω)
directly implies that C(π(j)) = Tvj (ω) for every saturated node vj.

Next we prove a property which, if satisfied by sequence ω1, . . . , ωK , directly implies that (8)
holds. The proof of the following result requires a few new notations. Let us denote the index
of the right and left-breakpoint of function Ce at Tu(ωk) + ωk as se(ωk) and s−e (ωk), respectively.
Formally,

se(ωk) = min
s
{s : Tu(ωk) + ωk < τ se } and s−e (ωk) = se(ωk)− 1.

To keep concise notations, we denote shortly τ
se(ωk)
e as τe(ωk), τ

s−e (ωk)
e as τ−e (ωk), ρ

se(ωk)
e as ρe(ωk),

and c
se(ωk)
e as ce(ωk). We also define τu(ωk) = min

(u,v)∈E
τuv(ωk) and τ−u (ωk) = max

(u,w)∈E
τ−uw(ωk).
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Proposition 5. Let ωk+1 ≥ ωk be such that for all u ∈ V ,

Tu(ωk+1) + ωk+1 ≤ τu(ωk). (11)

Then for all v ∈ V , ω 7→ Tv(ω) is a continuous piecewise linear and concave function on [ωk, ωk+1].

Proof. We prove the result by contradiction, so assume that there is v ∈ V such that ω 7→ Tv(ω)
is not concave on [ωk, ωk+1]. We have already observed that Tv is a continuous piecewise linear
function, so it is not concave if and only if there is ω̄ ∈ [ωk, ωk+1] such that Tv is not differentiable
at ω̄ and

∂−Tv(ω̄) < ∂+Tv(ω̄) (12)

In particular, (12) involves that ∂−Tv(ω̄) < 0, so T̃v(ω̄) = Tv(ω̄). According to Proposition 4,

this means that we can build π = (p,w) ∈ PWv(ω̄) such that C(π) = Tv(ω̄),
∑|p|−1

`=1 w` = ω̄,
and, denoting p = (v1(= o), v2, . . . , v|p| = v), C(π(j)) = Tvj (ω̄) for every saturated node vj in π.
To exhibit the contradiction, we study the function f : [−wi,W − ω̄] → R+ defined by f(ε) =
C(p,w + εδ(i)). where vi is the first saturated node in π, and δ(i) is the i-th vector of the canonical
basis of R|p| (δi(i) = 1 and δj(i) = 0, for j 6= i). Stated otherwise, f(ε) is the cost of the path-
with-waits from o to v obtained from π by waiting an additional ε at node i. This path-with-wait
is denoted as πε(= (p, w + εδ)). Since the arc cost functions are piecewise linear and continuous,
so is f . As a consequence, we can compute the left and right partial derivative of f at 0 as

∂−f(0) = lim
ε→0−

C(p,w + εδ(i))− C(p,w)

ε
= lim

ε→0−

C(p,w + εδ(i))− Tv(ω̄)

ε

∂+f(0) = lim
ε→0+

C(p,w + εδ(i))− C(p,w)

ε
= lim

ε→0+

C(p,w + εδ(i))− Tv(ω̄)

ε

Observing that (p, w+ εδ(i)) is a path-with-waits from o to v with total wait ω̄+ ε, we get C(p,w+
εδ(i)) ≥ Tv(ω̄ + ε) which yields

∂−f(0) ≤ lim
ε→0−

Tv(ω̄ + ε)− Tv(ω̄)

ε
= ∂−Tv(ω̄)

∂+f(0) ≥ lim
ε→0+

Tv(ω̄ + ε)− Tv(ω̄)

ε
= ∂+Tv(ω̄)

Together with (12), we get

∂−f(0) ≤ ∂−Tv(ω̄) < ∂+Tv(ω̄) ≤ ∂+f(0),

which implies in particular that f is non-differentiable at 0.
By definition, f(ε) is the sum of composites of the piecewise-linear arc cost functions Cj , j =

