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Abstract

We prove a lower bound for the k-th Steklov eigenvalues in terms of an isoperimetric constant
called the k-th Cheeger-Steklov constant in three different situations: finite spaces, measurable
spaces, and Riemannian manifolds. These lower bounds can be considered as higher order Cheeger
type inequalities for the Steklov eigenvalues. In particular it extends the Cheeger type inequality
for the first nonzero Steklov eigenvalue previously studied by Escobar in 1997 and by Jammes in
2015 to higher order Steklov eigenvalues. The technique we develop to get this lower bound is based
on considering a family of accelerated Markov operators in the finite and measurable situations and
of mass concentration deformations of the Laplace-Beltrami operator in the manifold setting which
converges uniformly to the Steklov operator. As an intermediary step in the proof of the higher
order Cheeger type inequality, we define the Dirichlet–Steklov connectivity spectrum and show
that the Dirichlet connectivity spectra of this family of operators converges to (or is bounded by)
the Dirichlet–Steklov spectrum uniformly. Moreover, we obtain bounds for the Steklov eigenvalues
in terms of its Dirichlet-Steklov connectivity spectrum which is interesting in its own right and is
more robust than the higher order Cheeger type inequalities. The Dirichlet–Steklov spectrum is
closely related to the Cheeger–Steklov constants.

Résumé

Pour tout k P N, une borne inférieure pour la k-ième valeur propre de Steklov en termes d’une
constante isopérimétrique, appelée la k-ième constante de Cheeger-Steklov, est obtenue dans trois
situations différentes : espaces finis, espaces mesurables et variétés riemanniennes. Ces bornes
inférieures peuvent être considérées comme des inégalités de type Cheeger d’ordre supérieur pour
les valeurs propres de Steklov. En particulier, elles étendent l’inégalité de type Cheeger pour la
première valeur propre non nulle de Steklov étudiée par Escobar en 1997 et par Jammes en 2015.
La technique développée pour obtenir ces bornes inférieure utilise une famille d’opérateurs de
Markov accélérés dans les situations finies et mesurables et une famille d’opérateurs de Laplace-
Beltrami déformés et concentrés près de la frontière. Lors d’une étape intermédiaire de la preuve
de l’inégalité de type Cheeger d’ordre supérieur, nous définissons le spectre de connectivité de
Dirichlet-Steklov et nous montrons que les spectres de connectivité de Dirichlet de cette famille
d’opérateurs convergent uniformément vers (ou sont bornés par) le spectre de Dirichlet-Steklov.
De plus, nous obtenons des bornes pour les valeurs propres de Steklov en termes du spectre
de connectivité de Dirichlet-Steklov, ce dernier étant intéressant en lui-même. Il est aussi plus
robuste que les inégalités de type Cheeger d’ordre supérieur. Le spectre de Dirichlet–Steklov et
les constantes de Cheeger–Steklov sont étroitement liés.

Keywords: Dirichlet–to–Neumann operator, Steklov problem, eigenvalues, isoperimetric ratios, higher or-
der Cheeger inequalities, finite Markov processes, jump Markov processes, Brownian motion on Riemannian
manifolds, Laplace-Beltrami operator.

Mots clés: opérateur de transfert Dirichlet–Neumann, problème de Steklov, valeurs propres, rapports
isopérimétriques, inégalités de Cheeger d’ordre supérieur, processus de Markov finis, processus markoviens de
saut, mouvement brownien sur les variétés de Riemann, opérateur de Laplace–Beltrami.
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1 Introduction

Let pM, gq be a compact Riemannian manifold of dimension n with smooth boundary, the Steklov
eigenvalue problem is

"

∆f “ 0, in M
Bf
Bν “ σf, on BM

(1)

where ∆ “ div∇ is the Laplace–Beltrami operator on M and ν is the unit outward normal vector
along BM . Its spectrum consists of a sequence of nonnegative real numbers with accumulation point
only at infinity. We denote the sequence of the Steklov eigenvalues by

0 “ σ1 ď σ2 ď ¨ ¨ ¨ ď σk ď ¨ ¨ ¨ Õ 8

The Steklov eigenvalues can be also considered as the eigenvalues of the Dirichlet–to–Neumann
operator

S : C8pBMq Q f ÞÑ
BF

Bν
P C8pBMq

where F is the harmonic extension of f into the interior of M . The Steklov problem was first in-
troduced by Steklov [34] in 1902 for bounded domains of the plane. Many interesting developments
and progress in the study of the Steklov problem have been attained in recent years. We refer the
reader to the survey paper [21] and the references therein for recent developments, and to [24] for a
historical account. The relationship between the Steklov eigenvalues and geometry of the underlying
space, and also its similarity and difference with the Laplace eigenvalues have been a main focus of
interest and a source of inspiration, see for example [14, 17, 10, 22, 15, 18, 23].

The focus of this paper is on obtaining lower bounds for the k-th Steklov eigenvalue σk in terms
of some isoperimetric constants in three different settings. Our results can be viewed as counterparts
of the higher order Cheeger inequalities for the Laplace eigenvalues in discrete setting proved by Lee,
Oveis Gharan and Trevisan [27], and in manifold setting by the second author [31]. It is also an
extension of Escobar’s [14, 15] and Jammes’ [23] results for σ2. We first recall previous results known
in this direction.
Let A denote the family of all nonempty open subsets A of M with piecewise smooth boundary.
For every A P A let µpAq denote its Riemannian measure and µpBAq denote the pn´ 1q-dimensional
Riemannian measure of BA. We define for every A P A the isoperimetric ratios

ηpAq B
µpBiAq

µpAq
η1pAq B

µpBiAq

µpĀX BMq
(2)

where BiA :“ BAXIntM . Here IntM denotes the interior of M . Consider the following isoperimetric
constants

h2pMq :“ inf
A

maxtηpAq, ηpMzAqu h12pMq :“ inf
A

maxtη1pAq, η1pMzAqu

The constant h2pMq is the well-known Cheeger constant [8]. Motivated by the celebrated result
of Cheeger [8], Escobar [14, 15] introduced the isomerimetric constant h12pMq and obtained a lower
bound for σ2 in terms of this isoperimetric constant and the first nonzero eigenvalue of a Robin
problem. Recently, Jammes [23] obtained a simpler and more explicit lower bound for σ2 in terms of
an isoperimetric h̃12pMq similar to the one introduced by Escobar, and the Cheeger constant h2pMq:

σ2pMq ě
1

4
h̃12pMqh2pMq (3)

where h̃12pMq :“ inf
!

η1pAq : A P A, and µpAq ď µpMq
2

)

. The proof of (3) is simple and only uses

the co-area formula. The constants h12pMq and h̃12pMq are interesting geometric quantities. It is an
intriguing question if similar geometric lower bounds hold for higher order Steklov eigenvalues σk.
We give an affirmative answer to this question not only in Riemannian setting but also in the setting
of finite and measurable spaces.
Let pM,µq be a measure space and V a proper subset of M , and let L be an operator acting on a
functional subspace H of L2pµq. Throughout the paper we deal with either of three different settings
listed below:

(FS) Finite state spaces: M is a finite set, V is a proper subset of cardinality v, L is a reversible
irreducible Markov generator and µ is its unique invariant probability measure. Here H is the
space of functions on M denoted by FpMq.
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(MS) Measurable state spaces: pM,µq is a probability measure space with σ´algebra M, and V is
a measurable subset of M such that 0 ă µrV s ă 1. Here, L is a Markov generator of the
form P ´ I, where P is a Markov kernel reversible with respect to µ and I is the identity, and
H “ L2pµq.

(RM) Riemannian manifolds: M is a compact Riemannian manifold with smooth boundary BM , µ
is its Riemannian measure, L is the Laplace-Beltrami operator ∆, and H is the Sobolev space
H1pµq. Here V is equal to BM .

With the help of L we define an operator S on V and call it the Steklov operator. In setting (RM),
the operator S we consider is in fact the Dirichlet–to–Neumann operator discussed above. For the
definition of S in (FS) and (MS) settings we refer to definitions (9) in Section 2, and (28) in Section 3,
respectively. We denote the eigenvalues of S by σkpMq or simply σk. Let A be a family of admissible
sets in M :

• in (FS) settings, A is the set of all nonempty subsets of M ;

• in (MS) setting, A is the set of all non-negligible elements of M, i.e. A P M such that 0 ă
µrAs ď 1;

• in (RM) setting, A is the set of all nonempty open domains A in M such that BeA :“ ĀX BM
and BiA :“ BAXM are smooth manifolds of dimension n´ 1 when they are nonempty.

In (FS) and (MS) settings, we introduce the boundary of any A P A via

BA B tpx, yq : x P A, y P Acu

and define the following isoperimetric ratios

ηpAq B
µpBAq

µpAq
η1pAq B

µpBAq

µpAX V q

where µ is a measure on M ˆM . We refer to (13) and (33) for the definition of µ in (FS) and (MS)
settings respectively. In (RM) setting, the isoperimetric rations ηpAq and η1pAq are already defined
in the beginning, see (2). We then consider

ρpAq :“ min
BPA
BĎA

ηpBq , ρ1pAq :“ min
B1PA
B1ĎA

η1pB1q

in (FS) and (MS) settings. And in (RM) setting we take

ρpAq :“ inf
BPA
BĂA

B̄XBiA“H

ηpBq , ρ1pAq :“ inf
B1PA
B1ĂA

B̄1XBiA“H

η1pB1q

The constant ρpAq in (RM) setting is the Cheeger constant ofA when the Dirichlet boundary condition
on BiA is imposed, we refer to [7, 36] for more information on the Cheeger constant on manifolds
with Dirichlet and Neumann boundary conditions. We are now ready to define the higher order
Cheeger–Steklov constants. For any k P N and for any of three settings (FS), (MS) and (RM), we
define the k-th Cheeger–Steklov constant of M by

ιkpMq B inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

ρpAlqρ
1pAlq

where JkK :“ t1, . . . , ku and Ak is the set of all k-tuples pA1, ¨ ¨ ¨ , Akq of mutually disjoint elements
of A. We recall the definition of the higher order Cheeger constants for the eigenvalues of a Markov
generator in settings (FS) and (MS) and for the eigenvalues of the Laplace–Beltrami operator in
setting (RM):

hkpMq B inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

ηpAlq

The sequence of the higher order Cheeger constants is called the connectivity spectrum. One can see
how closely hk and ιk are related. We now state our main theorems.

3



Theorem A In setting (FS), there exists a universal positive constant c0 such that

@ k P JvK, σkpMq ě
c0

k6

ιkpMq

}L}

where }L} is the largest absolute value of the elements of the diagonal of L.

The following theorem is an extension of Theorem A to setting (MS).

Theorem B In setting (MS), there exists a universal positive constant c1 such that

@ k P N, σkpMq ě
c1

k6
ιkpMq

The higher order Cheeger-Steklov inequality in setting (RM) which is an extension of Escobar and
Jammes results to higher Steklov eigenvalues states

Theorem C In setting (RM), there exists a universal positive constant c2 such that

@ k P N, σkpMq ě
c2

k6
ιkpMq

We recall that for k “ 2, the Cheeger inequality in setting (FS) was studied in [1, 2, 13], and
in settings (MS) in [26], see also the lecture notes by Saloff-Coste [33] for a review. The higher-
order Cheeger inequality in setting (FS) was conjectured by the second author [30], see also [12].
This conjecture was proved by Lee, Oveis Gharan and Trevisan [27]. Later, the second author [31]
extended their result to (MS) and (RM) settings; see also [19] for the result on closed manifolds. The
higher order Cheeger inequality in (FS) setting for the operator L states (see [27, Theorem 3.8] and
[31, Theorem 2])

@ k P JvK, λkpMq ě
c3

k8

h2
kpMq

}L}
(4)

and in (MS) and (RM) settings states [31]

@ k P N, λkpMq ě
c4

k6
h2
kpMq (5)

where c3 and c4 are universal positive constants. As we mentioned before, our main results, Theorems
A, B and C for Steklov eigenvalues, can be viewed as a counterpart of the higher order Cheeger
inequalities for the Laplace spectrum. We remark that even for k “ 2, Theorem A and Theorem B
are new.
We now discuss about an improvement of the dependency on k in Theorems A, B, and C. In [27,
Theorem 4.1] and [31, Theorem 13], it is shown that one can obtain a better lower bound when λk
is replaced by λ2k in (4) and (5)

λ2kpMq ě

$

&

%

c̃3
logpk`1q

h2kpMq

}L} in setting (FS)
c̃4

log2pk`1q
h2
kpMq in settings (MS) and (RM)

(6)

For Steklov eigenvalues we obtain analogous results.

Proposition A There are universal positive constants c̃1 and c̃2 such that

σ2kpMq ě

$

&

%

c̃1
log2pk`1q

ιkpMq
}L} @ k P JvK, in setting (FS)

c̃2
log2pk`1q

ιkpMq @ k P N, in settings (MS) and (RM)
(7)

Remark 1 The sharpness of the coefficient of hk in (6) was investigated in [31] using the noisy
hypercube graph, and in [27] using the Ornstein–Uhlenbeck process. Understanding the asymptotic
sharpness of the coefficient of ιk in (7) is an interesting problem which needs a further investigation
and remains open.

