A polynomial algorithm for minimizing travel time in time-dependent networks with waits

Abstract : We consider a time-dependent shortest path problem with possible waiting at each node and a global bound W on the total waiting time. The goal is to minimize only the time travelled along the edges of the path, not including the waiting time. We prove that the problem can be solved in polynomial time when the travel time functions are piecewise linear and continuous. The algorithm relies on a recurrence relation characterized by a bound ω for the total waiting time, where 0 ≤ ω ≤ W. We show that only a small numbers of values ω 1 , ω 2 ,. .. , ω K need to be considered, which depends on the total number of breakpoints of all travel time functions.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02022618
Contributeur : Jérémy Omer <>
Soumis le : lundi 18 février 2019 - 10:04:24
Dernière modification le : samedi 23 février 2019 - 01:19:25

Fichier

PublicationHAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-02022618, version 1

Citation

Jérémy Omer, Michael Poss. A polynomial algorithm for minimizing travel time in time-dependent networks with waits. 2019. 〈hal-02022618〉

Partager

Métriques

Consultations de la notice

36

Téléchargements de fichiers

31