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Abstract

We prove a lower bound for the k-th Steklov eigenvalues in terms of an isoperimetric constant
called the k-th Cheeger-Steklov constant in three different situations: finite spaces, measurable
spaces, and Riemannian manifolds. These lower bounds can be considered as higher order Cheeger
type inequalities for the Steklov eigenvalues. In particular it extends the Cheeger type inequality
for the first nonzero Steklov eigenvalue previously studied by Escobar in 1997 and by Jammes in
2015 to higher order Steklov eigenvalues. The technique we develop to get this lower bound is based
on considering a family of accelerated Markov operators in the finite and measurable situations and
of mass concentration deformations of the Laplace-Beltrami operator in the manifold setting which
converges uniformly to the Steklov operator. As an intermediary step in the proof of the higher
order Cheeger type inequality, we define the Dirichlet—Steklov connectivity spectrum and show
that the Dirichlet connectivity spectra of this family of operators converges to (or is bounded by)
the Dirichlet—Steklov spectrum uniformly. Moreover, we obtain bounds for the Steklov eigenvalues
in terms of its Dirichlet-Steklov connectivity spectrum which is interesting in its own right and is
more robust than the higher order Cheeger type inequalities. The Dirichlet—Steklov spectrum is
closely related to the Cheeger—Steklov constants.

Résumé

Pour tout k € N, une borne inférieure pour la k-ieme valeur propre de Steklov en termes d’une
constante isopérimétrique, appelée la k-ieme constante de Cheeger-Steklov, est obtenue dans trois
situations différentes : espaces finis, espaces mesurables et variétés riemanniennes. Ces bornes
inférieures peuvent étre considérées comme des inégalités de type Cheeger d’ordre supérieur pour
les valeurs propres de Steklov. En particulier, elles étendent 'inégalité de type Cheeger pour la
premieére valeur propre non nulle de Steklov étudiée par Escobar en 1997 et par Jammes en 2015.
La technique développée pour obtenir ces bornes inférieure utilise une famille d’opérateurs de
Markov accélérés dans les situations finies et mesurables et une famille d’opérateurs de Laplace-
Beltrami déformés et concentrés pres de la frontiere. Lors d’une étape intermédiaire de la preuve
de l'inégalité de type Cheeger d’ordre supérieur, nous définissons le spectre de connectivité de
Dirichlet-Steklov et nous montrons que les spectres de connectivité de Dirichlet de cette famille
d’opérateurs convergent uniformément vers (ou sont bornés par) le spectre de Dirichlet-Steklov.
De plus, nous obtenons des bornes pour les valeurs propres de Steklov en termes du spectre
de connectivité de Dirichlet-Steklov, ce dernier étant intéressant en lui-méme. Il est aussi plus
robuste que les inégalités de type Cheeger d’ordre supérieur. Le spectre de Dirichlet—Steklov et
les constantes de Cheeger—Steklov sont étroitement liés.

Keywords: Dirichlet—to—Neumann operator, Steklov problem, eigenvalues, isoperimetric ratios, higher or-
der Cheeger inequalities, finite Markov processes, jump Markov processes, Brownian motion on Riemannian
manifolds, Laplace-Beltrami operator.
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1 Introduction

Let (M,g) be a compact Riemannian manifold of dimension n with smooth boundary, the Steklov
eigenvalue problem is

Af =0, in M
{ TR 1, on oM (1)

where A = div V is the Laplace-Beltrami operator on M and v is the unit outward normal vector
along 0M. Its spectrum consists of a sequence of nonnegative real numbers with accumulation point
only at infinity. We denote the sequence of the Steklov eigenvalues by

O=01<09< <o, <

The Steklov eigenvalues can be also considered as the eigenvalues of the Dirichlet—to—Neumann
operator

S:C®0M)>s f— ?}‘,}j e C*(0M)

where F' is the harmonic extension of f into the interior of M. The Steklov problem was first in-
troduced by Steklov [34] in 1902 for bounded domains of the plane. Many interesting developments
and progress in the study of the Steklov problem have been attained in recent years. We refer the
reader to the survey paper [21I] and the references therein for recent developments, and to [24] for a
historical account. The relationship between the Steklov eigenvalues and geometry of the underlying
space, and also its similarity and difference with the Laplace eigenvalues have been a main focus of
interest and a source of inspiration, see for example [14] [17, 10, 22} 15, 18] 23].