1, . . . , |p| − 1. For j = 1, . . . , i − 1 the term related to Cj is taken at C(π(j)) +
∑j−1

k=1 wk, which
does not depend on ε. For j = i, . . . , [p| − 1 the term related to Cj is taken at C(πε(j)) + ω̄ + ε.
Let vj be a saturated node (j ∈ {i, . . . , |p|): using that C(π(j)) = Tvj (ω̄) and ωk ≤ ω̄ ≤ ωk+1, we
get τ−vj (ωk) ≤ C(π(j)) + ω̄ ≤ τvj (ωk). Recalling that Cj is differentiable on ]τ−vj (ωk), τvj (ωk)[, for all
v, v′ ∈ V , we get that f is non-differentiable at 0 only if there is a saturated node vj such that the
piece where Cj is evaluated changes at 0, i.e.,

i. Tvj (ω̄) + ω̄ = τ−vj (ωk) and ∃α > 0 : C(π−ε(j)) + ω̄ − ε < τ−vj (ωk) for all 0 < ε < α; or

ii. Tvj (ω̄) + ω̄ = τvj (ωk) and ∃α > 0 : C(πε(j)) + ω̄ + ε > τvj (ωk) for all 0 < ε < α.
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If Tvj (ω̄) + ω̄ = τ−vj (ωk), τ
−
vj (ωk) ≤ Tvj (ωk) + ωk yields Tvj (ω̄) + ω̄ = Tvj (ωk) + ωk, hence

∂−Tvj (ω̄) = −1. Function Tvj is piecewise linear, so there is α > 0 such that for all 0 < ε < α,
Tvj (ω̄ − ε) = Tvj (ω̄) + ε. Using that C(π−ε(j)) ≥ Tvj (ω̄ − ε), we obtain C(π−ε(j)) + ω̄ − ε ≥
Tvj (ω̄) + ω̄ ≥ τ−vj (ωk), so item i. is never true.

If Tvj (ω̄)+ ω̄ = τvj (ωk), then Tvj (ω̄)+ ω̄ = Tvj (ωk+1)+ωk+1 by definition of ωk+1. A path-with-
waits from o to vj that realizes Tvj (ωk+1) with total wait ωk+1 will then arrive at Tvj (ωk+1)+ωk+1 =
Tvj (ω̄) + ω̄. So if we continue p from there without additional waits, v will also be reached at
Tv(ω̄)+ω̄, just like in π. Denoting this new path as π′, we get that C(π′) = Tv(ω̄)+ω̄−ωk+1. Finally,
C(π′) ≥ Tv(ωk+1), hence Tv(ωk+1) + ωk+1 ≤ Tv(ω̄) + ω̄. This is only possible if ∂+Tv(ω) = −1 for
all ω ∈ [ω̄, ωk+1], which is in contradiction with ∂−Tv(ω̄) < ∂+Tv(ω̄). We conclude that item ii. is
never true either, hence f is differentiable at 0: a contradiction.

Corollary 1. Let ωk+1 ≥ ωk be such that (11) holds. Then for all v ∈ V ,

Tv(ωk+1) = min
{
Tv(ωk), T̃v(ωk+1)

}
. (13)

Proof. By concavity of Tv on [ωk, ωk+1], Tv is either constant [ωk, ωk+1] or there is ω̄ ∈ [ωk, ωk+1]
such that Tv is decreasing on [ω̄, ωk+1]. In the latter case, we get that Tv(ω) = T̃v(ω) for all ω ∈
[ω̄, ωk+1]. In particular, Tv(ωk+1) = T̃v(ωk+1). To summarize, Tv(ωk+1) = min

{
Tv(ωk), T̃v(ωk+1)

}
.

The above result allows to get more specific in the characterization of the first saturated node
of the path exhibited in Proposition 4 when ω = ωk+1 for some k ∈ {1, . . . ,K − 1}.

Corollary 2. Let 0 ≤ ωk < ωk+1 ≤ W such that (11) holds and consider v ∈ V such that
Tv(ωk+1) = T̃v(ωk+1). Then, there exists π := (p,w) ∈ PWv(ωk+1) such that

• C(π) = Tv(ωk+1) and
∑|p|−1

k=1 wk = ωk+1;

• C(π(i)) = Tvi(ωk), where vi is the first saturated node in π;

• and C(π(j)) = T̃vj (ωk+1) for every other saturated node vj.

Proof. Proposition 4 guarantees that there is π := (p,w) ∈ PWv(ω) such that C(π) = Tv(ωk+1),∑|p|−1
k=1 wk = ωk+1, and C(π(j)) = Tvj (ωk+1) for every saturated node vj . By definition of vi, we

know that the total wait up to it in π, ωi, is less than ωk+1. As a consequence, C(π(i)) = Tvi(ωk+1)
yields Tvi(ω) = Tvi(ωk+1) for all ω ∈ [ωi, ωk+1]. By concavity of Tvi on [ωk, ωk+1], we conclude that
Tvi(ω) = Tvi(ωk+1) for all ω ∈ [ωk, ωk+1], hence C(π(i)) = Tvi(ωk).