˝

We now briefly discuss the idea of the proof of the main Theorems. To prove the main theorems
we first introduce the Dirichlet-Steklov connectivity spectrum of S on M . Second we show that
eigenvalues of S can be viewed as a limit of eigenvalues of a family of operators. Then we prove
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that the Dirichlet connectivity spectrum (introduced in [30] and in [31]) of this family of operators
converges to Dirichlet-Steklov connectivity spectrum of S. Moreover, we show that this convergence
is uniform in some sense. Then we use the known lower bounds [27, 31] for eigenvalues of this family
of operators in terms of their Dirichlet connectivity spectra to show that the Steklov eigenvalues
have similar lower bounds in term of the Dirichlet-Steklov connectivity spectrum. The final step is
to relate the Dirichlet–Steklov connectivity spectrum to the higher order Cheeger–Steklov constants.
This is done using the co-area formula in each setting (FS), (MS) and (RM). Although the main
idea of the proof in these three settings are the same, the details and technicalities that we need to
deal with in each setting are different. This makes the investigation of each setting interesting in its
own and not only as a straightforward consequence of another setting. We aim to explore a deeper
underlying connection between these three settings in future studies.

It is also interesting to study the higher order Cheeger-Steklov inequality when L is a diffusion
operator and when we also have a density on V . Here the associated Dirichlet–to–Neumann map S
(known as the voltage–to–current map) appears in the study of the electrical impedance tomography
[5, 35]. The techniques and methods that we develop in this paper can be used to obtain the higher
order Cheeger–Steklov inequality in this setting in terms of a weighted version of the higher order
Cheeger–Steklov constants. The classical Cheeger inequality for weighted manifolds is studied in [6],
see also [9, 31]. We will address this in more details in a forthcoming work.

The paper is organized as follows. Section 2 deals with (FS) setting and the proof of Theorem A
and Proposition A. In Section 3 we extends results in (FS) setting to (MS) setting. We also show that
under the Dirichlet gap assumption on MzV the proof of Theorem B can be simplified. In Section
4 we prove Theorem C. We also provide examples which show the necessity of both isoperimetric
ratios appearing in the definition of ιk. Although the ideas and techniques in three sections 2, 3, and
4 are related, the reader does not need to read the sections in order.
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2 The finite state space framework

Let L B Lpx, yqx,yPM be an irreducible Markov generator on the finite set M . Recall that L is
Markovian if

@ x ‰ y PM, Lpx, yq ě 0, and
ÿ

yPM

Lpx, yq “ 0

and is called irreducible if for every x, y PM there exists a sequence x “ x0, x1, . . . , xl “ y of elements
of M such that Lpxj , xj`1q ą 0 for any j P J0, l ´ 1K :“ t0, . . . , l ´ 1u. Denote by µ B pµpxqqxPM its
unique invariant probability, characterized by

@ y PM,
ÿ

xPM

µpxqLpx, yq “ 0

Let V be a proper subset of M , i.e. H Ł V Ł M . Define the corresponding Steklov operator S
on FpV q, the space of functions on V , via the following procedure. Given f P FpV q, let F be its
harmonic extension on M , namely the unique F P FpMq satisfying

#

LrF spxq “ 0 , if x PMzV

F pxq “ fpxq , if x P V
(8)
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Then we consider

@ x P V, Srf spxq B LrF spxq (9)

The following observation should be classical.

Proposition 2 The operator S is an irreducible Markov generator on V whose invariant measure
is ν, the normalized restriction of µ to V .

Assume that µ is furthermore reversible for L, namely

@ x, y PM, µpxqLpx, yq “ µpyqLpy, xq

It follows that S is equally reversible with respect to ν, and the spectra of ´S and ´L are non-
negative. Denote by 0 “ σ1, σ2, σ3, . . . , σv, with v B cardpV q, the eigenvalues of ´S in R with
multiplicities, indexed so that 0 “ σ1 ă σ2 ď σ3 ď ¨ ¨ ¨ ď σv. Our goal is to investigate these
eigenvalues.

For any r ą 0, consider the Markov generator defined by

@ x ‰ y PM, Lprqpx, yq B

#

rLpx, yq , if x PMzV

Lpx, yq , if x P V

Since µ is reversible for L, we will see (in Lemma 11) that Lprq is reversible with respect to its invariant

measure µprq. Hence the eigenvalues of ´Lprq are non-negative. Let 0 “ λ
prq
1 , λ

prq
2 , λ

prq
3 , . . . , λ

prq
m , with

m B cardpMq, be the eigenvalues of ´Lprq in R with multiplicities, indexed so that 0 “ λ
prq
1 ă λ

prq
2 ď

λ
prq
3 ď ¨ ¨ ¨ ď λ

prq
m .

Proposition 3 Assume that L is reversible. For any k P JvK B t1, ..., vu, we have

lim
rÑ`8

λ
prq
k “ σk

and for any k P JmKzJvK,

lim
rÑ`8

λ
prq
k “ `8

Remark 4 We believe that the above proposition should be true in the non-reversible case (where

in the last convergence, λ
prq
k is replaced by its real part).

˝

We would like to estimate these eigenvalues via Cheeger type inequalities. Denote by A the set of
nonempty subsets from M . We associate to any A P A a Dirichlet-Steklov operator SA on FpAXV q
in the following way: given f P FpAX V q, consider F P FpMq such that

$

’

&

’

%

LrF spxq “ 0 , if x P AzV

F pxq “ 0 , if x PMzA

F pxq “ fpxq , if x P AX V

(10)

The existence and uniqueness of such a F are similar to those of the solution of (8), see e.g. the proof
of Proposition 2. Indeed, one is brought back to this situation by replacing V by V YpMzAq and by
extending f to this set by making it vanish on MzA.

Next define

@ x P AX V, SArf spxq B LrF spxq

When AX V ‰ H, we will check that SA is always a subMarkovian generator (i.e. SApx, yq ě 0, for
any x ‰ y, and

ř

yPV SApx, yq ď 0) maybe not irreducible, but Perron-Frobenius’ theorem enables to
consider the smallest eigenvalue σ1pAq of ´SA. By convention, when AX V “ H, FpHq B t0u and
σ1pAq “ `8. Next we introduce the Dirichlet–Steklov connectivity spectrum pκ1, κ2, ..., κvq of S via

@ k P JvK, κk B min
pA1,...,AkqPAk

max
lPJkK

σ1pAlq (11)
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where Ak is the set of k-tuples pA1, A2, ..., Akq of disjoints elements from A. Notice that definition
(11) can be written as

@ k P JvK, κk B min
pA1,...,AkqPAkpV q

max
lPJkK

σ1pAlq (12)

where AkpV q is the set of all disjoint k-tuple in ApV q B tA P A : A X V P Au. The above defini-
tions are valid in all generality, but (for the moment) they are mainly useful under the reversibility
assumption:

Theorem 5 Assume that L is reversible. There exists a universal constant c ą 0 such that

@ k P JvK,
c

k6
κk ď σk ď κk

The interest of the Dirichlet–Steklov connectivity spectrum is that it is strongly related to higher
order inequalities. We need further definitions. Introduce the boundary of any A P A via

BA B tpx, yq : x P A, y P Acu

Consider the measure µ defined on M ˆM by

@ x, y PM, µpx, yq “

"

µpxqLpx, yq , if x ‰ y
0 , if x “ y

(13)

it enables to measure BA through µpBAq. As a consequence, we can define the isoperimetric ratios

ηpAq B
µpBAq

µpAq
η1pAq B

µpBAq

µpAX V q

By convention η1pAq “ `8 if A X V “ H. The ratio η1pAq is the discrete analogue of quantities
introduced by Escobar [14] and Jammes [23], since in their terminology, BA and AX V can be seen
respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary of
M .

Next consider

ρpAq :“ min
BPA
BĎA

ηpBq ρ1pAq :“ min
B1PA
B1ĎA

η1pB1q

For any k P JvK, introduce the k-th Cheeger–Steklov constant of V by

ιk B min
pA1,...,AkqPAk

max
lPJkK

ρpAlqρ
1pAlq

Remark that ι1 “ 0 by taking A “ M . The next result can be seen as an extension to higher order
Cheeger inequalities (in the discrete case) of Théorème 1 of Jammes [23]:

Theorem 6 Assume that L is reversible and let c be the constant of Theorem 5. We have

@ k P JvK, σk ě
c

k6

ιk
}L}

where }L} is the largest absolute value of the elements of the diagonal of L.

Let us consider

h1k B min
pA1,...,AkqPAkpV q

max
lPJkK

η1pAlq

Proposition 7 Assume that L is reversible. We have

@ k P JvK, σk ď h1k

7



Remark 8 Let L be a reversible Markov generator but not necessarily irreducible. Let X B pXtqtě0

be a Markov process generated by L, starting from x under the probability Px. Assume that the
reaching time of V denoted by τ :

τ B inftt ě 0 : Xt P V u

is almost surely finite. Then all of the results above are valid without irreducibility condition. In
particular, σk “ 0 if and only if h1k “ 0. Indeed one way is obvious due to Proposition 7. For the
“only if” part, σk “ 0, implies ιk “ 0 by Theorem 6. Therefore there exists pA1, ..., Akq P AkpV q
such that µpBAlq “ 0 for all l P JkK. It follows h1k “ 0. Note that the number of zeros determines
the number of communicating classes. Recall that for the eigenvalues of L “ Lp1q, the result of Lee,
Oveis Gharan and Trevisan [27] implies that λk “ 0 if and only if the k-th Cheeger constant hk

hk :“ min
pA1,...,AkqPAk

max
lPJkK

ηpAlq

is zero. In comparison, we see that the h1k plays the role of hk for the Steklov problem .
˝

Proof of Proposition 2

It is based on the following simple probabilistic interpretation of S. Let X B pXtqtě0 be a Markov
process generated by L, starting from x under the probability Px. Denote by τ its reaching time of
V :

τ B inftt ě 0 : Xt P V u

it is a.s. finite, since L is irreducible. A usual application of the martingale problem associated to X
shows that for any function G P FpMq, we have

ExrGpXτ qs “ Gpxq ` Ex
„
ż τ

0
LrGspXsq ds



In particular, for any f P FpV q, it appears that its harmonic extension defined in (8) is given by

@ x PM, F pxq “ ExrfpXτ qs “ νxrf s

where νx is the law of Xτ under Px. More precisely, we get the existence and uniqueness of the
solution of (8), even without assuming that L is irreducible (only the finiteness of τ is needed). We
deduce that for any f P FpV q and any x P V ,

Srf spxq “
ÿ

yPMztxu

Lpx, yqpF pyq ´ F pxqq “
ÿ

yPMztxu

ÿ

zPV

Lpx, yqνypzqpfpzq ´ fpxqq

namely, the matrix associated to S is given by

@ x, z P V, Spx, zq B

#

ř

yPMztxu Lpx, yqνypzq , if x ‰ z

´
ř

yPV ztxu Spx, yq , if x “ z

On this expression, it is clear that S is a Markov generator, namely that it satisfies Spx, zq ě 0
for any x ‰ z P V and

ř

zPV Spx, zq “ 0 for any x P V . It is also irreducible: for any x, z P V ,
let x0 “ x, x1, x2, ..., xl “ z be a sequence of elements of M such that Lpxj , xj`1q ą 0 for any
j P J0, l ´ 1K. Let pyjqjPJ0,kK be the subsequence of pxjqjPJ0,lK consisting of the elements belonging to
V . We have y0 “ x, yk “ z and from the above description of S, it follows that Spxj , xj`1q ą 0 for
any j P J0, k ´ 1K.

It remains to check that ν, the normalized restriction of µ to V , is invariant for S. For any
f P FpV q, we have, with F constructed as in (8),

νrSrf ss “
1

µpV q

ÿ

xPV

µpxqSrf spxq “
1

µpV q

ÿ

xPV

µpxqLrF spxq

“
1

µpV q

ÿ

xPM

µpxqLrF spxq “
µrLrF ss

µpV q
“ 0

It shows that ν is invariant for S.

8
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Remark 9 (probabilist point of view) A Markov process Y B pYtqtě0 associated to the generator
S and starting from x P V can be obtained from a Markov process X B pXtqtě0 associated to the
generator L and also starting from x, by erasing its passages in MzV . More precisely, let pτnqnPZ`
be the sequence of jump intertimes of X:

τ0 B 0

@ n P Z`, τn`1 B inftt ě 0 : Xt`τn ‰ Xτnu

Let pNnqnPZ` be the sequence of integers for which Xτ1`τ2`¨¨¨`τNn P V and consider

@ n P Z`, τn B
ÿ

pPJnK

τNp

Then we can construct the Markov process Y through the relation

@ t ě 0, Yt B Xτ1`τ2`¨¨¨`τNn , if t P rτn, τn`1r

This observation inspired the introduction of the generators Lprq, for r ą 0: heuristically the generator
of Y is Lp8q, namely X is accelerated with an infinite speed in MzV and only its passages on V
remain.

The above probabilistic interpretation also enables to see directly that S is irreducible and that
the invariant measure ν of S is just µ conditioned on V . Indeed, for the latter assertion, by the
ergodic theorem, we must have a.s.

@ y P V, νpyq “ lim
tÑ`8

1

t

ż t

0
1tyupYsq ds

so it follows that for any y, z P V ,

νpyq

νpzq
“ lim

tÑ`8

şt
0 1tyupYsq ds
şt
0 1tzupYsq ds

“ lim
tÑ`8

şt
0 1tyupXsq ds
şt
0 1tzupXsq ds

“
µpyq

µpzq

˝

Remark 10 (analytic point of view) Recall that the Dirichlet form associated to L (and µ) is
the bilinear form EL given by

@ F,G P FpMq, ELpF,Gq B ´

ż

FLrGs dµ

It is symmetrical, if and only if µ is reversible with respect to L.
The carré du champ associated to L is the bilinear functional ΓL defined by

@ F,G P FpMq, @ x PM, ΓLrF,Gspxq B LrFGspxq ´ F pxqLrGspxq ´GpxqLrF spxq (14)

It is not difficult to compute more explicitly that

@ F,G P FpMq, @ x PM, ΓLrF,Gspxq B
ÿ

yPM

Lpx, yqpF pyq ´ F pxqqpGpyq ´Gpxqq

In particular, when F “ G, the r.h.s. looks like a weighted discrete gradient square, explaining the
name carré du champ.