The focus of this paper is on obtaining lower bounds for the k-th Steklov eigenvalue oy in terms
of some isoperimetric constants in three different settings. Our results can be viewed as counterparts
of the higher order Cheeger inequalities for the Laplace eigenvalues in discrete setting proved by Lee,
Oveis Gharan and Trevisan [27], and in manifold setting by the second author [3I]. It is also an
extension of Escobar’s [14] [I5] and Jammes’ [23] results for oo. We first recall previous results known
in this direction.

Let A denote the family of all nonempty open subsets A of M with piecewise smooth boundary.
For every A € A let pu(A) denote its Riemannian measure and pu(0A) denote the (n — 1)-dimensional
Riemannian measure of 0A. We define for every A € A the isoperimetric ratios

_ k(dA) / _ u(d4)
n(A) = (A) n'(A) = W(A M)

where 0; A := 0AnInt M. Here Int M denotes the interior of M. Consider the following isoperimetric
constants

(2)

Ba(M) = infmax{n(4), 5(M\A)} Py(M) = infmax{y(4),7 (M\A)}

The constant ho(M) is the well-known Cheeger constant [§]. Motivated by the celebrated result
of Cheeger [8], Escobar [I4, [I5] introduced the isomerimetric constant k% (M) and obtained a lower
bound for o9 in terms of this isoperimetric constant and the first nonzero eigenvalue of a Robin
problem. Recently, Jammes [23] obtained a simpler and more explicit lower bound for o9 in terms of
an isoperimetric (M) similar to the one introduced by Escobar, and the Cheeger constant ho(M):

oa(M) > LR (M)hs(M) 3)

where R4 (M) := inf {n’(A) :Ae A, and p(A) < W} The proof of is simple and only uses

the co-area formula. The constants k% (M) and hb (M) are interesting geometric quantities. It is an
intriguing question if similar geometric lower bounds hold for higher order Steklov eigenvalues oy.
We give an affirmative answer to this question not only in Riemannian setting but also in the setting
of finite and measurable spaces.

Let (M, u) be a measure space and V' a proper subset of M, and let L be an operator acting on a
functional subspace H of L?(). Throughout the paper we deal with either of three different settings
listed below:

(FS) Finite state spaces: M is a finite set, V is a proper subset of cardinality v, L is a reversible
irreducible Markov generator and g is its unique invariant probability measure. Here H is the
space of functions on M denoted by F(M).



(MS) Measurable state spaces: (M, u) is a probability measure space with o—algebra M, and V is
a measurable subset of M such that 0 < u[V] < 1. Here, L is a Markov generator of the
form P — I, where P is a Markov kernel reversible with respect to p and [ is the identity, and

H =L(n).

(RM) Riemannian manifolds: M is a compact Riemannian manifold with smooth boundary dM, u
is its Riemannian measure, L is the Laplace-Beltrami operator A, and H is the Sobolev space
H'(u). Here V is equal to oM.

With the help of L we define an operator S on V and call it the Steklov operator. In setting (RM),
the operator S we consider is in fact the Dirichlet—to-Neumann operator discussed above. For the
definition of S in (FS) and (MS) settings we refer to definitions (9) in Section [2} and in Section 3]
respectively. We denote the eigenvalues of S by o (M) or simply 0. Let A be a family of admissible
sets in M:

e in (FS) settings, A is the set of all nonempty subsets of M;

e in (MS) setting, A is the set of all non-negligible elements of M, i.e. A € M such that 0 <
ulA] < 1;

e in (RM) setting, A is the set of all nonempty open domains A in M such that 0.4 := A N 0M
and 0;A := 0A n M are smooth manifolds of dimension n — 1 when they are nonempty.