The above two results immediately yield the concluding result of the section, which is essential
to the justification of the polynomial algorithm described in next section. Indeed, Tv(ωk+1) can
now be expressed as the concatenation of a path-with-waits up to some node u for a total wait not
greater than ωk, and a path-without-waits leaving u at Tu(ωk) + ωk+1. In particular, this means
that given Tu(ωk) for all u ∈ V , we will be able to focus on such paths during the search for ωk+1.

Theorem 2. Let 0 ≤ ωk < ωk+1 ≤W such that (11) holds and consider v ∈ V . Then,

Tv(ωk+1) = min
u∈V \{v}

{Tv(ωk), Tu(ωk) + C (pu→v(ωk))} ,

where pu→v(ωk) is the shortest path (without waits) from u to v, leaving u at Tu(ωk) + ωk+1.
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5 Building the sequence

We describe next how to construct the sequence ω1, . . . , ωK = W . From Proposition 5, we wish to
define the next iterate ωk+1 as the largest value (smaller than W ) such that for each v ∈ V we have

Tv(ωk+1) + ωk+1 ≤ τv(ωk). (14)

Defining
ωv = max{ω : Tv(ω) + ω ≤ τv(ωk)},

we obtain ωk+1 = minv∈V ωv or (minv∈V ωv > W and ωk+1 = W ).

Remark 3. By definition of τv(ωk), v ∈ V, we know that τv(ωk) is the breakpoint of a cost function
of an arc leaving from v and τv(ωk) > Tv(ωk) + ωk. So, after setting ωk+1 = minv∈V ωv, we will
get τv∗(ωk+1) > Tv∗(ωk+1) + ωk+1 = τv∗(ωk) for any v∗ ∈ arg minv∈V {ωv}. Since the function
ω 7→ Tv(ω) + ω is non-decreasing for all v ∈ V , we deduce that each breakpoint of each arc cost
function can correspond to at most one element of the sequence ω1, . . . , ωK . More formally, let
e = (v∗, u) ∈ E, s ∈ {1, . . . , re} such that τv∗(ωk) = τ se . Then, τv∗(ωl) > τ se for all l > k. As a
consequence, ω1, . . . , ωK = W has at most as many elements as the total number of breakpoints in
the arc cost functions, i.e.,

∑
e∈E re.

We see that for each v ∈ V ,
Tv(ωv) + ωv = τv(ωk). (15)

If ωv > W for all v ∈ V , none of the constraints (11) restricts the possible values for the next
iterate ωk+1, which is thus set to W . Otherwise, equality (15) holds for some v∗ ∈ arg minv∈V ωv.
By definition, (11) holds for ωv∗(= ωk+1) so we can use Theorem 2 to rewrite (15) associated to v∗

as
ωv∗ = τv∗(ωk)−min

u∈V
(Tu(ωk) + C(pu→v∗)) . (16)

Recall that, for u ∈ V , pu→v∗ is the path (without waits) from u to v∗, the cost of which is minimum
among all paths leaving u at Tu(ωk) + ωv∗ . According to Proposition 4, there is

u∗ ∈ arg min
u∈V

{Tu(ωk) + C(pu→v∗)} ,

such that every node v in pu∗→v∗ is reached at Tv(ωv∗) + ωv∗ , and we know from (15) that pu∗→v∗

reaches v∗ at time τv∗(ωk). What is more, Tv(ωv∗) + ωv∗ ≤ τv(ωk), ∀v ∈ V, by definition of ωv∗ .
The latter means in particular that for every node v in pu∗→v∗ , the path leaves v at a time tv→v∗

that falls in [Tv(ωk) +ωk, τv(ωk)] ⊆ [τ−v (ωk), τv(ωk)]. Hence, we can compute the departing time of
pu∗→v∗ from node u∗ by focusing on the paths without waits from u∗ to v∗ that reach v∗ at τv∗(ωk)
and depart from every intermediate node v in the time interval [Tv(ωk) + ωk, τv(ωk)].

For u ∈ V, v̄ ∈ V , we denote Πu→v̄(ωk) as the set of paths (without waits) from u to v̄ that
reach v̄ at τv̄(ωk) and depart from every intermediate node v at some time in [Tv(ωk) +ωk, τv(ωk)].
Let also tu→v̄ be the departing time from u in the shortest path among Πu→v̄(ωk), i.e.,

tu→v̄ = τv̄(ωk)−min{C(p) : p ∈ Πu→v̄(ωk)}.