From (14), we get that

@ F,G P FpMq,
ż

ΓLrF,Gs dµ “ ELpF,Gq ` ELpG,F q

and in particular

@ F P FpMq,
ż

ΓLrF s dµ “ 2ELpF, F q

9



where ΓLrF s stands for ΓLrF, F s. Furthermore, when µ is reversible with respect to L, we get

@ F,G P FpMq,
ż

ΓLrF,Gs dµ “ 2ELpF,Gq

These definitions are valid for any finite Markov generator L and we can consider similarly ES
and ΓS . For any f, g P FpV q, let F and G be their harmonic extensions. It is clear that

ESpf, gq “
ELpF,Gq
µpV q

(15)

and as a consequence, we have

ż

ΓSrf, gs dν “
1

µpV q

ż

ΓLrF,Gs dµ

which is an important relation in the analytical approach to the usual Steklov (or Dirichlet to
Neumann) operators.

It follows immediately from (15) that ν is reversible for S when µ is assumed to be reversible for
L.

˝

Since for any r ą 0, the generator Lprq is irreducible, it admits a unique invariant probability
µprq.

Lemma 11 The probability measure µprq is given by

@ x PM, µprqpxq “

#

µpxq
Zr

, if x P V
µpxq
rZr

, if x PMzV

where Zr B µpV q ` p1´ µpV qq{r is the normalisation constant.
Furthermore, if µ is reversible for L, then µprq is reversible for Lprq.

Proof

These are consequences of more general facts: assume that H P FpMq is positive: H ą 0. Consider
the operator HL acting on FpMq via

@ F P FpMq, @ x PM, HLrF spxq B HpxqLrF spxq

It is an irreducible Markov generator. Let p1{Hq ¨ µ be the positive measure admitting 1{H for
density with respect to µ. We have

@ F P FpMq, pp1{Hq ¨ µqrHLrF ss “ µrLrF ss “ 0

Thus the invariant probability measure of HL is proportional to p1{Hq ¨ µ.
Considering H B 1V ` r1MzV (where 1V is the indicator function of V ) leads to the first

announced result.
For the second result, note that in general, when µ is reversible for L, for any F,G P FpMq,

pp1{Hq ¨ µqrF pHLqrGss “ µrFLrGss “ µrGLrF ss “ pp1{Hq ¨ µqrGpHLqrF ss

�

Proof of Proposition 3

In the reversible case, ´L is diagonalisable with real eigenvalues. In view of Lemma 11, for any

r ą 0, the same is true for ´Lprq, denote by 0 “ λ
prq
1 ă λ

prq
2 ď λ

prq
3 ď ¨ ¨ ¨ ď λ

prq
m its eigenvalues. Let

1 “ Φ
prq
1 ,Φ

prq
2 ,Φ

prq
3 , . . . ,Φ

prq
m be corresponding eigenvectors. They are not unique (especially in the

case of multiplicities larger than 1), but we can and do choose them so that they are orthogonal with
respect to µprq:

@ r P p0,`8q, @ k ‰ l P JmK, µprqrΦ
prq
l Φ

prq
k s “ 0

10



Normalize them with respect to the supremum norm }¨}8 instead of the L2pµprqq norm:

@ r P p0,`8q, @ l P JmK,
›

›

›
Φ
prq
l

›

›

›

8
“ 1

Consider l P JmK such that
#

lim infrÑ`8 λ
prq
l ă `8

lim infrÑ`8 λ
prq
l`1 “ `8

(16)

By compactness, we can find an increasing sequence of positive numbers prnqnPN and for any k P JlK,
a non-negative number λ

p8q

k P r0,`8q and a positive function Φ
p8q

k P FpMq with
›

›

›
Φ
p8q

k

›

›

›

8
“ 1 such

that

lim
nÑ8

rn “ `8 lim
nÑ8

λ
prnq
k “ λ

p8q

k lim
nÑ8

Φ
prnq
k “ Φ

p8q

k

Passing to the limit in the relations

@ x P V, LrΦ
prnq
k spxq “ LprnqrΦ

prnq
k spxq “ ´λ

prnq
k Φ

prnq
k pxq

we get

@ x P V, LrΦ
p8q

k spxq “ ´λ
p8q

k Φ
p8q

k pxq

For x PMzV , we have instead

rnLrΦ
prnq
k spxq “ ´λ

prnq
k Φ

prnq
k pxq

Since the r.h.s. converges to ´λ
p8q

k Φ
p8q

k pxq for large n P N, we deduce that

@ x PMzV, LrΦ
p8q

k spxq “ lim
nÑ8

LrΦ
prnq
k spxq “ 0

Thus denoting ϕk the restriction of Φ
p8q

k to V , it appears that Φ
p8q

k is the harmonic extension of ϕk.

Note that ϕk ‰ 0, otherwise we would conclude that Φ
p8q

k “ 0, in contradiction with
›

›

›
Φ
p8q

k

›

›

›

8
“ 1.

Thus λ
p8q

k is an eigenvalue of ´S. Furthermore, passing to the limit in the relations

@ j ‰ k P JlK, µprnqrΦ
prnq
j Φ

prnq
k s “ 0

we see that

@ j ‰ k P JlK, νrϕjϕks “ 0

It follows that the λ
p8q

k , for k P JlK, correspond to different eigenvalues of ´S (with multiplicities).
Namely, there exists an increasing mapping N : JlK Ñ JvK (recall that v B cardpV q) such that

@ k P JlK, λ
p8q

k “ σNpkq

and in particular, v ě l. Conversely, consider ψ1, ψ2, ..., ψv a basis of FpV q consisting of eigenvectors
of ´S associated respectively to the eigenvalues σ1, σ2, ..., σv. Since ν is reversible for S, we can and
do choose these functions to be orthogonal in L2pνq. Let Ψ1,Ψ2, ...,Ψv be the harmonic extensions
of ψ1, ψ2, ..., ψv. We furthermore impose that }Ψk}8 “ 1 for all k P JvK. Consider the vector space
W Ă FpMq generated by these functions

W B VectpΨk : k P JvKq

Due to the variational principle, we have for any r ą 0,

λprqv ď sup
FPW zt0u

´µprqrFLprqrF ss

µprqrF 2s

Since the functions from W are harmonic on MzV , we have for any r ą 0, with the notation of
Lemma 11,

@ F PW, ´µprqrFLrF ss “ ´
µpV q

Zr
νrFLrF ss “ ´

µpV q

Zr
νrfSrf ss ď

µpV q

Zr
σvνrf

2s

11



where f is the restriction of F to V . We also have

µprqrF 2s “
µr1V f

2s ` µr1MzV F
2s{r

Zr
ě

µpV q

Zr
νrf2s

We deduce from these two bounds that

λprqv ď σv

and

lim sup
rÑ`8

λprqv ă `8 (17)

i.e. l ě v and finally l “ v.
It follows that

@ k P JvK, lim
nÑ8

λ
prnq
k “ σk (18)

Taking into account (17), for any increasing subsequence pRnqnPN of positive numbers diverging to
`8, we can extract another subsequence prnqnPN such that (18) is true, we conclude by compactness
that

@ k P JvK, lim
rÑ`8

λ
prq
k “ σk

The last assertion of Proposition 3 is a consequence of l “ v and of the definition of l in (16).
�

Before coming to the proof of Theorem 5, let us check that for any A P ApV q, SA is a subMarko-
vian generator. The argument is similar to that of the proof of Proposition 2 and is based on the
probabilistic representation of the solution F of (10):

@ x PM, F pxq “ ExrfpXτAXV q1τAXV ăτMzAs (19)

where pXtqtě0 is a Markov process generated by L and starting from x, and for any B Ă M , τB is
the hitting time of B:

τB B inftt ě 0 : Xt P Bu

As a consequence, the first eigenvalue σ1pAq of ´SA is non-negative. It vanishes, if and only if there
is no path (whose transitions are permitted by L) going out of A without passing through AX V .

Assume that µ is reversible with respect to L. By the variational formulation of eigenvalues and
using the notation of Remark 9, we have for A P A,

σ1pAq “ inf

"

ESApf, fq
νAXV rf2s

: f P FpAX V qzt0u
*

(20)

where νAXV is the normalized restriction of µ to AXV , which is reversible with respect to SA. As in
(15), in the above formula, ESApf, fq can be replaced by ELpF, F q{µpA X V q, where F is associated
to f via (10).

We can now come to the

Proof of Theorem 5

The upper bound of σk is a direct consequence of the variational characterization of σk

σk “ min
HPFkpV q

max
fPHzt0u

ESpf, fq
νrf2s

where FkpV q is the set of all k-dimensional subspace of FpV q, by taking H as the space spanned by
the first eigenfunctions of SAl , l P JkK.
The proof of the lower bound is based on the higher order Dirichlet-Cheeger inequalities for finite
irreducible and reversible Markov generators. So assume that µ is reversible with respect to L and
let 0 “ λ1pLq ă λ2pLq ď λ3pLq ď ¨ ¨ ¨ ď λmpLq be the eigenvalues of ´L. Associate to any A P A its
first Dirichlet eigenvalue

λ1pAq B inf

"

ELpF, F q
µrF 2s

: F P FpMq with F vanishing on MzA

*

12



This is the same definition as (20) if we had taken V “M . Next define for any k P JmK,

ΛkpLq B min
pA1,...,AkqPAk

max
lPJkK

λ1pAlq

The higher order Dirichlet-Cheeger inequalities of Lee, Gharan and Trevisan [27] (see also [31] for its
Markovian reformulation) assert that there exists a universal constant c ą 0 such that

@ k P JmK, λkpLq ě
c

k6
ΛkpLq

In particular, we can apply them to Lprq for r ą 0:

@ k P JmK, λ
prq
k “ λkpL

prqq ě
c

k6
ΛkpL

prqq “: Λ
prq
k (21)

From Proposition 3, we know the behavior for large r ą 0 of the l.h.s., for k P JvK, so it remains to
investigate the r.h.s.

Fix A P A and consider for r ą 0,

λ
prq
1 pAq B inf

"

ELprqpF, F q
µprqrF 2s

: F P FpMq with F vanishing on MzA

*

It is the smallest eigenvalue of ´L
prq
A , where L

prq
A is the subMarkovian generator acting on FpAq whose

matrix is the pAˆAq-restriction of the matrix corresponding to Lprq. The proof of Proposition 3 can
easily be adapted to this situation to show that as r goes to `8, the first cardpA X V q eigenvalues

of ´L
prq
A converge to the eigenvalues of ´SA. In particular we get

lim
rÑ`8

λ
prq
1 pAq “ σ1pAq

Since Ak is a finite set, it follows that

@ k P JvK, lim
rÑ`8

Λ
prq
k “ κk

where the r.h.s. is defined in (11). The wanted result is thus obtained by passing to the limit in (21)
as r goes to `8.

�

Proof of Theorem 6

To relate the κk, for k P JvK, to isoperimetric quantities, we will adapt a computation of Jammes [23]
to the finite setting. Fix A P A and let us come back to (20). More precisely, consider f P FpAX V q
a minimizer of the infimum in the r.h.s. of (20) and F the associated solution of (10). From the
Perron-Frobenius’ theorem, we know that we can and do choose f to be non-negative and from (19),
we also have F ě 0. We are looking for a lower bound on the ratio

ELpF, F q
µrf21AXV s

“

ř

x‰yPM µpxqLpx, yqpF pyq ´ F pxqq2

2
ř

xPAXV µpxqf
2pxq

So multiply the numerator and the denominator by
ř

x1‰y1PM µpx1qLpx1, y1qpF py1q ` F px1qq2. In the
numerator we get

ÿ

x1‰y1PM

µpx1qLpx1, y1qpF py1q ` F px1qq2
ÿ

x‰yPM

µpxqLpx, yqpF pyq ´ F pxqq2

ě

˜

ÿ

x‰yPM

µpxqLpx, yqpF pyq ` F pxqq|F pyq ´ F pxq|

¸2

(22)

“

˜

ÿ

x‰yPM

µpxqLpx, yq|F 2pyq ´ F 2pxq|

¸2

where for the first bound we used the Cauchy-Schwarz inequality with respect to the measure µ
outside the diagonal of M ˆM . Concerning the denominator, we begin by noting that

ÿ

x1‰y1PM

µpx1qLpx1, y1qpF py1q ` F px1qq2 ď 2
ÿ

x1‰y1PM

µpx1qLpx1, y1qpF 2py1q ` F 2px1qq

13



“ 4
ÿ

x1‰y1PM

µpx1qLpx1, y1qF 2px1q

“ 4
ÿ

x1PM

µpx1q
ˇ

ˇLpx1, x1q
ˇ

ˇF 2px1q

ď 4 }L}
ÿ

x1PM

µpx1qF 2px1q (23)

where we used the reversibility of µ with respect to L for the first equality. For any G P FpMq,
denote |dG| the function on M ˆM given by

@ px, yq PM, |dG|px, yq B |Gpyq ´Gpxq|

Putting together the above computations, we have obtained

σ1pAq ě
1

8 }L}

µr|dF 2|s

µrF 2s

µr|dF 2|s

µrf21AXV s

To deal with the ratios of the r.h.s., recall the co-area formula (see for instance Formula (3.3.2) page
381 of the lecture notes of Saloff-Coste [33]): for any non-negative G P FpMq vanishing somewhere,
we have

µr|dG|s “

ż τ

0
µrBDts dt

where

@ t ě 0, Dt B tx PM : Gpxq ě tu

τ B inftt ě 0 : Dt “ Hu “ inftt ą 0 : µpBDtq “ 0u (24)

We also have

µrGs “

ż τ

0
µrDts dt

Applying these formulas with G B F 2 (which vanishes somewhere since A ‰M), we deduce that

µr|dF 2|

µrF 2s
ě inf

"

µpBDtq

µrDts
: t ě 0

*

ě min tηpBq : B P A, B Ă Au

since we have Dt Ă A for all t ě 0. Furthermore we have

µrf21AXV s “ µrF 21AXV s “

ż `8

0
µrDt XAX V s dt “

ż `8

0
µrDt X V s dt

so we deduce similarly that

µr|dF 2|s

µrf21AXV s
ě min

 

η1pBq : B P A, B Ă A
(

Finally we have shown that

@ A P A, σ1pAq ě
ρpAqρ1pAq

8 }L}

It follows that

@ k P JvK, κk ě
ιk

8 }L}
(25)

and Theorem 6 is now an immediate consequence of Theorem 5.
�

Proof of Proposition 7

Consider the variational characterisation of σk:

σk “ min
HPFkpV q

max
fPHzt0u

ESpf, fq
νrf2s

“ min
HPFkpV q

max
fPHzt0u

ELpFf , Ff q
µrf21V s
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where Fkp¨q is the set of all k-dimensional subspace of Fp¨q, and Ff is solution to (10), the harmonic
extension of f to MzV . We can rewrite the variational characterisation in the following equivalent
way.