In (FS) and (MS) settings, we introduce the boundary of any A € A via
0A = {(z,y) : ze A ye A%}

and define the following isoperimetric ratios

w(0A) (4) = wu(0A)

A= @ = WAy

where p is a measure on M x M. We refer to and for the definition of x in (FS) and (MS)
settings respectively. In (RM) setting, the isoperimetric rations 7(A) and 7/(A) are already defined
in the beginning, see . We then consider

A) := min n(B '(A) := min 7' (B’
p(A) glelgn( ) p'(A) g}égn( )
BcCA B'cA

in (FS) and (MS) settings. And in (RM) setting we take

A) = inf / = i (B’
p(A) Inf - n(B), p(A) dnf -~ 0(B)
_ BcA B'cA

Bro; A= B'no; A=

The constant p(A) in (RM) setting is the Cheeger constant of A when the Dirichlet boundary condition
on 0;A is imposed, we refer to [7, 36] for more information on the Cheeger constant on manifolds
with Dirichlet and Neumann boundary conditions. We are now ready to define the higher order
Cheeger—Steklov constants. For any k € N and for any of three settings (FS), (MS) and (RM), we
define the k-th Cheeger—Steklov constant of M by

M) = inf A)p'(A
vk (M) T A gg[[ak)]fp( )P (Ar)

where [k] := {1,...,k} and Ay is the set of all k-tuples (A1, -, Ax) of mutually disjoint elements
of A. We recall the definition of the higher order Cheeger constants for the eigenvalues of a Markov
generator in settings (FS) and (MS) and for the eigenvalues of the Laplace-Beltrami operator in
setting (RM):

hip(M) = inf A

k(M) T A gﬁn( 1)

The sequence of the higher order Cheeger constants is called the connectivity spectrum. One can see
how closely hi and ¢ are related. We now state our main theorems.



Theorem A In setting (FS), there exists a universal positive constant co such that

co (M)
KO |IL]

V]{JE[[’U]], O‘k(M)

where ||L|| is the largest absolute value of the elements of the diagonal of L.

The following theorem is an extension of Theorem |A| to setting (MS).

Theorem B In setting (MS), there exists a universal positive constant c¢; such that

C1
VkeN, op(M) = Ebk(M)
The higher order Cheeger-Steklov inequality in setting (RM) which is an extension of Escobar and

Jammes results to higher Steklov eigenvalues states

Theorem C In setting (RM), there exists a universal positive constant ca such that

VkeN, ou(M) > %Lk(M)

We recall that for k& = 2, the Cheeger inequality in setting (FS) was studied in [I], 2, 13], and
in settings (MS) in [26], see also the lecture notes by Saloff-Coste [33] for a review. The higher-
order Cheeger inequality in setting (FS) was conjectured by the second author [30], see also [12].
This conjecture was proved by Lee, Oveis Gharan and Trevisan [27]. Later, the second author [31]
extended their result to (MS) and (RM) settings; see also [19] for the result on closed manifolds. The
higher order Cheeger inequality in (FS) setting for the operator L states (see [27, Theorem 3.8] and
[31, Theorem 2])

cs b2 (M)
Y ke l|v], (M) = — 4
PlL a0 > 2R 0
and in (MS) and (RM) settings states [31]
VEeN,  MMM) = %hi(M) (5)

where c3 and ¢4 are universal positive constants. As we mentioned before, our main results, Theorems
[Al B] and [C] for Steklov eigenvalues, can be viewed as a counterpart of the higher order Cheeger
inequalities for the Laplace spectrum. We remark that even for k = 2, Theorem [A] and Theorem
are new.

We now discuss about an improvement of the dependency on k in Theorems and In [27,
Theorem 4.1] and [31, Theorem 13], it is shown that one can obtain a better lower bound when A

is replaced by Ao in and

&5 hp(M) . .
Aon(M) > @ETH in sett%ng (FS) o
mhk(M) in settings (MS) and (RM)

For Steklov eigenvalues we obtain analogous results.