In particular, we have seen that pu∗→v∗ ∈ Πu∗→v∗(ωk), so tu∗→v∗ = τv∗(ωk) − C(pu∗→v∗). We will
show that for all v̄ ∈ V , tu→v̄ can be computed by back-propagating the arrival time τv̄(ωk) from
v̄ to u for all u ∈ V .
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With the above definitions, we finally get u∗ ∈ arg maxu∈V {tu→v∗ − Tu(ωk)} from which we
conclude

ωv∗ = tu∗→v∗ − Tu∗(ωk).

Algorithm 2 details the back-propagation which computes for each v ∈ V the departure time
tv→v̄ of the shortest path (without waits) from v to v̄, reaching v̄ at Tv̄(ωk). Let tu and tv denote the
departure times at nodes u and v, respectively, and let us assume that tu ∈ [Tu(ωk) + ωk, τu(ωk)].
Then, if arc (u, v) belongs to the shortest path-without-waits from u to v̄, we can relate tu and tv
through the formula

tv = tu + Cuv(tu) = tu + ρuv(ωk)tu + cuv(ωk). (17)

Steps 2–2 describe a backward label-setting algorithm based on formula (17), with a difficulty in
the case ρuv(ωk) = −1. When that happens, (17) becomes tv = cuv(ωk), so the departure time at
v does not depend on the departure time at u. Thus, if cuv(ωk) ≤ tv, we can wait at node u until
reaching τu(ωk), which implies that ωu ≤ ωv̄. Otherwise, cuv(ωk) > tv and it is impossible to reach
node v at time tv by taking arc (u, v). We can thus skip that iteration in the for loop. Steps 2 and 2
ensure that tu ∈ [Tu(ωk) + ωk, τu(ωk)] throughout the algorithm as proved below in Lemma 1.

input : ωk, v̄ ∈ V, τu(ωk), Tu(ωk), ∀u ∈ V, ce(ωk), ρe(ωk), ∀e ∈ E
V ′ ← V
S ← ∅ // set of marked nodes

tu ← −∞,∀u ∈ V ′
tv̄ ← τv̄(ωk)
v ← v̄
while v 6= o and S 6= V ′ do
S ← S ∪ {v} // mark node v

for (u, v) ∈ E // back-propagation loop of tv to its predecessors

do

if ρuv(ωk) > −1 then tu ← max
{
tu,

tv−cuv(ωk)
1+ρuv(ωk)

}
else

if cuv(ωk) ≤ tv then ω̄v̄ ← +∞, STOP // τu(ωk) is reached before τv̄(ωk)

else continue // tv will not be reached, skip arc (u, v)

select v in arg max
u∈V ′\S

{tu}

if tv > τv(ωk) then ω̄v̄ ← +∞, STOP // τv(ωk) is reached before τv̄(ωk)

if tv < Tv(ωk) + ωk then V ′ ← V ′ \ {v}, go to step 2 // Impossible to backtrack to v late

enough

ω̄v̄ ← max
u∈V ′

(tu − Tu(ωk))

output: ω̄v̄

Algorithm 2: Back-propagation of τv(ωk).

Lemma 1. Consider the node v selected at an execution of step 2 of Algorithm 2, i.e., v ∈
arg max
u∈V ′\S

{tu}. We have that

1. if Tv(ωk) + ωk ≤ tv ≤ τv(ωk), tv = tv→v̄;

2. if tv < Tv(ωk) + ωk, then Πv→v̄(ωk) = ∅;
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3. if tv > τv(ωk), then ωv̄ ≥ ωv.

Proof. One can verify that the three items are satisfied if the conditions checked at steps 2 and 2
have been false since the beginning of the execution of Algorithm 2. Indeed, in such case, the
algorithm is a plain back-propagation for the computation of shortest paths with affine arc costs.

The complete proof of items 1 and 2 is by induction on the number of executions of step 2. At
the first execution of this step,

1. if Tv(ωk) + ωk ≤ tv ≤ τv(ωk), the above observation yields tv = tv→v̄.

2. tv < Tv(ωk) + ωk: assume by contradiction that there is p ∈ Πv→v̄(ωk), and take v− the
predecessor of v̄ in this path. At the first iteration, Algorithm 2 backpropagates along the
arcs going to v̄, so p departs from v− at tv− . Then, by definition, v ∈ arg max{tu}, so tv ≥ tv− .
Since path p must depart from v before departing from v−, the above yields that it departs
from v before tv < Tv(ωk) + ωk, which is in contradiction with the definition of Πv→v̄(ωk).