σk “ min
HPFkpMq
H|V PFkpV q

max
FPHzt0u

ELpF, F q
µrF 21V s

Indeed for every f P FpV q, and all F P FpMq with F |V “ f we have

ELpFf , Ff q ď ELpF, F q

This is due to the harmonic property of Ff , for more details see (36). Let pA1, ..., Akq P AkpV q and
consider H :“ Vectp1Al : l P JkKq P FkpMq. It is also clear that H|V P FkpV q.

ELp1Al ,1Alq
µr1AlXV s

“

ř

x‰yPM µpxqLpx, yqp1Alpyq ´ 1Alpxqq
2

2µpAl X V q

“

ř

xPAl, yPA
c
l
µpxqLpx, yq ` µpyqLpy, xq

2µpAl X V q
“ η1pAlq

It implies

σk ď min
pA1,...,AkqPAkpV q

max
lPJkK

η1pAlq “ h1k

and completes the proof.
�

We conclude this section by the proof of Proposition A in the introduction.

Proposition 12 There is a universal positive constant c1 such that

@ k P JvK, σ2k ě
c1

log2pk ` 1q

ιk
}L}

Proof

By [27, Theorem 4.6] and [31, Section 2], we have

@ k P JvK, λ
prq
k ě

c

log2pk ` 1q
Λ
prq
k

where c is a universal positive constant. Passing to the limit and using (25) we get

@ k P JvK, σk “ lim
rÑ8

λ
prq
k ě

c

log2pk ` 1q
κk ě

c

8 log2pk ` 1q

ιk
}L}

and the statement follows.
�

3 The measurable state space framework

Let pM,M, µq be a probability measure space, endowed with a Markov kernel P leaving µ invari-
ant (i.e. µrP rF ss “ µrF s, for any bounded measurable function F ). The Markov kernel P defines a
map P : L2pµq Ñ L2pµq by P rF spxq :“

ş

M P px, dyqF pyq. It has the following properties

P r1s “ 1, and @ F ě 0 ñ P rF s ě 0

We assume that P is weakly mixing, in the following sense. Let Z B pZpnqqnPZ` be a Markov
chain whose transition kernel is P . As usual, we indicate that Z is starting from x PM , i.e. Zp0q “ x,
by putting x in index of the underlying probability Px and expectation Ex (more generally, this index
will stand for the initial law of Zp0q). Denote by A the set of A PM such that 0 ă µpAq ď 1. For
any A P A, define the hitting time of A by Z via

τA B inftn P Z` : Zpnq P Au (26)
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The weak mixing assumption asks for τA to be Px-a.s. finite, for any x PM and any A P A (but what
follows can be adapted to the situation where τA is a.s. finite, µ-a.s. in x PM and for any A P A).

Fix some V P A, we introduce corresponding Steklov Markov kernel K and Steklov gener-
ator S in the following way: let BpV q be the set of bounded measurable mappings defined on V . To
any f P BpV q, we associate the mapping Ff P BpMq given by

@ x PM, Ff pxq B ExrfpZpτV qqs (27)

and we define

@ x P V,

"

Krf spxq B P rFf spxq
Srf spxq B Krf spxq ´ fpxq

(28)

Note that K is a Markov transition operator, in the sense that it preserves the non-negativity
of functions, as well as 1V (the mapping always taking the value 1 on V ). It is immediate to check
that the function Ff defined in (27) is given by

Ff “
ÿ

nPZ`

p1MzV P q
n1V rf s

where the indicator functions are seen as multiplication operators. It follows that the transition
kernel of K is

ř

nPZ`pP1MzV q
nP1V . The function Ff is called the harmonic extension of f to M ,

because we have

@ x PMzV, pP ´ IqrFf spxq “ 0 (29)

where I stands for the identity operator (it will always be so in the sequel, even when the underlying
space will not be the same). Indeed, we have on MzV ,

P rFf s “ 1MzV P rFf s “ 1MzV P
ÿ

nPZ`

p1MzV P q
n1V rf s “

ÿ

nPN
p1MzV P q

n1V rf s

“
ÿ

nPZ`

p1MzV P q
n1V rf s ´ 1V rf s “

ÿ

nPZ`

p1MzV P q
n1V rf s “ Ff

where we used that 1V “ 0 on MzV in the last but one equality.
Let ν be the normalisation into a probability measure of the restriction of µ to V .

Lemma 13 The probability measure ν is invariant for K.

Proof

Indeed, we compute that for any f P BpV q,

νrKrf ss “
1

µpV q
µr1VKrf ss “

1

µpV q

`

µrKrf ss ´ µr1MzVKrf ss
˘

By invariance of µ with respect to P , we have

µr1MzVKrf ss “ µrP r1MzVKrf sss “ µ

»

–P1MzV

¨

˝

ÿ

nPZ`

pP1MzV q
nP r1V f s

˛

‚

fi

fl

“ µ

«

ÿ

nPN
pP1MzV q

nP r1V f s

ff

“ µrKrf ss ´ µrP r1V f ss “ µrKrf ss ´ µr1V f s

In conjunction with the previous identity, we get

νrKrf ss “
1

µpV q
µr1V f s “ νrf s

as wanted.
�

From now on, we will only be concerned with the more specific reversible situation where P
is symmetric in L2pµq (or equivalently µpdxqP px, dyq “ µpdyqP py, dxq). It follows that P can be
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extended into a bounded self-adjoint operator on L2pµq. Then ν is also reversible with respect to K:
for any f, g P BpV q, we have

νrfKrgss “
1

µpV q
µr1V fKrgss “

1

µpV q
µ

»

–1V f

¨

˝

ÿ

nPZ`

pP1MzV q
nP r1V gs

˛

‚

fi

fl

“
1

µpV q
µ

»

–1V g

¨

˝

ÿ

nPZ`

P p1MzV P q
nr1V f s

˛

‚

fi

fl “
1

µpV q
µ

»

–1V g

¨

˝

ÿ

nPZ`

pP1MzV q
nP r1V f s

˛

‚

fi

fl

“ νrgKrf ss

As a consequence, K can also be extended into a bounded self-adjoint operator on L2pνq. It leads
us to introduce the following quantities for k P N,

σk B inf
HPHkpV q

sup
fPHzt0u

νrfpI ´Kqrf ss

νrf2s
(30)

whereHkpV q is the set of subspaces of dimension k of L2pνq. In the above definition and subsequently,
the convention infH B `8 is enforced. When K has no essential spectrum, the finite elements of
pσkqkPN are eigenvalues of I´K “ ´S. due to their variational characterization. We want to estimate
them via higher order Cheeger inequalities. To go in this direction, let us consider

ApV q B tA P A : AX V P Au

and for A P ApV q, the Dirichlet–Steklov Markov kernel KA defined on BpAXV q as follows. For
any f P BpAX V q, consider

@ x PM, FA,f pxq B ExrfpZpτAXV qq1tτAXV ďτMzAus

where τAXV is the hitting time of AX V by Z according to (26). The operator KA is then given by

@ x P AX V, KArf spxq B P rFA,f spxq

Let νA be the normalisation into a probability measure of the restriction of µ (or ν) to AX V . It
can be easily checked as above that KA is Markovian and symmetric in L2pνAq, so that KA can be
extended into bounded self-adjoint operator on L2pνAq. As in (30), we could introduce the quantities
pσkpAqqkPN, but only its first element will be important for us:

σ1pAq B inf
fPL2pνAqzt0u

νArfpI ´KAqrf ss

νArf2s
(31)

More precisely, for any k P N, let AkpV q be the set of k-tuples pA1, A2, ..., Akq of disjoint elements
from ApV q. We introduce the Dirichlet–Steklov connectivity spectrum pκkqkPN of K via

@ k P N, κk B inf
pA1,...,AkqPAkpV q

max
lPJkK

σ1pAlq

Definition (31) can be considered for any A P A, but with the usual convention, we get σ1pAq “ `8
when A R ApV q, because L2pνAq “ t0u in this case (and we are left with the trivial KA “ 0).
Nevertheless, it enables to write

@ k P N, κk “ inf
pA1,...,AkqPAk

max
lPJkK

σ1pAlq (32)

where Ak be the set of k-tuples pA1, A2, ..., Akq of disjoint elements from A.

The goal of this section is to show that the extension of Theorem 5 holds in this setting:

Theorem 14 There exists a universal constant c ą 0 such that

@ k P N,
c

k6
κk ď σk ď κk

As in the finite setting, the above result leads to higher order Cheeger inequalities presented
below. Nevertheless Theorem 14 is more robust than the latter inequalities (34) and (35), as it will
appear in its proof. In a future work, we hope to take advantage of Theorem 14 to give an alternative
proof, as well as extensions, of Theorem C of the introduction.
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We need the natural extensions of the definitions given in the finite case to our present mesurable
state space setting. The boundary of any A P A is given by

BA B tpx, yq : x P A, y PMzAu

It is a measurable subset of M ˆM endowed with its product σ-fieldMbM. Consider the measure
µ on M ˆM defined by

µpdx, dyq “ µpdxqP px, dyq (33)

Here there is a slight difference with the finite case, as we do not impose that the diagonal D B
tpx, xq : x PMu is negligible with respect to µ: we cannot do so, because we are not sure D belongs
toMbM. It is not important, since we will only integrate with respect to µ functions which vanish
on the diagonal. In particular µ enables to measure BA through µpBAq. As a consequence, we can
define for A P A the isoperimetric ratios

ηpAq B
µpBAq

µpAq
η1pAq B

µpBAq

µpAX V q

(by convention, η1pAq “ `8 if A R ApV q). Again, the ratio η1pAq is the measurable analogue of
quantities introduced by Escobar [14] and Jammes [23], since in their terminology, BA and A X V
can be seen respectively as the interior and exterior boundaries, when the set V itself is seen as a
boundary of M .

Next consider
ρpAq :“ inf

BPA
BĎA

ηpBq ρ1pAq :“ inf
B1PA
B1ĎA

η1pB1q

For any k P N, introduce the k-th Cheeger–Steklov constant of V by

ιk B inf
pA1,...,AkqPAk

max
lPJkK

ρpAlqρ
1pAlq

The next result can be seen as an extension to higher order Cheeger inequalities of Théorème 1 of
Jammes [23], as in Theorem 6:

Theorem 15 Let c be the constant of Theorem 14. We have

@ k P N, σk ě
c

k6
ιk (34)

Proof

The deduction of Theorem 15 from Theorem 14 is very similar to that of Theorem 6 from Theorem 5.
For any function f P L2pνAqzt0u, due to Remark 10 for the measurable situation and Lemma 17 below,
we have

νArfpI ´KAqrf ss

νArf2s
“

µrFA,f pI ´ P qrFA,f ss

µr1VXAf2s

“

ş

MˆM µpdxqP px, dyq1FA,f pyq‰FA,f pxqpFA,f pyq ´ FA,f pxqq
2

2µr1VXAf2s

We multiply the numerator and the denominator by
ş

MˆM µpdxqP px, dyq1FA,f pyq‰FA,f pxqpFA,f pyq `

FA,f pxqq
2 and follow the same calculation as in the proof of Theorem 6. The key point is that the

statement of the co-area formula is the same in the finite and measurable situations, replacing sums
by integrals. To illustrate the kind of slight modifications to be taken into account (also that }L} of
Theorem 5 can be replaced by 1 here), let us present the equivalent of the computation (23)

ż

MˆM
µpdxqP px, dyq1FA,f pyq‰FA,f pxqpFA,f pyq ` FA,f pxqq

2

ď 2

ż

MˆM
µpdxqP px, dyq1FA,f pyq‰FA,f pxqpF

2
A,f pyq ` F

2
A,f pxqq

“ 4

ż

MˆM
µpdxqP px, dyq1FA,f pyq‰FA,f pxqF

2
A,f pxq

ď 4

ż

M
µpdxqF 2

A,f pxq
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The measurable indicator 1FA,f py1q‰FA,f pxq is inherited from the Cauchy-Schwarz’ inequality in (22)
and must be kept to avoid the possible drawback that D RMbM.