Proposition A There are universal positive constants ¢1 and ¢o such that

c L (M ) )
oor(M) > s A Vkelol, in setting (FS) (7)
2k = I%thilzﬁl)ék(M) V keN, in settings (MS) and (RM)

Remark 1 The sharpness of the coefficient of hj in @ was investigated in [31] using the noisy
hypercube graph, and in [27] using the Ornstein—Uhlenbeck process. Understanding the asymptotic
sharpness of the coefficient of ¢ in @ is an interesting problem which needs a further investigation
and remains open.

a

We now briefly discuss the idea of the proof of the main Theorems. To prove the main theorems
we first introduce the Dirichlet-Steklov connectivity spectrum of S on M. Second we show that
eigenvalues of S can be viewed as a limit of eigenvalues of a family of operators. Then we prove
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that the Dirichlet connectivity spectrum (introduced in [30] and in [31]) of this family of operators
converges to Dirichlet-Steklov connectivity spectrum of S. Moreover, we show that this convergence
is uniform in some sense. Then we use the known lower bounds [27, [31] for eigenvalues of this family
of operators in terms of their Dirichlet connectivity spectra to show that the Steklov eigenvalues
have similar lower bounds in term of the Dirichlet-Steklov connectivity spectrum. The final step is
to relate the Dirichlet—Steklov connectivity spectrum to the higher order Cheeger—Steklov constants.
This is done using the co-area formula in each setting (FS), (MS) and (RM). Although the main
idea of the proof in these three settings are the same, the details and technicalities that we need to
deal with in each setting are different. This makes the investigation of each setting interesting in its
own and not only as a straightforward consequence of another setting. We aim to explore a deeper
underlying connection between these three settings in future studies.

It is also interesting to study the higher order Cheeger-Steklov inequality when L is a diffusion
operator and when we also have a density on V. Here the associated Dirichlet—to—-Neumann map S
(known as the voltage—to—current map) appears in the study of the electrical impedance tomography
[0, B5]. The techniques and methods that we develop in this paper can be used to obtain the higher
order Cheeger—Steklov inequality in this setting in terms of a weighted version of the higher order
Cheeger—Steklov constants. The classical Cheeger inequality for weighted manifolds is studied in [6],
see also [0, BI]. We will address this in more details in a forthcoming work.

The paper is organized as follows. Section [2[ deals with (FS) setting and the proof of Theorem
and Proposition In Section [3| we extends results in (FS) setting to (MS) setting. We also show that
under the Dirichlet gap assumption on M\V the proof of Theorem [B| can be simplified. In Section
we prove Theorem [C}] We also provide examples which show the necessity of both isoperimetric
ratios appearing in the definition of ¢j. Although the ideas and techniques in three sections 2] B} and
[4] are related, the reader does not need to read the sections in order.
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2 The finite state space framework

Let L = L(x,y)zyem be an irreducible Markov generator on the finite set M. Recall that L is
Markovian if
Ve#yeM, L(xz,y) =0, and ZL(w,y)zo
yeM
and is called irreducible if for every x,y € M there exists a sequence = = xg, x1, . .., x; = y of elements
of M such that L(z;,2;41) > 0 for any j € [0,] — 1] := {0,...,l — 1}. Denote by p = (p(z))zers its
unique invariant probability, characterized by

VyeM, > p(z)L(z,y) = 0
xeM

Let V' be a proper subset of M, i.e. @& & V & M. Define the corresponding Steklov operator S
on F(V'), the space of functions on V, via the following procedure. Given f € F(V), let F' be its
harmonic extension on M, namely the unique F' € F(M) satisfying

{L[F](x) =0, ifzeM\V -

F(z)=f(z), if xeV



Then we consider
VveeV,  S[fl(x) = L[F](x) (9)
The following observation should be classical.

Proposition 2 The operator S is an irreducible Markov generator on V whose invariant measure
is v, the normalized restriction of u to V.

Assume that y is furthermore reversible for L, namely

Va,yeM, u(x)L(x,y) = ,U,(y)L(y,IB)

It follows that S is equally reversible with respect to v, and the spectra of —S and —L are non-

negative. Denote by 0 = o1,09,03,...,0,, with v = card(V), the eigenvalues of —S in R with
multiplicities, indexed so that 0 = 07 < 02 < 03 < -+ < 0,. Our goal is to investigate these
eigenvalues.

For any r > 0, consider the Markov generator defined by

rL(xz,y), ifzeM\V

VetyeM, LU (z,y) = {L(xy) -

Since p is reversible for L, we will see (in Lemma that L") is reversible with respect to its invariant
measure p"). Hence the eigenvalues of —L(") are non-negative. Let 0 = )\gr), )\g), )\:(f), e ,A%), with
m = card(M), be the eigenvalues of —L(") in R with multiplicities, indexed so that 0 = )\Y) < )\g) <

AT <o A,

Proposition 3 Assume that L is reversible. For any k € [v] = {1,...,v}, we have

lim )\g) = 0
r—+00

and for any k € [m]\[v],
lim A" = 4o
r—+00

Remark 4 We believe that the above proposition should be true in the non-reversible case (where
in the last convergence, )\l(:) is replaced by its real part).