We now consider a later execution of step 2, where v ∈ arg maxu∈V ′\S{tu}, assuming that the
two items hold at each previous iteration. For every node u selected at a previous execution of
step 2, the definition of the algorithm involves that u ∈ S if Tu(ωk) + ωk ≤ tu ≤ τu(ωk) and
u ∈ V \V ′ if tu < Tu(ωk)+ωk. This means that for all marked nodes u ∈ S, tu = tu→v̄, and that no
path in Πu→v̄(ωk) goes through a node of V \V ′. Moreover, tu > τu(ωk) did not happen, otherwise
the algorithm would have been terminated.

To show item 1, observe that we would have obtained the same value for tv if the back-
propagation had been run on the subgraph induced by V ′. Moreover, the nodes of V \ V ′ are
not involved in the paths of Πv→v̄(ωk), so tv→v̄ can be computed by considering the subgraph in-
duced by V ′. In this subgraph, the conditions checked at steps 2-2 would have been false at every
previous iteration, so if Tv(ωk) + ωk ≤ tv ≤ τv(ωk), tv is the result of a classical back-propagation.
As a consequence, tv = tv→v̄.
The proof of item 2 is then similar to that given in the initialization of the induction.

To prove item 3., assume that tv > τv(ωk) at some execution of step 2. Let p be the path from
v to v̄ constructed by the back-propagation and denote as v+ the successor of v in p. Let also
πv ∈ PWv(ωv) be a path-with-wait from o to v that reaches v at τv(ωk) < tv with a total wait
equal to ωv (its existence is guaranteed by the definition of ωv in (14)). Taking path arc (v, v+)
immediately after πv (no wait at v), v+ is reached at

t+ = τv(ωk) + ρvv+(ωk)τv(ωk) + cvv+(ωk).

By τv(ωk) < tv, we know that v+ is reached earlier in this path than in p, i.e., t+ ≤ tv+ . If we
then wait tv+ − t+ at v+, we can take the end of p from v+ to reach v̄ at τv̄(ωk). Now, if π is the
path-with-wait from o to v̄ constructed above, we get that π reaches v̄ at τv̄(ωk) with a total wait

ωπ = ωv + tv+ − t+ ≥ ωv. (18)

Stated otherwise, we have τv̄(ωk) = C(π) + ωπ where C(π) ≥ Tv̄(ωπ), so Tv̄(ωπ) + ωπ ≤ τv̄(ωk).
Recall that by definition, ωv̄ = max{ω : Tv̄(ω) + ω ≤ τv̄(ωk)}, hence ωπ ≤ ωv̄. Using (18), we
conclude that ωv̄ ≥ ωv.

The main algorithm for TDSPW is given in Algorithm 3. The algorithm first computes
Tv(ωk+1) given Tv(ωk) for all v ∈ V , using the adaptation of Dijkstra’s label setting algorithm
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initialization: k = 1, ω1 = 0, ω0 = −1, Tv(ω0) = +∞ ∀v ∈ V \ {o}, To(ω0) = 0
execute Algorithm 1 to compute Tv(ωk) ∀v ∈ V
if ωk = W then STOP
for v̄ ∈ V do compute τv̄(ωk)
for v̄ = 1, . . . , n do execute Algorithm 2 to compute ω̄v̄
ωk+1 = min (W,minv̄∈V ω̄v̄)
k + 1← k
go to step 3
output : Tv(W ),∀v ∈ V

Algorithm 3: Computing Td(W ).

given in Algorithm 1. The validity of Algorithm 1 is only guaranteed if (9) holds, which is guar-
anteed by Corollary 1 if at each iteration of Algorithm 3, we can set ωk+1 := min{W,minu∈V ωu},
as discussed at the beginning of the section. The computation of ωk+1 is done in steps 3 to 3 of
Algorithm 3. The validity of the approach is justified below.

To justify that ωk+1 is well defined in Algorithm 3, we prove that minv̄∈V ω̄v̄ = ωv∗ , where
ωv∗ = minv∈V ωv as in the discussion introducing the section. Lemma 1 and the discussion that
precedes it justify that Algorithm 2 returns ω̄v∗ = ωv∗. In contrast, if v̄ /∈ arg minu∈V {ωu}, it is
not necessarily true that ω̄v̄ = ωv̄, but we will prove below that ω̄v̄ ≥ ωv∗. The above statements
combined guarantee that

min
v̄∈V

ω̄v̄ = ωv∗ . (19)

Let v̄ ∈ V : to prove that ω̄v̄ ≥ ωv∗, first observe that item 3 of Lemma 1 guarantees that
ωv̄ ≥ ωv∗ if Algorithm 2 returns ω̄v̄ = +∞. We then consider any v̄ ∈ V such that ω̄v̄ < +∞. By
definition of ωv∗ , Tv(ωv∗) + ωv∗ ≤ τv(ωk) for each v ∈ V , so the application of Corollary 1 yields

Tv̄(ωv∗) = min{Tv̄(ωk), T̃v̄(ωv∗)}.