In the same spirit, in (24) τ should be defined as the r.h.s. Then we apply the above calculation

to a family of functions fn P L2pνAq such that νArfnpI´KAqrfnss
νArf2ns

Ñ σ1pAq as n tends to 8.
�

As in the previous section we consider

h1k B inf
pA1,...,AkqPAkpV q

max
lPJkK

η1pAlq (35)

and by the same proof, Proposition 7 is valid in the measurable situation, i.e.

@ k P N, σk ď h1k

The proof of Theorem 14 follows the same pattern as in the finite case: it will be deduced from
the higher order Cheeger inequalities from [31], once the above quantities will be shown to be limits
of spectra associated to speed-up Markov processes. More precisely, for r ą 0, consider the jump
Markov generator Lprq on M given by the kernel

Lprqpx, dyq B

"

rpP px, dyq ´ δxpdyqq , if x PMzV
P px, dyq ´ δxpdyq , if x P V

Define the probability measure µprq on pM,Mq by

µprqpdxq “

ˆ

1V pxq

Zr
`
1MzV pxq

rZr

˙

µpdxq

where Zr B µpV q ` p1´ µpV qq{r is the normalisation constant.
The proof of Lemma 11 is still valid and leads to

Lemma 16 The operator Lprq is self-adjoint in L2pµprqq.

Similarly to (30) and (31), consider

λ
prq
k B inf

HPHk

sup
FPHzt0u

µprqrF p´LprqqrF ss

µprqrF 2s

where Hk is the set of subspaces of dimension k of L2pµq “ L2pµprqq, and for any A P A,

λ
prq
1 pAq B inf

FPL2pA,µqzt0u

µprqrF p´LprqqrF ss

µprqrF 2s

where L2pA,µq is the space of F P L2pµq which vanish on MzA. The larger λ
prq
1 pAq is, the easier it

is for a (continuous time) Markov process associated to the generator Lprq to exit A: the quantity

λ
prq
1 pAq corresponds to the first Dirichlet eigenvalue of A and measures the asymptotical rate of exit

from A.
The numerators in the above r.h.s. are only slightly dependent on r ě 1 and related to the similar

quantities relative to K:

Lemma 17 We have for any r ą 0 and F P L2pµq,

µprqrF p´LprqqrF ss “
1

2Zr

ż

µpdxqP px, dyqpF pyq ´ F pxqq2 “
1

Zr
µrF pI ´ P qrF ss

Furthermore, for any f P L2pνq,

νrfpI ´Kqrf ss “
1

µpV q
inftµrF pI ´ P qrF ss : F|V “ fu “

1

µpV q
µrFf pI ´ P qrFf ss

where F|V stands for the restriction of F to V .
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Proof

By definition, for any r ą 0 and F P L2pµq, we have

µprqrfp´LprqqrF ss “ ´

ż

MˆM
µprqpdxqLprqpx, dyqF pxqF pyq

“ ´

ż

VˆM
µprqpdxqLprqpx, dyqF pxqF pyq ´

ż

pMzV qˆM
µprqpdxqLprqpx, dyqF pxqF pyq

“
1

Zr

ż

VˆM
µpdxqpδxpdyq ´ P px, dyqqF pxqF pyq

`
1

Zr

ż

pMzV qˆM
µpdxqpδxpdyq ´ P px, dyqqF pxqF pyq

“
1

Zr

ż

MˆM
µpdxqP px, dyqpF pxq ´ F pyqqF pxq

“
1

2Zr

ż

MˆM
µpdxqP px, dyqpF pyq ´ F pxqq2

where we used the reversibility (under the form µpdxqP px, dyq “ µpdyqP py, dxq) in the last equality.
Note that the last but one r.h.s. is just µrF pI ´ P qrF ss{Zr.

Similarly, we compute that for any f P L2pνq,

νrfpI ´Kqrf ss “

ż

VˆV
νpdxqKpx, dyqpfpxq ´ fpyqqfpxq “

ż

V
νpdxqKrfpxq ´ f spxqfpxq

“

ż

V
νpdxqP rfpxq ´ Ff spxqfpxq “

ż

VˆM
νpdxqP px, dyqpfpxq ´ Ff pyqqfpxq

“

ż

VˆM
νpdxqP px, dyqpFf pxq ´ Ff pyqqFf pxq

“

ż

MˆM
νpdxqP px, dyqpFf pxq ´ Ff pyqqFf pxq “

1

µpV q
µrFf pI ´ P qrFf ss

where in the last but one equality, we used that Ff is harmonic on MzV according to (29). It remains
to see that

inftµrF pI ´ P qrF ss : F|V “ fu “ µrFf pI ´ P qrFf ss (36)

namely that among all F P L2pµq coinciding with f on V , the quantity µrF pI ´ P qrF ss is minimum
when F “ Ff . This is a well-known fact, due to the harmonic property of Ff , let us recall the
argument. Write any such function F under the form Ff ` G where G P L2pµq vanishes on V . We
have

µrF pI ´ P qrF ss “ µrFf pI ´ P qrFf ss ` µrFf pI ´ P qrGss ` µrGpI ´ P qrFf ss ` µrGpI ´ P qrGss

“ µrFf pI ´ P qrFf ss ` 2µrGpI ´ P qrFf ss ` µrGpI ´ P qrGss

“ µrFf pI ´ P qrFf ss ` µrGpI ´ P qrGss

where we used reversibility, G|V “ 0 and (29). The announced minimisation comes from the non-
negativity of

µrGpI ´ P qrGss “

ż

MˆM
νpdxqP px, dyqpGpxq ´Gpyqq2

�

Our first approximation results are:

Theorem 18 Assume that λ B λ
p1q
1 pMzV q ą 0 (this quantity will be subsequently called the Dirichlet

gap of MzV ), namely that it is quite easy for the Markov chains pZqxPM to enter into V . Then for
any k P N, we have

lim
rÑ`8

λ
prq
k “ σk

and for any A P A,

lim
rÑ`8

λ
prq
1 pAq “ σ1pAq (37)

20



More precisely, the latter convergence is uniform, in the following sense: let d be a distance on the
compact set r0,`8s compatible with its usual topology. We have

lim
rÑ`8

sup
APA

dpλ
prq
1 pAq, σ1pAqq “ 0

More generally, the proof of (37) will show that limrÑ`8 λ
prq
k pAq “ σkpAq, for any k P N, but it will

not be useful for our purposes.

Proof

The proof is mainly concerned with the first convergence, since the second one will follow by recycling
the obtained quantitative bounds.

We begin by checking that for any k P N, we have

lim sup
rÑ`8

λ
prq
k ď σk (38)

This result does not require that λ
p1q
1 pMzV q ą 0. Note that any H P HkpV q can be seen as an

element of Hk, through the one-to-one mapping

L2pνq Q f ÞÑ Ff P L2pµq

so that we have

λ
prq
k ď inf

HPHkpV q
max
fPH

µprqrFf p´L
prqqrFf ss

µprqrF 2
f s

According to Lemma (17), for any f P L2pνq,

µprqrFf p´L
prqqrFf ss “

1

Zr
µrFf pI ´ P qrFf ss “

µpV q

Zr
νrfpI ´Kqrf ss

Furthermore, we compute that

µprqrF 2
f s “

1

Zr

`

µr1V f
2s ` µr1MzV F

2
f s{r

˘

ě
1

Zr
µr1V f

2s “
µpV q

Zr
νrf2s

Thus we get that

λ
prq
k ď inf

HPHkpV q
max
fPH

νrfpI ´Kqrf ss

νrf2s
“ σk

from which (38) follows at once.

Conversely, to any subspace H Ă L2pµq associate rH the subspace of L2pνq generated by the
functions F|V for F P H. For k P N, let H˚k stand for the set of H P Hk which are such that
rH P HkpV q, namely such that rH has dimension k. We begin by remarking that for k P N such that
k ď dimpL2pνqq (ď `8) and for any r ą 0,

λ
prq
k “ inf

HPH˚k
max

FPHzt0u

µprqrF p´LprqqrF ss

µprqrF 2s
(39)

Indeed, fix some H P Hk and choose F1, F2, ..., Fk a basis of H. Consider for l P JkK, fl the restriction
of Fl to V . If pflqlPJkK is not an independent family of L2pV q, then we can find another family p pflqlPJkK

of L2pV q such that for any ε P p0, 1s, the family pfl ` ε pflqlPJkK is independent. For ε P p0, 1s, consider

Hε the space generated by pFl ` ε pFlqlPJkK, where the pFl, l P JkK, are the functions coinciding with pfl

on V and e.g. vanishing outside. Since rHε belongs to HkpV q, we have that Hε P H˚k . Furthermore,
it is clear that

lim
εÑ0`

max
FPHεzt0u

µprqrF p´LprqqrF ss

µprqrF 2s
“ max

FPHzt0u

µprqrF p´LprqqrF ss

µprqrF 2s

showing (39).
Recall that we have by definition

λ B inf
FPL2pMzV,µqzt0u

µrF pP ´ IqrF ss

µrF 2s
“ inf

FPL2pµq
1MzV F‰0

µr1MzV F pI ´ P qr1MzV F ss

µr1MzV F 2s
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It follows that for any F P L2pµq,

µr1MzV F
2s ď

1

λ
µr1MzV F pI ´ P qr1MzV F ss ď

1

λ
µrpF ´ 1V F qpI ´ P qrF ´ 1V F ss

ď
2

λ
pµrF pI ´ P qrF ss ` µr1V F pI ´ P qr1V F ssq ď

2

λ

`

µrF pI ´ P qrF ss ` 2µr1V F
2s
˘

where we used that the mapping L2pµq Q F ÞÑ µrF pI ´ P qrF ss is a (non-negative) quadratic form
(called the Dirichlet form associated to the Markov generator P ´ I, see Remark 10) and that the
spectrum of the operator I ´ P is included into r0, 2s. We deduce that for any r ą 0,

µprqrF 2s “
1

Zr

ˆ

µr1V F
2s `

1

r
µr1MzV F

2s

˙

ď
1

Zr

ˆˆ

1`
4

rλ

˙

µr1V F
2s `

2

rλ
µrF pI ´ P qrF ss

˙

It follows that

µprqrF p´LprqqrF ss

µprqrF 2s
ě

µrF pI ´ P qrF ss
`

1` 4
λr

˘

µr1V F 2s ` 2
rλµrF pI ´ P qrF ss

“ φr

ˆ

µrF pI ´ P qrF ss

µr1V F 2s

˙

where

φr : r0,`8s Q u ÞÑ
u

1` 4
λr `

2u
λr

Note that the latter mapping is increasing, so taking into account Lemma 17, we have, with f B F|V ,

φr

ˆ

µrF pI ´ P qrF ss

µr1V F 2s

˙

ě φr

ˆ

µrFf pI ´ P qrFf ss

µpV qνrf2s

˙

“ φr

ˆ

νrfpI ´Kqrf ss

νrf2s

˙

We deduce from the above computations that for H P H˚k ,

max
FPHzt0u

µprqrF p´LprqqrF ss

µprqrF 2s
ě max

fP rHzt0u
φr

ˆ

νrfpI ´Kqrf ss

νrf2s

˙

“ φr

˜

max
fP rHzt0u

νrfpI ´Kqrf ss

νrf2s

¸

ě φr pσkq

since rH P HkpV q.
When k ď dimpL2pνqq, it follows from (39) that

λ
prq
k ě φr pσkq

and it remains to let r go to `8 to get

lim inf
rÑ`8

λ
prq
k ě lim

rÑ`8
φrpσkq “ σk (40)

When k ą dimpL2pνqq, for any H P Hk, we can find F ˚ P Hzt0u such that F ˚
|V “ 0 and so

max
FPHzt0u

µprqrF p´LprqqrF ss

µprqrF 2s
ě

µprqrF ˚p´LprqqrF ˚ss

µprqrF ˚2s
ě φrp`8q “ λr

It follows that λ
prq
k ě λr{2 and letting r go to `8 we get

lim inf
rÑ`8

λ
prq
k “ `8 “ σk

Thus (40) is always true and in conjunction with (38), we obtain the first announced convergence.