(]

We would like to estimate these eigenvalues via Cheeger type inequalities. Denote by A the set of
nonempty subsets from M. We associate to any A € A a Dirichlet-Steklov operator Sy on F(AnV)
in the following way: given f € F(A nV), consider F' € F(M) such that

=
=
S

) =0, if xe A\V
F(z)=0, if xe M\A (10)
F(z) = f(z), ifxeAnV

The existence and uniqueness of such a F' are similar to those of the solution of , see e.g. the proof
of Proposition |2 Indeed, one is brought back to this situation by replacing V' by V' u (M\A) and by
extending f to this set by making it vanish on M\A.

Next define

VeednV,  Salfl@) = L[F)@)

When A NV # &, we will check that S4 is always a subMarkovian generator (i.e. S4(x,y) = 0, for
any x # y, and >} o, Sa(x,y) < 0) maybe not irreducible, but Perron-Frobenius’ theorem enables to
consider the smallest eigenvalue o1(A) of —S4. By convention, when A n'V = &, F(F) := {0} and
01(A) = +0o0. Next we introduce the Dirichlet—Steklov connectivity spectrum (k1, k2, ..., Ky ) of S via

vk , = i A 11
ll = e, T -



where Ay, is the set of k-tuples (Aj, As, ..., Ay) of disjoints elements from A. Notice that definition
(11) can be written as

YV ke [v], = i A 12

ol meo= o, i e By (12)

where Ay (V) is the set of all disjoint k-tuple in A(V) :={Ae A : AnV € A}. The above defini-

tions are valid in all generality, but (for the moment) they are mainly useful under the reversibility
assumption:

Theorem 5 Assume that L is reversible. There exists a universal constant ¢ > 0 such that

Vke[[v]], kfﬂkéakQFLk

C
6

The interest of the Dirichlet—Steklov connectivity spectrum is that it is strongly related to higher
order inequalities. We need further definitions. Introduce the boundary of any A € A via

0A = {(z,y) : xe A ye A%}

Consider the measure p defined on M x M by

x)L(x,y), ifx#
VayeM,  uy) - {S(H ) 2oy (13)

it enables to measure 0A through p(0A). As a consequence, we can define the isoperimetric ratios

p(A) w(AnV)
By convention 7/(A) = 400 if AnV = . The ratio n(A) is the discrete analogue of quantities
introduced by Escobar [14] and Jammes [23], since in their terminology, 0A and A n' V' can be seen
respectively as the interior and exterior boundaries, when the set V itself is seen as a boundary of
M.
Next consider

I 3 / o . / /
p(4) = minn(B) p(A) == min oy (B)
BcA B'cA

For any k € [v], introduce the k-th Cheeger—Steklov constant of V' by

= i AN (A
Lk @%?ﬂm%ﬁﬁMzw(ﬂ

Remark that t; = 0 by taking A = M. The next result can be seen as an extension to higher order
Cheeger inequalities (in the discrete case) of Théoreme 1 of Jammes [23]:

Theorem 6 Assume that L is reversible and let ¢ be the constant of Theorem[5 We have

C L

Vielo], o > —-*
lv] L]

where |L| is the largest absolute value of the elements of the diagonal of L.

Let us consider

min maxn' (A
(A1, Ap)EAR(V) le[[k?n ( l)

Proposition 7 Assume that L is reversible. We have

V ke [v], or < h



Remark 8 Let L be a reversible Markov generator but not necessarily irreducible. Let X = (X})i>0
be a Markov process generated by L, starting from x under the probability P,. Assume that the
reaching time of V' denoted by 7:

T = inf{t=>0: X, eV}

is almost surely finite. Then all of the results above are valid without irreducibility condition. In
particular, o, = 0 if and only if ) = 0. Indeed one way is obvious due to Proposition For the
“only if” part, o = 0, implies ¢ty = 0 by Theorem @ Therefore there exists (A1, ..., Ag) € Ag(V)
such that p(dA4;) = 0 for all [ € [k]. It follows h) = 0. Note that the number of zeros determines
the number of communicating classes. Recall that for the eigenvalues of L = L(!)| the result of Lee,
Oveis Gharan and Trevisan [27] implies that Ay = 0 if and only if the k-th Cheeger constant hy

hyp = i A
BT, N (A

is zero. In comparison, we see that the h}, plays the role of hy, for the Steklov problem .