At step 2 of Algorithm 2, we initialize tv̄ to τv̄(ωk), and this value is not modified in the rest of the
algorithm, hence ω̄v̄ ≥ τv̄(ωk)− Tv̄(ωk). As a consequence,

Tv̄(ωv∗) = Tv̄(ωk) =⇒ ω̄v̄ ≥ τv̄(ωk)− Tv̄(ωv∗) ≥ ωv∗ .

Now, assume that Tv̄(ωv∗) = T̃v̄(ωv∗), and let π = (p, w) be a path-with-waits constructed as in
Corollary 2 so that

• C(π) = Tv(ωv∗) and
∑|p|−1

k=1 wk = ωv∗ ;

• C(π(i)) = Tvi(ωk), where vi is the first saturated node in π;

• and C(π(j)) = Tvj (ωv∗) for every other saturated node vj .

In particular, π connects vi to v̄ without waits (after vi) with a cost equal to Tv̄(ωv∗)−Tvi(ωk). We
claim that the subpath of p leaving from vi, p̄(i), is in Πvi→v̄(ωk), meaning that if we backpropagate
τv̄(ωk) from v̄ to vi along p̄(i), we reach every intermediate node vj in the time interval [Tvj (ωk) +
ωk, τvj (ωk)]. Since every node from vi to v̄ is also reached this time interval in π, the cost of that
backpropagated path is also Tv̄(ωv∗) − Tvi(ωk). Now, by definition of tvi→v̄, τv̄(ωk) − tvi→v̄ is the
minimum cost of a path without wait from vi to v̄ among those that reach v̄ at τv̄(ωk), hence

τv̄(ωk)− tvi→v̄ ≤ Tv̄(ωv∗)− Tvi(ωk).
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Using Lemma 1 (tvi = tvi→v̄ when vi is marked) and the definition of ω̄v̄ in Algorithm 2, we conclude
that

ω̄v̄ ≥ tvi→v̄ − Tvi(ωk) ≥ τv̄(ωk)− Tv̄(ωv∗) ≥ ωv∗ ,

where the last inequality follows from τv̄(ωk) ≥ Tv̄(ωv∗) + ωv∗ .
To prove the claim, observe that π reaches v̄ at Tv̄(ωv∗)+ωv∗ , so if we back-propagate Tv̄(ωv∗)+ωv∗

from v̄ to vi along p̄(i), we reach every intermediary node vj at C(π(j)) = Tvj (ωv∗) + ωv∗ . Us-
ing that τv̄(ωk) ≥ Tv̄(ωv∗) + ωv∗ , we observe that if we back-propagate τv̄(ωk) from v̄ to vi
along p̄(i), we necessarily reach the intermediary nodes vj later than when back-propagating
Tv̄(ωv∗) + ωv∗ , i.e., later than Tvj (ωv∗) + ωv∗ . Moreover, if one intermediary node is reached later
than τvj (ωk), then Algorithm 2 necessarily stops at step 2, which is not possible if ω̄v̄ < +∞. By
Tvj (ωv∗) + ωv∗ ≥ Tvj (ωk) + ωk, we get that every intermediary node vj is also reached in the time
interval [Tvj (ωk) + ωk, τvj (ωk)] when back-propagating τv̄(ωk) from v̄ to vi along p̄(i).

Combining Propositions 1 and equation (19) proves the validity of Algorithm 3. Its time com-
plexity follows.

Theorem 3. Algorithm 3 runs in O
(
(
∑

e∈E re)(n+ 1)(n log(n) +m)
)
.

Proof. Equation (19) shows that the sequence ω1, . . . , ωK is constructed as expected, so Remark 3
justifies that K is at most equal to the total number of breakpoints in the arc cost functions. The
number of iterations K then satisfies K ≤

∑
e∈E re. At each iteration, Algorithms 1 is run once

whereas Algorithm 2 needs to be called n times. Furthermore, Algorithms 1 and 2 can be both
implemented in O(n log(n) +m) using a Fibonacci heap.
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