For the second convergence, note that for A P A, the definition of σ1pAq is similar to that of σ1

where V is replaced by V Y pMzAq, except we only consider functions that vanish on MzA. It leads
us to consider

λA B λ
p1q
1 pAzV q
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and for r ą 0, the mapping φA,r given by

φA,r : r0,`8s Q u ÞÑ
u

1` 4
λAr

` 2u
λAr

The above computations show that for any r ą 0,

σ1pAq ě λ
prq
1 pAq ě φA,rpσ1pAqq

Note that the mapping A Q B ÞÑ λ
p1q
1 pBq is non-increasing with respect to the inclusion of sets

(because λ
p1q
1 pBq corresponds to an infimum over the space of functions L2pB,µqzt0u, which is non-

decreasing with respect to B), so we deduce

λA ě λ

@ r ą 0, φA,r ě φr

It follows that to get the wanted uniform convergence, it is sufficient to show that

lim
rÑ`8

sup
uPr0,`8s

dpu, φrpuqq “ 0

which is an elementary computation, since it can be reduced to

lim
rÑ`8

max

˜

sup
uPr0,1s

|u´ φpuq|, sup
uPr1,`8s

ˇ

ˇ

ˇ

ˇ

1

u
´

1

φrpuq

ˇ

ˇ

ˇ

ˇ

¸

“ 0

�

Remark 19 The assumption of positive Dirichlet gap in Theorem 18 is really needed. Indeed,

remark that when λ
p1q
1 pMzV q “ 0, then for any r ą 0, we have λ

prq
1 pMzV q “ 0. Due to Lemma 17,

this is an immediate consequence of

@ F P L2pµq,
1

maxp1, rq

µrF pI ´ P qrF ss

µrF 2s
ď

µprqrF p´LprqqrF ss

µprqrF 2s
ď

1

minp1, rq

µrF pI ´ P qrF ss

µrF 2s

Furthermore, the fact that λ
prq
1 pMzV q “ 0 implies that λ

prq
2 “ 0: consider a sequence of functions

pFnqnPN from L2pMzV, µqzt0u such that

lim
nÑ8

µprqrFnp´L
prqqrFnss

µprqrF 2
ns

“ 0

and consider for n P N, Hn B Vectp1, Fnq P H2. We easily get that

lim
nÑ8

max
FPHnzt0u

µprqrF p´LprqqrF ss

µprqrF 2s
“ 0

i.e. λ
prq
2 “ 0. In particular, we have

lim
rÑ`8

λ
prq
2 “ 0

But it may happen that σ2 ą 0. Consider for instance an ergodic birth and death transition kernel
P on Z`: we take M “ Z` endowed with a probability measure µ charging all the points. The
reversible transition kernel P is defined via a Metropolis procedure:

@ x, y P Z`, P px, yq B

$

’

&

’

%

1
2

´

µpxq
µpyq ^ 1

¯

, if |y ´ x| “ 1

0 , if |y ´ x| ě 2
1´

ř

zPZ`ztxu P px, zq , if x “ y

where p ^ q :“ mintp, qu. The definition of P via the above Metropolis procedure implies that it is
irreducible with respect to µ (see for example [4, Section 3.1]). Recall that by definition, P is ergodic
if and only if

@ F P L2pµq, P rF s “ F ñ F P Vectp1q
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Thus, irreducibility implies ergodicity in the above example. As a result, P is also weakly mixing.
Assume that the queues of µ are sufficiently heavy, in the sense that

lim
xÑ8

µpxq

µprx,8qq
“ 0

An application of discrete Hardy’s inequalities (see [29], they are given for finite birth and death pro-

cesses, but are also valid in the denumerable setting) implies that λ
p1q
1 pZ`zt0, 1uq “ 0. Nevertheless

considering for instance V “ t0, 1u we get that σ2 ą 0, as a consequence of Kp0, 1q “ P p0, 1q ą 0
and Kp1, 0q “ P p1, 0q ą 0. More generally it can be proven that σ2 ą 0 for any finite subset of Z`
non-empty and not reduced to a singleton.

Note that under the weak mixing assumption (or under the ergodicity assumption), λ
p1q
2 “ 0 means

that 0 is the lower bound of the essential spectrum, so that λ
p1q
k “ 0 for all 1 ď k ă dimpL2pµqq ` 1

and similarly, λ
prq
k “ 0 for any r ą 0 and 1 ď k ă dimpL2pµqq ` 1.

˝

To prove Theorem 14 without the assumption of a positive Dirichlet gap on MzV , we will accel-
erate the Markov process associated to the generator P ´ I more strongly on the slow points of MzV
(near 8 in the above remark). More precisely, we look for a measurable function ϕ : M Ñ r1,`8q,
taking the value 1 on V , such that by defining for r ą 0, the jump Markov generator Lprq by

Lprqpx, dyq B

"

rϕpxqpP px, dyq ´ δxpdyqq , if x PMzV
ϕpxqpP px, dyq ´ δxpdyqq , if x P V

(41)

we have that Lp1q admits a positive Dirichlet gap on MzV . Then, with the corresponding spectra,
Theorem 18 will hold. Note that the notions of harmonic functions on MzV with respect to P ´ I
and Lprq, for all r ą 0, coincide and the corresponding Steklov Markov kernels and generators are
the same.

Let X B pXptqqtě0 be a jump Markov process of generator P ´ I (see Chapter 4 in [16] for the
definition). Fix some χ P p0, 1q and consider the function ϕ defined by

@ x PM, ϕpxq B
1

Exrχτ s

where τ B inftt ě 0 : Xt P V u. Note that when x P MzV is a point from which it is difficult to hit
V , namely such that τ has a propensity to be large, then ϕpxq is quite large also: the jump Markov
process Xp1q B pXp1qptqqtě0 associated to Lp1q is strongly accelerated at x in comparison with X, as
wanted. From now on, the notation Lprq, for r ą 0, will only refer to the operators given in (41).
Here is the consequence of the acceleration procedure:

Lemma 20 We have, with τ p1q B inftt ě 0 : X
p1q
t P V u,

@ x PM, Exrτ p1qs ď
1

lnp1{χq

Proof

Let us recall the time change transformations (cf. for instance Chapter 6 from the book of Ethier and
Kurtz [16]), which enable to construct Xp1q from X when both processes start from a fixed x P M .
Due to [16, Theorem 1.4], if we define pθtqtě0 via

@ t ě 0,

ż θt

0

1

ϕpXsq
ds “ t

then we can take

@ t ě 0, Xp1qptq B Xpθtq

In particular, we get

τ p1q “

ż τ

0

1

ϕpXsq
ds
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It follows that

Exrτ p1qs “ Ex
„
ż τ

0

1

ϕpXsq
ds



“

ż `8

0
Ex

„

1sďτ
1

ϕpXsq



ds “

ż `8

0
Ex r1sďτEXsrχτ ss ds

“

ż `8

0
Ex

“

1sďτχ
´sExrχτ |pXuquPr0,sss

‰

ds “

ż `8

0
Ex

“

1sďτχ
´sχτ

‰

ds

where we use the measurability of the event ts ď τu with respect to the σ-field generated by
pXuquPr0,ss, the fact that on ts ď τu, we have τ “ s ` τ ˝ θs, where θs is the shift of the trajec-
tories by an amount s of time, and the Markov property, stating that for any measurable functional
F on the trajectories, we have a.s. ExrF ˝ θs|pXuquPr0,sss “ EXsrF s. In this formula, EXs is the
expectation with respect to a diffusion X starting from Xs at time 0. Since all the integral elements
are non-negative, we can use again Fubini’s formula to get that the last integral is equal to

Ex
„
ż `8

0
1sďτχ

´sχτ ds



“ Ex
„
ż τ

0
χτ´s ds



“ Ex
„
ż τ

0
χs ds



“ Ex
„

χτ ´ 1

lnpχq



ď
1

lnp1{χq

as announced.
�

From the previous uniform boundedness of the expectations of τ p1q, we deduce uniform exponen-
tial bounds on its queues:

Lemma 21 We have, with α B lnp2q lnp1{χq{2,

@ x PM, @ s ě 0, Pxrτ p1q ě ss ď 2 expp´αsq

Proof

For any n P Z`, we have

@ x PM, Pxrτ p1q ě ans ď 2´n

where

a B
2

lnp1{χq

This is shown by iteration on n P Z`. It is clear for n “ 0 and if it is true for some n P Z`, then by
the Markov property and Lemma 20: for any x PM ,

Pxrτ p1q ě apn` 1qs “ Exr1τ p1qěaPXp1qpaqrτ
p1q ě anss ď 2´nPxrτ p1q ě as

ď 2´n
Exrτ p1qs

a
ď 2´n

1

a lnp1{χq
“ 2´pn`1q

where in the third line we use the Markov inequality.
For any s P R`, write n B ts{au P Z`, so that for any @ x PM ,

Pxrτ p1q ě ss ď Pxrτ p1q ě nas ď 2´n “ 2´ts{au ď 2p2´s{aq “ 2 expp´αsq

as announced.
�

To simplify the notation, we now take χ “ expp´2{ lnp2qq, so that α “ 1. Uniform exponential
bounds on the queues of exit times from a domain are well-known to imply that the associated
Dirichlet gap is positive. Here is a simple proof of this fact:

Lemma 22 We have

λ
p1q
1 pMzV q ě

1

2

where the l.h.s. is relative to the accelerated generator Lp1q.
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Proof

As in Lemma 11, we see that the measure 1
ϕpxqµpdxq is reversible for Lp1q. Its total weight is

Zp1q B

ż

Exrχτ
p1q
sµpdxq P p0, 1q

which leads us to define µp1qpdxq B 1
Zp1qϕpxq

µpdxq, the invariant probability for Lp1q.

Our goal is to show that

λ
p1q
1 pMzV q B inf

FPL2pMzV,µp1qqzt0u

µp1qrF p´Lp1qqrF ss

µp1qrF 2s
ě

1

2
(42)

So consider F a bounded and measurable function on M , vanishing on V . By the martingale
problems associated to Xp1q, there exists a L2 martingale pMtqtě0 such that

@ t ě 0, F 2pXp1qptqq “ F 2pXp1qp0qq `

ż t

0
Lp1qrF 2spXp1qpsqq ds`Mt

Replace in this relation t by t^ τ p1q and take the expectation to get

ErF 2pXp1qpt^ τ p1qqqs “ ErF 2pXp1qp0qqs ` E

«

ż t^τ p1q

0
Lp1qrF 2spXp1qpsqq ds

ff

where we use the martingale property EpMtq “ EpM0q “ 0. Via dominated convergence, we can let
t go to infinity to obtain

ErF 2pXp1qpτ p1qqqs “ ErF 2pXp1qp0qqs ` E

«

ż τ p1q

0
Lp1qrF 2spXp1qpsqq ds

ff

Note that since Xp1qpτ p1qq P V the l.h.s. vanishes, we deduce

ErF 2pXp1qp0qqs “ ´E

«

ż τ p1q

0
Lp1qrF 2spXp1qpsqq ds

ff

We have not yet specified the initial distribution of Xp1qp0q, but take it now to be µp1q, so the l.h.s.
is

Eµp1qrF
2pXp1qp0qqs “

ż

µp1qpdxqF 2pxq “ µp1qrF 2s

Concerning the r.h.s., recall that the carré du champs Γp1q associated to Lp1q and defined on any
bounded and measurable function G on M by

Γp1qrGs B Lp1qrG2s ´ 2GLp1qrGs

is a non-negative function (cf. for instance the book of Bakry, Gentil and Ledoux [3]). It follows that

´Eµp1q

«

ż τ p1q

0
Lp1qrF 2spXp1qpsqq ds

ff

ď ´2Eµp1q

«

ż τ p1q

0
F pXp1qpsqqLp1qrF spXp1qpsqq ds

ff

ď 2Eµp1q

«

ż τ p1q

0
|F pXp1qpsqqLp1qrF spXp1qpsqq| ds

ff

“

ż `8

0
Eµp1q

”

1sďτ p1q |F pX
p1qpsqqLp1qrF spXp1qpsqq|

ı

ds

For any s ě 0, taking into account Lemma 21, we have

Eµp1q
”

1sďτ p1q |F pX
p1qpsqqLp1qrF spXp1qpsqq|

ı

“ Eµp1q
”

PXp1qpsqrs ď τ p1qs|F pXp1qpsqqLp1qrF spXp1qpsqq|
ı

ď 2 expp´sqEµp1q
”

|F pXp1qpsqqLp1qrF spXp1qpsqq|
ı

“ 2 expp´sqµp1qr|FLp1qrF s|s
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where we used the invariance of µp1q (meaning that for any s ě 0, the law of Xp1qpsq is equal to µp1q

when the initial law is µp1q). We have thus proven that

µp1qrF 2s ď

ż `8

0
2 expp´sqµp1qr|FLp1qrF s|s ds “ 2µp1qr|FLp1qrF s|s ď 2

b

µp1qrF 2sµp1qrpLp1qrF sq2s

i.e.

µp1qrF 2s ď 4µp1qrpLp1qrF sq2s

The fact that Lp1q is a non-positive self-adjoint operator enables to see that this relation extend to
any function in the domain of Lp1q with Dirichlet condition on V . It follows that the spectrum of
´Lp1q with Dirichlet condition on V is above 1/2, which amounts to (42).

�

As already mentioned, the Steklov Markov kernel Kp1q associated to Lp1q and V is the same as
K. Since in general the generator Lp1q cannot be written under the form P p1q ´ I, where P p1q would
be a Markov kernel on M , the definitions (27) and (28) must be slightly generalized: denote for any
f P BpV q,

@ x PM, F
p1q
f pxq B ExrfpXp1qpτ p1qqqs (43)

@ x P V, Kp1qrf spxq B Lp1qrF
p1q
f spxq ` fpxq

where τ p1q was defined in Lemma 20. The latter expression for Kp1q may appear strange at first view;
it is due to the fact that it is a Markov kernel operator. If we rather consider the Steklov generator
Sp1q B Kp1q ´ I, we get the more natural formulation: Sp1qrf s “ Lp1qrFf s, for f P BpV q, as in the
section on finite Markov process. Coming back to our previous convention of Steklov Markov kernels,
note that for any x P V , we have

Lp1qrF
p1q
f spxq ` fpxq “ LrF

p1q
f spxq ` F

p1q
f pxq “

ż

F
p1q
f pyqP px, dyq “ P rF

p1q
f spxq

more in adequacy with (28). Note furthermore that the function F
p1q
f defined by (43) is the Lp1q-

harmonic extension of f to M : it satisfies
#

Lp1qrFf s “ 0 , on MzV

F
p1q
f “ f , on V

Since Lp1q “ ϕL, with ϕ non-vanishing, the condition Lp1qrFf s “ 0 is the same as LrFf s “ 0. It follows

that F
p1q
f “ Ff and finally Kp1qrf s “ Krf s. By completion, this is true on L2pνq, i.e. Kp1q “ K. The

equality F
p1q
f “ Ff is also obvious from the probabilistic point of view, since Xp1q is a time change

of X (as seen in the proof of Lemma 20), which itself is the Poissonisation of the Markov chain Z
with the same initial condition and associated to P : let pEnqnPN be independent exponential random
variables of parameter 1, X can be constructed from Z via

@ t ě 0, Xt “ Zn, where n P Z` is such that
řn
p“1 Ep ď t ă

řn`1
p“1 Ep

The previous considerations are also valid for the operators K
p1q
A , defined in a similar fashion for

A P ApV q and we get that K
p1q
A “ KA. We can now apply Theorem 18 with respect to the generator

Lp1q, which by construction admits a Dirichlet gap on MzV . The l.h.s. in the two convergences of
Theorem 18 correspond to the generators given by (41) and the r.h.s. are given by (30) and (31),
according to the above discussion. These convergences are our final approximation results for the
quantities pσkqkPN and pσ1pAqqAPA.