Proof of Proposition

It is based on the following simple probabilistic interpretation of S. Let X := (X};)>0 be a Markov
process generated by L, starting from z under the probability P,. Denote by 7 its reaching time of
V.

7 = inf{t>0: Xy eV}

it is a.s. finite, since L is irreducible. A usual application of the martingale problem associated to X
shows that for any function G € F(M), we have

EIGU0)] = Glo)+E,| [ LIGIX) ]

In particular, for any f € F(V), it appears that its harmonic extension defined in is given by
VxeM, F(x) = E.Z‘[f(XT)] = V:c[f]

where v, is the law of X, under P,. More precisely, we get the existence and uniqueness of the
solution of , even without assuming that L is irreducible (only the finiteness of 7 is needed). We
deduce that for any f e F(V) and any z € V,

S[fl@) = ), Ly (Fy) —F@) = > Y Layw(=)(f(z) - f(2)

yeM\{z} yeM\{z} zeV

namely, the matrix associated to S is given by

2yemizy L@ yvy(z), ifa# 2

Va,zeV, S(x,z) = { — 2yeviiay S(:9) ifr =2z

On this expression, it is clear that S is a Markov generator, namely that it satisfies S(x,z) = 0
for any x # 2z € V and ), ., S(x,2) = 0 for any € V. It is also irreducible: for any z,z € V,
let 29 = x,21,22,...,241 = z be a sequence of elements of M such that L(z;,zj+1) > 0 for any
j €[0,1—1]. Let (y;)jeo,k) be the subsequence of (z;)e[o, consisting of the elements belonging to
V. We have yp = x, yr = z and from the above description of S, it follows that S(z;,2;4+1) > 0 for
any j € [0,k —1].

It remains to check that v, the normalized restriction of u to V, is invariant for S. For any
f e F(V), we have, with F' constructed as in ,

V[S[fY] = M(lv)mzvumsu](a:) _ pfm;“m””“)
B 7141
=y B e = BIEE <o

It shows that v is invariant for S.



Remark 9 (probabilist point of view) A Markov process Y = (Y})¢>0 associated to the generator
S and starting from = € V' can be obtained from a Markov process X := (X;);>0 associated to the
generator L and also starting from z, by erasing its passages in M\V. More precisely, let (7, )nez,
be the sequence of jump intertimes of X:

0
inf{t >0 : X4y, # X7, }

70

VneZy, Tn+1

Let (Nn)nez, be the sequence of integers for which X7, 4, 1..+ry €V and consider

VneZy, Ty, = Z TN,
pe[n]

Then we can construct the Markov process Y through the relation
Vi = 07 }/;‘, = X7'1+T2+-"+TNn ) if te [Tn)TnJrl[

This observation inspired the introduction of the generators L"), for » > 0: heuristically the generator
of Y is L(®), namely X is accelerated with an infinite speed in M \V and only its passages on V
remain.

The above probabilistic interpretation also enables to see directly that S is irreducible and that
the invariant measure v of S is just p conditioned on V. Indeed, for the latter assertion, by the
ergodic theorem, we must have a.s.

1 t
VyeV, v(y) = lim J 14,y (Ys)ds

t—+ow t 0

so it follows that for any y,z € V,

v(y) folgy(Vds . §lyy(X)ds  u(y)

L~ im0 W
v(z) oo 1 (V) ds e U1 (X ds p(2)

Remark 10 (analytic point of view) Recall that the Dirichlet form associated to L (and ) is
the bilinear form &y, given by

VEGeF(M), ELF.G) = —fFL[G]du

It is symmetrical, if and only if p is reversible with respect to L.
The carré du champ associated to L is the bilinear functional I';, defined by

VE,GeF(M),VxeM, I'L[F,G](x) = L[FG](z)— F(x)L|G](z) — G(z)L[F](x) (14)
It is not difficult to compute more explicitly that

VEGeF(M),VaeeM, T[FGlx) = ) Llzy)(Fy) - F)(Gly) - Gx))
yeM

In particular, when F' = G, the r.h.s. looks like a weighted discrete gradient square, explaining the
name carré du champ.