We can now come to the

Proof of Theorem 14

The upper bound is an immediate consequence of the definition of σk. Indeed for every pA1, ..., Akq P
Ak it is enough to consider the vector space generated by a family tfl,n P L

2pAl, µq : l P JkKu of test

functions such that
νAl rfn,lpI´KAl qrfn,lss

νAl rf
2
n,ls

tends to σ1pAlq as nÑ8.

For the lower bound, similarly to (32), define for any r ą 0,

@ k P N, Λ
prq
k “ inf

pA1,...,AkqPAk
max
lPJkK

λ
prq
1 pAlq
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We have seen in [31], extending the similar result Lee, Oveis Gharan and Trevisan [27] gave in a
finite setting, that there exists a universal constant c ą 0 such that

@ r ą 0, @ k P N, λ
prq
k ě

c

k6
Λ
prq
k (44)

Fix some k P N. The first convergence of Theorem 18 shows that the l.h.s. converges to σk as r goes
to `8. Its uniform convergence leads to

lim
rÑ`8

Λ
prq
k “ κk

so we can pass to the limit in (44) to obtain the announced inequality.
�

We end this section with Proposition A in the introduction.

Proposition 23 There is a universal positive constant c1 such that

@ k P N, σ2k ě
c1

log2pk ` 1q
ιk

Proof

By [31], the proof of Proposition 12 can be extended here. In particular, we have

@ k P N, λ
prq
2k ě

c

log2pk ` 1q
Λ
prq
k

and

@ k P JvK, Λk ě
1

8
ιk

and the statement follows.
�

4 The Riemannian manifold framework

Let pM, gq be a compact Riemannian manifold of dimension n with smooth boundary. We assume
that M is connected. Recall the Steklov problem (1) considered in the introduction:

"

∆f “ 0 , in M
Bf
Bν “ σf , on BM

where ν is the unit outward normal to the boundary. Our goal, as in the previous sections, is to relate
its eigenvalues 0 “ σ1 ă σ2 ď ¨ ¨ ¨ ď σk ď ¨ ¨ ¨ Õ 8 to some isoperimetric constants. We first show
that that (1) can be seen as a limit of a family of Laplace eigenvalue problems. This is already known
due to the results of Lamberti and Provenzano [25, 32]. They showed that the Steklov eigenvalue
problem (1) can be considered as the limit of the family of Neumann eigenvalue problems

"

∆f ` λρεf “ 0 , in M
Bf
Bν “ 0 , on BM

(45)

for ε small enough (one can choose ε for example smaller than the focal distance of BM). Here
Mε :“ tx PM : dpx, BMq ă εu, and

ρεpxq “

"

ε , if x PMzMε
1
ε , if x PMε

(46)

We denote the eigenvalues of problem (45) by

0 “ λε1 ă λε2 ď ¨ ¨ ¨ ď λεk ď ¨ ¨ ¨ Õ 8

Then we have

Theorem 24 [25, 32] For every k P N

lim
εÑ0

λεk “ σk (47)
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Remark 25 We remark that Lamberti and Provenzano [25, 32] stated the above convergence for
bounded domains in Rn with smooth boundary, and the definition of ρε on BM is slightly different.
However, a verbatim proof also results in the convergence (47) on a compact Riemannian manifold
pM, gq with smooth boundary, see [32, Chapter 3] for the details of the proof.

˝

One can see the similarity of the above theorem with the statement of Proposition 3 and Theorem 18.
It would be very interesting to have an alternative approach to prove Theorem 24 and Theorem 28
below by using the results of the previous section. We hope to obtain a unified approach in a future
work.

Let A Ă M be a nonempty open domain in M . Let BeA :“ Ā X BM and BiA :“ BA X IntM
be smooth manifolds of dimension n ´ 1 when they are nonempty sets. We consider the mixed
Dirichlet–Steklov eigenvalue problem

$

&

%

∆f “ 0 in A
Bf
Bν “ σf on BeA
f “ 0 on BiA

(48)

We also need to consider the following mixed Dirichlet–Neumann eigenvalue problem

$

&

%

∆f ` λρεf “ 0 in A
Bf
Bν “ 0 on BeA
f “ 0 on BiA

(49)

where ρε is defined in (46).

If BiA “ H, then A “ IntM and the first eigenvalue is zero. Otherwise the first eigenvalues of
the eigenvalue problem (48) and (49) are not zero and we denote their eigenvalues by

0 ă σ1pAq ď σ2pAq ď ¨ ¨ ¨ ď σkpAq ď ¨ ¨ ¨ Õ 8

and
0 ă λε1pAq ď λε2pAq ď ¨ ¨ ¨ ď λεkpAq ď ¨ ¨ ¨ Õ 8

respectively. When BeA “ H, our convension is that σkpAq “ 8, for every k P N. Denote by A the
set of nonempty open domains in M such that BiA and BeA are smooth sub-manifolds of dimension
n´1 when they are nonempty. Let Ak be the set of k-tuple pA1, ..., Akq of mutually disjoint elements
of A. We define

Λεk :“ inf
pA1,...,AkqPAk

max
lPJkK

λε1pAlq (50)

The higher order Cheeger inequality for eigenvalues λεkpMq, k P N was proved by Miclo in [31]:

Theorem 26 ([31]) There exists a universal constant c ą 0 such that for any compact Riemannian
manifold M with smooth boundary, the eigenvalues λεk of Neumann eigenvalue problem (45) satisfy

c

k6
Λεk ď λεk ď Λεk @ k P N

Remark 27 The above theorem in [31] is originally stated for the Laplace eigenvalue problem with
smooth coefficients on closed manifolds. But the argument remains the same when we consider the
Neumann eigenvalue problem (45) on a compact manifold with smooth boundary.

˝

Similar to Defintion (50), we define

κk :“ inf
pA1,...,AkqPAk

max
lPJkK

σ1pAlq

Theorem 28 There exists a universal constant c1 such that for any compact Riemannian manifold
M with boundary and for any k P N, the eigenvalues σkpMq of problem (1) satisfy

c1

k6
κk ď σk ď κk
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As a consequence of Theorem 28 we get the higher order Cheeger–Steklov inequalities, see Theorem
29 below. We first define the Cheeger–Steklov constants in this setting similar to those already
discussed in the previous sections. For any open subset A of M with piecewise smooth boundary,
let µpAq denote its Riemannian measure and µpBAq be the induced pn´ 1q-dimensional Riemannian
measure of BA. We define for every A P A the isoperimetric ratios

ηpAq B
µpBiAq

µpAq
η1pAq B

µpBiAq

µpBeAq

Note that η1pAq “ 8 if ĀX BM “ H. Let

ρpAq :“ inf
BPA
BĂA

B̄XBiA“H

ηpBq ρ1pAq :“ inf
B1PA
B1ĂA

B̄1XBiA“H

η1pB1q (51)

For any k P N we define the k-th Cheeger–Steklov constant of M by

ιk :“ inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

ρpAlqρ
1pAlq.

The following theorem extends the results of Escobar [31] and Jammes [23].

Theorem 29 There exists a universal constant c such that for any compact Riemannian manifold
M with smooth boundary and for any k P N, the eigenvalues σkpMq of problem (1) satisfy

σk ě
c

k6
ιk

Remark 30

i) One can check that for every k P N one has ιk ď ιk`1. This is also true in finite and measurable
situation.

ii) Note that η1pBq is scale invariant. Hence, as mentioned in [23], the power of ηpBq has to be
one so that ιk has the same scaling as σk.

˝

Note that for k “ 2, Theorem 29 gives a version of Jammes’ result [23]. The above theorem is
the direct sequence of Theorem 28 and Lemma 31 below.

Lemma 31 Let σ1pAq be the first eigenvalue of the Dirichlet-Steklov eigenvalue problem (48). Then
we have

σ1pAq ě
1

4
ρpAqρ1pAq

Proof

Let f be the eigenfunction associated with σ1pAq. We repeat the same argument as Jammes’ argu-
ment in [23] to estimate σ1pAq.

σ1pAq “

ş

A |∇f |
2 dµ

ş

A f
2dµ

ş

BeA
f2dµ

ş

A f
2dµ

ě

`ş

A |f∇f |dµ
˘2

ş

BeA
f2dµ

ş

A f
2dµ

ě
1

4

˜

ş

A |∇f
2|dµ

ş

BeA
f2dµ

¸

ˆ

ş

A |∇f
2|dµ

ş

A f
2dµ

˙

where dµ and dµ are n-dimensional and pn´1q-dimensional Riemannian volume elements respectively.
Let h :“ f2 and Ht :“ h´1rt,8q. Note that Ht P A almost surely in t. Then by the co-area formula
we have

˜

ş

A |∇h|dµ
ş

BeA
h dµ

¸

ˆ

ş

A |∇h|dµ
ş

A h dµ

˙

“

˜

ş8

0 µpBiHtqdt
ş8

0 µpBeHtq dt

¸˜

ş8

0 µpBiHtqdt
ş8

0 µpHtq dt

¸

ě ρpAqρ1pAq

which completes the proof.
�

It remains to prove Theorem 28.

Proof of Theorem 28
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Recall that by the variational characterisation of Steklov eigenvalues

σk ď max
jPJkK

E∆pfj , fjq
ş

BM f2
j dµ

where tfju is a family of test functions in H1pMq with mutually disjoint supports and E∆pf, fq :“
ş

M |∇f |
2dµ is the Dirichlet form associated to ∆. Hence, the upper bound of σk is a direct conse-

quence of the variational characterisation of Steklov eigenvalues.
We now prove the lower bound. We need the following key lemma.

Lemma 32 The following inequality holds.

lim
εÑ0

Λεk ě
1

4
κk

Proof

Let pA1, ¨ ¨ ¨ , Akq P Ak and H1
0 pAj , BiAjq be the closure of tf P C8pAjq : f ” 0 on BiAju in

H1pAjq. We can assume BeAj ‰ H. For any ε small enough (will be determined below) and every
f P H1

0 pAj , BiAjq, j P JkK we give an upper bound for the denominator of

ş

Aj
|∇f |2dµ

ş

Aj
ρεf2 dµ

“

ş

Aj
|∇f |2dµ

1
ε

ş

Aεj,e
f2 dµ` ε

ş

AjzAεj,e
f2 dµ

(52)

where Aεj,e :“ tx P Aj : dpx, BMq ă εu. For every f P H1
0 pAj , BiAjq consider 1Ajf as an element of

H1pMq. Then

1

ε

ż

Aεj,e

f2 dµ “
1

ε

ż

Mε

1Ajf
2 dµ

There exists ε0 ą 0 such that for every ε P p0, ε0q the map

E : BM ˆ p0, εq Q px, tq ÞÑ expxp´tνpxqq PMε

is a diffeomorphism. Note that | detDEpx, tq| “ 1 ` Optq. Hence, by choosing ε0 even smaller, we
can impose that for all px, tq P BM ˆ p0, εq

sup
sPp0,tq

| detDEpx, tq|

| detDEpx, sq|
ď 2, which also implies, |detDEpx, tq| ď 2

Let F P H1pMq and by abuse of notation, denote F ˝ E by F . For a.e. px, tq P BM ˆ p0, εq we have

|F px, tq| ď |F px, 0q| `

ż t

0

ˇ

ˇ

ˇ

ˇ

BF

Bs
px, sq

ˇ

ˇ

ˇ

ˇ

ds

Thus

1

ε

ż

Mε

F 2 dµ ď
1

ε

ż ε

0

ż

BM
F 2px, tq|detDEpx, tq|dµdt

ď
1

ε

ż ε

0

ż

BM

ˆ

|F px, 0q| `

ż t

0

ˇ

ˇ

ˇ

ˇ

BF

Bs
px, sq

ˇ

ˇ

ˇ

ˇ

ds

˙2

| detDEpx, tq|dµdt

ď
2

ε

ż ε

0

ż

BM
F px, 0q2| detDEpx, tq|dµdt

`
2

ε

ż ε

0

ż

BM

ˆ
ż t

0

ˇ

ˇ

ˇ

ˇ

BF

Bs
px, sq

ˇ

ˇ

ˇ

ˇ

ds

˙2

| detDEpx, tq|dµdt

ď 4

ż

BM
F px, 0q2dµ`

2

ε

ż ε

0

ż

BM
t

ż t

0

ˇ

ˇ

ˇ

ˇ

BF

Bs
px, sq

ˇ

ˇ

ˇ

ˇ

2

| detDEpx, sq|
| detDEpx, tq|

| detDEpx, sq|
ds dµdt

ď 4

ż

BM
F 2dµ` 2ε

ż

Mε

|∇F |2dµ

Taking F “ 1Ajf in the above inequality we get

1

ε

ż

Aεj,e

f2 dµ ď 4

ż

BeAj

f2dµ` 2ε

ż

Aj

|∇f |2dµ (53)
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We proceed with bounding the second term ε
ş

AjzAεj,e
f2 dµ. Let ξ : M Ñ R` be a Lipschitz

function such that |∇ξ| ď 1
ε and

$

’

&

’

%

ξ ” 1 , in MzM ε

0 ď ξ ď 1 , in M ε

ξ ” 0 , on BM

We get

ε

ż

AjzAεj,e

f2 dµ ď ε

ż

Aj

ξf2 dµ “ ε

ż

M
ξ1Ajf

2 dµ

ďεP1

ż

M
|∇pξ1Ajf2q|dµ “ εP1

ż

Aj

|∇pξf2q|dµ

ď εP1

˜

ż

Aj

|∇ξ|f2dµ` 2

ż

Aj

ξf |∇f |dµ

¸

ď εP1

¨

˝

1

ε

ż

Aεj,e

f2dµ` 2

˜

ż

Aj

pξfq2dµ

¸
1
2
˜

ż

Aj

|∇f |2dµ

¸
1
2

˛

‚

(53)
ď εP1

˜

4

ż

BeAj

f2dµ` 2ε

ż

Aj

|∇f |2dµ

¸

` 2εP1λ̄1pMq
´1{2

˜

ż

Aj

|∇pξfq|2dµ

¸
1
2
˜

ż

Aj

|∇f |2dµ

¸
1
2

ď 4εP1

ż

BeAj

f2dµ` 2ε2P1

ż

Aj

|∇f |2dµ

` 2P1λ̄1pMq
´1{2

¨

˝

?
ε

˜

1

ε

ż

Aεj,e

f2dµ

¸
1
2
˜

ż

Aj

|∇f |2dµ

¸
1
2

` ε

ż

Aj

|∇f |2dµ

˛

‚

(53)
ď 4εP1

ż

BeAj

f2dµ` 2εP1pε` λ̄1pMq
´ 1

2 q

ż

Aj

|∇f |2dµ

` 2
?
εP1λ1pMq

´1{2

˜

4

ż

BeAj

f2dµ` 2ε

ż

Aj

|∇f |2dµ

¸
1
2
˜

ż

Aj

|∇f |2dµ

¸
1
2

ď 4εP1

ż

BeAj

f2dµ` 2εP1

´

ε` p1`
?

2qλ̄1pMq
´ 1

2

¯

ż

Aj

|∇f |2dµ

` 4
?
εP1λ̄1pMq

´1{2

˜

ż

BeAj

f2dµ

¸
1
2
˜

ż

Aj

|∇f |2dµ

¸
1
2

where P1 is the L1-Poincaré constant and λ̄1pMq is the first Dirichlet eigenvalue of M . In the second
and fifth inequalities we used the Poincaré inequality on Sobolev spaces W 1,1

0 pMq and W 1,2
0 pMq

respectively. Hence, for any ε P p0, ε0q we get

ş

Aj
|∇f |2dµ

ş

Aj
ρεf2 dµ

ě

ş

Aj
|∇f |2dµ

4p1` εP1q
ş

BeAj
f2 dµ` C1pεq

ş

Aj
|∇f |2dµ` C2pεq

´

ş

BeAj
f2dµ

¯
1
2
´

ş

Aj
|∇f |2dµ

¯
1
2

“ ψε

˜
ş

Aj
|∇f |2dµ

ş

BeAj
f2 dµ

¸

where
C1pεq :“ 2ε

´

1` P1

´

ε` p1`
?

2qλ̄1pMq
´ 1

2

¯¯

, C2pεq :“ 4
?
εP1λ̄1pMq

´1{2

and ψε : p0,8q Ñ p0,8q defined as

ψεpuq :“
u

4p1` εP1q ` C1pεqu` C2pεq
?
u
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is an increasing function. Remark that ε0 is independent of the set Aj and depends only on pM, gq.
Let fj be the eigenfunction associated with λε1pAjq.

max
jPJkK

λε1pAjq “ max
jPJkK

ş

Aj
|∇fj |2dµ

ş

Aj
ρεf2

j dµ
ě max

jPJkK
ψε

˜
ş

Aj
|∇fj |2dµ

ş

BeAj
f2
j dµ

¸

ě max
jPJkK

ψεpσ1pAjqq “ ψεpmax
jPJkK

σ1pAjqq ě ψεp inf
pA1,¨¨¨ ,AkqPAk

max
jPJkK

σ1pAjqq

Therefore,

lim
εÑ0

Λεk ě
1

4
κk

which completes the proof.
�

We continue the proof of the theorem. By Theorem 26, we have

λεk ě
c

k6
Λεk

Passing to the limit and applying Lemma 32 and Theorem 24 we conclude:

σk “ lim
εÑ0

λεk ě
c

k6
lim
εÑ0

Λεk ě
c

5k6
κk

�

Similar to Propositions 12 and 23, we have the following improvement on manifolds.

Proposition 33 There is a universal positive constant c1 such that

@ k P N, σ2k ě
c1

log2pk ` 1q
ιk

Proof

Due to [27, 31], there is a universal positive constant c1 such that

@ k P N, λε2k ě
c1

log2pk ` 1q
Λεk

Passing to the limit and using Lemmas 31 and 32 we get

@ k P N, σ2k ě
c1

4 log2pk ` 1q
κk ě

c1

16 log2pk ` 1q
ιk

�

Remark 34 The methods and results above can be adapted to a more general Steklov eigenvalue
problem

"

divpφ∇fq “ 0 , in M
Bf
Bν “ σγf , on BM

where γ is a continuous positive function on BM and φ is a smooth positive function on M . But in
this paper we stick to the so-called homogenous Steklov problem when φ “ 1 and γ “ 1.

˝

Remark 35 We now give a more explicit relationship between the higher order Cheeger constants
and the higher order Cheeger–Steklov constants. Let

ρkpMq :“ inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

ρpAlq

We show that

ρkpMq “ inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

ηpAlq “: hkpMq (54)
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where hkpMq denotes the k-th Cheeger constant. Indeed, it is easy to check that ρpAq ď ηpAq which
implies ρkpMq ď hkpMq. Thus it is enough to show that for every ε ą 0, we have hkpMq ď ρkpMq`ε.
Note that

@ B Ă A, ρpBq ě ρpAq

Recall the definition of ρpAq in (51). For every ε ą 0, there exists B P A subset of A such that
B̄ X BiA “ H and

0 ď ηpBq ´ ρpBq ď ηpBq ´ ρpAq ă ε (55)

Let Aεk be a subset of Ak such that

@ pA1, ¨ ¨ ¨ , Akq P Aεk, 0 ď ηpAlq ´ ρpAlq ă ε, @ l P JkK

We claim
inf

pA1,¨¨¨ ,AkqPAk
max
lPJkK

ρpAlq “ inf
pA1,¨¨¨ ,AkqPAεk

max
lPJkK

ρpAlq

Indeed, let

rpA1, ¨ ¨ ¨ , Akqs :“

"

pÃ1, ¨ ¨ ¨ , Ãkq P Ak : max
lPJkK

ρpAlq “ max
lPJkK

ρpÃlq

*

The definition of ρkpMq does not change if we choose a representation in each class rpA1, ¨ ¨ ¨ , Akqs
and take infimum only over the family of representations. By (55), it is clear that each class has a
representation in Aεk. This proves the claim. Therefore

ρkpMq “ inf
pA1,¨¨¨ ,AkqPAεk

max
lPJkK

ρpAlq ą inf
pA1,¨¨¨ ,AkqPAεk

max
lPJkK

ηpAlq ´ ε ě hkpMq ´ ε

This proves identity (54). Now for a given pA1, ¨ ¨ ¨ , Akq P Ak, let lmax P JkK be such that

ηpAlmaxq “ max
lPJkK

ηpAlq

Then we define

h̄1kpMq B inf
pA1,¨¨¨ ,AkqPAk

ρ1pAlmaxq

It is easy to check that we have the following lower bound for ιkpMq

ιkpMq ě hkpMqh̄
1
kpMq (56)

Similarly we can define
ρ1kpMq :“ inf

pA1,¨¨¨ ,AkqPAk
max
lPJkK

ρ1pAlq

With the same argument as above, the following equality holds.

ρ1kpMq “ inf
pA1,¨¨¨ ,AkqPAk

max
lPJkK

η1pAlq “: h1kpMq

For a given pA1, ¨ ¨ ¨ , Akq P Ak, let l1max P JkK be such that

η1pAl1max
q “ max

lPJkK
η1pAlq

Then define
h̄kpMq :“ inf

pA1,¨¨¨ ,AkqPAk
ρpAl1max

q

and we get
ιkpMq ě h̄kpMqh

1
kpMq

˝

Jammes in [23] considered several examples to show that for k “ 2 the geometric quantities ηpBq
and η1pBq appearing in the definition of ιkpMq are both necessary in the lower bound of σ2pMq.
Inspired by his examples, we give examples which show the necessity of quantities such as ηpBq and
η1pBq in the lower bound for all k P N.
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Example 1 Exemple 4 of [23] can be used to show the necessity of quantities such as ηpBq and η1pBq
in the definition of ιk for all k ě 2: Consider Mm “ N ˆ p´Lm, Lmq, where N is a closed manifold
and Lm “

1
m . The Steklov spectrum of Mm can be calculated explicitly, see [10, Lemma 6.1]. They

are
!

0 , Lm
´1,

a

λkpNq tanhp
a

λkpNqLmq,
a

λkpNq cothp
a

λkpNqLmq : k P N
)

(57)

where λkpNq are the Laplace eigenvalues of N . It is clear that for every k P N, σk “ Op 1
mq as

mÑ8, while h2pMmq ě c for some positive constant c independent of m as shown in [23, Exemple
4]. Note that hkpMmq is a non-decreasing sequence in k. Hence we have hkpMq ě h2pMmq ě c, for
every k ě 2. This together with (56) and Theorem 29 show the necessity of a quantity such as η1pBq
in the definition of ιkpMmq for all k P N.

Example 2 Let S1 be the unit circle and S1
m denote a circle of radius m with their standard metric.

Consider the sequence pMm :“ S1
mˆp0,m

3{2qqmPN with product metric. The set of Steklov eigenvalues
σkpMmq is given by (57) with Lm B m3{2. Note that λkpS1

mq “
1
m2λkpS1q. Hence, for any fixed k P N

we have

σkpMmq „ m3{2λkpS1
mq “

1
?
m
λkpS1q as mÑ8

Therefore
@ k P N, lim

mÑ8
σkpMmq “ 0

It is easy to check that for every k P N, limmÑ8 hkpMmq “ 0. Indeed, if we choose Al “ S1
m ˆ

p
pl´1qm3{2

k , lm
3{2

k q, l P JkK then

hkpMmq ď max
lPJkK

µpBiAlq

µpAlq
“

4πm

2πm5{2{k
“

2k

m3{2
Ñ 0, mÕ8

We now show that there exists a positive constant C independent of m such that h1kpMmq ě C. Note
that h1kpMmq is a non-decreasing sequence in k. Thus, it is enough to show that h12pMmq ě C for
some constant C ą 0 independent of m. Let pA1, A2q be a partition of Mm (w.l.o.g. we can assume
A1 is connected). Let assume BiA1 only intersects one of the boundary components of Mm. Fixing

the area of A1, max
!

µmpBiA1q

µmpBeA1q
,
µmpBiA2q

µmpBeA2q

)

is minimized when BiA1 “ S1
m ˆ txu for some x P p0,mq

(where µm is the one-dimensional Riemannian measure of a set in Mm). Thus,

1 ď max

"

µmpBiA1q

µmpBeA1q
,
µmpBiA2q

µmpBeA2q

*

We now assume otherwise, i.e. BiA1 intersects both boundary components of Mm. We have

max

"

µmpBiA1q

µmpBeA1q
,
µmpBiA2q

µmpBeA2q

*

ě
2m

3
2

2πm
“

?
m

π

We conclude that for m ą π2,
h1kpMmq ě h12pMmq ě 1

This example shows the necessity of a quantity such as ηpBq in the definition of ιkpMmq for all k P N.
For k “ 2, a similar example has been studied in [23].

Example 3 (Cheeger dumbbell) Girouard and Polterovich in [20] studied a family of Cheeger
dumbbells Mε and showed that limεÑ0 σkpMεq “ 0 for every k P N. In their example, Mε is a domain
in R2 consisting of the union of two Euclidean unit disks D1 Y D2 connected with a thin rectangular
neck Lε of length ε and width ε3. It is easy to check that h2pMεq Ñ 0 as ε Ñ 0. We show that for
k ě 3, hkpMεq ě c ą 0, where c is a constant independent of ε. Since hkpMεq ě h3pMεq, it is enough
to show that h3pMεq ą c. By contrary, we assume that h3pMεq Ñ 0 as εÑ 0. Hence there is a family
of pAε1, A

ε
2, A

ε
3q such that

max

"

µpBiA
ε
1q

µpAε1q
,
µpBiA

ε
2q

µpAε2q
,
µpBiA

ε
3q

µpAε3q

*

Ñ 0, εÑ 0

Hence we have BiA
ε
l Ă Lε, for all l P J3K. Therefore, there exists l P J3K such that Aεl Ă Lε. (Notice

that the argument uses the fact that Mε is a subset of R2.) Taking ε “ 1
m , m P N, and then using the

similar argument as in [23, Exemple 4 ], we conclude that for any ε small enough

µpBiA
ε
l q

µpAεl q
ě c ą 0
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where c is independent of ε. It is a contradiction.
This example as in Example 1 shows the necessity of η1pBq in ιkpMεq. However, in Example 1 the
volume of the family of manifolds tends to zero, while in this example the area and the boundary
length of Mε are uniformly controlled.
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Institut de Mathématiques de Toulouse
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