From , we get that
v F,G e F(M), er[F, Gldy — E4(F.G)+ EL(G,F)
and in particular

V F e F(M), JFL[F]du — 26.(F,F)



where ' [ F'] stands for I'z[F, F']. Furthermore, when p is reversible with respect to L, we get
¥ F,G e F(M), er[F, Gldy = 28.(F,G)

These definitions are valid for any finite Markov generator L and we can consider similarly Eg
and I's. For any f,ge F(V), let F and G be their harmonic extensions. It is clear that

EL(FG
Es(g) = U (15)
and as a consequence, we have
1
[rstratar = 2= [rur.can

which is an important relation in the analytical approach to the usual Steklov (or Dirichlet to
Neumann) operators.

It follows immediately from that v is reversible for S when p is assumed to be reversible for
L.

[m]

Since for any r > 0, the generator L(" is irreducible, it admits a unique invariant probability
JINES

Lemma 11 The probability measure ,u(r) is given by

JZICO I
v T e M, /,L(T) ("L’) — %7, I fo € V
b ifr e M\V

where Zy = (V) + (1 — u(V))/r is the normalisation constant.
Furthermore, if  is reversible for L, then u(™) is reversible for L(").

Proof

These are consequences of more general facts: assume that H € F(M) is positive: H > 0. Consider
the operator HL acting on F(M) via

VFEeF(M),VreM, HL[F](z) = H(z)L[F](z)

It is an irreducible Markov generator. Let (1/H) - u be the positive measure admitting 1/H for
density with respect to u. We have

VFeF(M),  ((1/H)-w[HLF]] = u[L[F]] = 0

Thus the invariant probability measure of H L is proportional to (1/H) - p.

Considering H := 1y + rlyny (where 1y is the indicator function of V') leads to the first
announced result.

For the second result, note that in general, when p is reversible for L, for any F,G € F(M),

((/H)-wFHL)G]] = plFLIG] = plGLIF]] = ((1/H) - p)[G(HL)[F]]

Proof of Proposition

In the reversible case, —L is diagonalisable with real eigenvalues. In view of Lemma for any
r > 0, the same is true for —L("), denote by 0 = )\gr) < )\ér) < )\g) <0 < )\7(77;) its eigenvalues. Let
1= <I>Y), <I>§T), <I>§T), e ,tl)%) be corresponding eigenvectors. They are not unique (especially in the
case of multiplicities larger than 1), but we can and do choose them so that they are orthogonal with
respect to ,u(’"):

Vre(0,40),Vk#le[m], pO@"a"] = o

10



Normalize them with respect to the supremum norm ||, instead of the L2(x(")) norm:

Ve (0,+00),V e [m], chl(” -1

0

Consider [ € [m] such that

{ liminfr_>+oo)\l(r) < 4o (16)

liminf, 4 /\l(:)1 = 4+

By compactness, we can find an increasing sequence of positive numbers (r,,)nen and for any k € [{],

a non-negative number )\,(Coc) € [0, +0) and a positive function (I)]E;oo) e F(M) with H<I>,(€OO)H = 1 such
Q0

that

: _ : (rn) _ (0) . (rn) _ ()
nh_r)]gorn = 4+ nlgigo)\k = A\, nlgrgo<1>k = &,

Passing to the limit in the relations

VzeV, L[(I)l(g"n)](x) _ L(Tn)[q)l(:n)](q;) _ _A](:n)q)l(:n)(x)
we get
vaeV, L@ = -AFef @)

For x € M\V, we have instead
raL[®)(2) = Al ()
Since the r.h.s. converges to —)\,(:O)Cbéw) (x) for large n € N, we deduce that

VeeM\V, L[@™(z) = lim L[e™](x) = 0

n—o0

Thus denoting ;. the restriction of CD,(COO) to V, it appears that @200) is the harmonic extension of .
Note that g # 0, otherwise we would conclude that @SO) = 0, in contradiction with Hééoo) H = 1.
0]

Thus )\](COO) is an eigenvalue of —S. Furthermore, passing to the limit in the relations
Vj#kell], Iu(r")[q)‘grn)@](;n)] — 0
we see that
Vizkelll,  vipjer] = 0

It follows that the /\SO), for k € [I]], correspond to different eigenvalues of —S (with multiplicities).
Namely, there exists an increasing mapping N : [I] — [v] (recall that v := card(V')) such that

Viell], M2 = onm

and in particular, v > [. Conversely, consider 1,12, ..., 1, a basis of F(V') consisting of eigenvectors
of —S associated respectively to the eigenvalues o1, 09, ..., 0,,. Since v is reversible for S, we can and
do choose these functions to be orthogonal in L2(v). Let ¥y, Uy, ..., ¥, be the harmonic extensions
of 11,12, ...,1,. We furthermore impose that |¥| = 1 for all k € [v]. Consider the vector space
W < F(M) generated by these functions

W = Vect(¥y : ke [v])

Due to the variational principle, we have for any r > 0,

AP < sup —p " [FLOF]]
Y rewifoy w7 [F?]

Since the functions from W are harmonic on M\V, we have for any r > 0, with the notation of
Lemma
n(V)

VFLIF]) = =E2fsi) <

VEeW, —u[FL[F]] = -



where f is the restriction of F' to V. We also have

u[Ly 2+ p[lanv F2/r (V)

HOF - z,, > b
We deduce from these two bounds that
)\5,”) < oy

and

limsup A" < +o0 (17)

r—+00
i.e. I = v and finally [ = v.

It follows that
Vhel], lim A" = o (18)

n—o0

Taking into account , for any increasing subsequence (R, )nen of positive numbers diverging to
+00, we can extract another subsequence (7, )nen such that is true, we conclude by compactness
that
I (r) —
V k€ [v], Jim AL Ok
The last assertion of Proposition [3|is a consequence of [ = v and of the definition of [ in .
|

Before coming to the proof of Theorem [5| let us check that for any A € A(V), S4 is a subMarko-
vian generator. The argument is similar to that of the proof of Proposition [2| and is based on the
probabilistic representation of the solution F' of :

VxeM, F(x) = Er[f(XTAmv)]lTAmv<TM\A] (19)

where (X;)>0 is a Markov process generated by L and starting from z, and for any B ¢ M, 7p is
the hitting time of B:

g = inf{t >0: X; e B}

As a consequence, the first eigenvalue o1 (A) of —Sy4 is non-negative. It vanishes, if and only if there
is no path (whose transitions are permitted by L) going out of A without passing through A n V.

Assume that p is reversible with respect to L. By the variational formulation of eigenvalues and
using the notation of Remark [9] we have for A € A,

&

o1(A) = inf {S“(f’é) feF(An V)\{()}} (20)
vanv|f?]

where v~y is the normalized restriction of u to A n'V, which is reversible with respect to S4. As in

(15), in the above formula, &g, (f, f) can be replaced by EL(F, F)/u(A N V), where F is associated

to f via .

We can now come to the

Proof of Theorem [G

The upper bound of o}, is a direct consequence of the variational characterization of oy,

- . 65(f7 f)
or = min max ——**
HeF (V) feH\(o} V[ f?]

where Fj (V') is the set of all k-dimensional subspace of F(V'), by taking H as the space spanned by
the first eigenfunctions of Sy,, [ € [k].
The proof of the lower bound is based on the higher order Dirichlet-Cheeger inequalities for finite
irreducible and reversible Markov generators. So assume that p is reversible with respect to L and
let 0 =X (L) < A2(L) < A3(L) < -+ < A (L) be the eigenvalues of —L. Associate to any A € A its
first Dirichlet eigenvalue

EL(F,F)

)\1(14) = inf{lu[FQ]

: F e F(M) with F vanishing on M\A}

12



This is the same definition as if we had taken V' = M. Next define for any k € [m],

A (L) = (A
2 (A1, ,AE)EAkIlIElﬁ)]T 1(4)

The higher order Dirichlet-Cheeger inequalities of Lee, Gharan and Trevisan [27] (see also [31] for its
Markovian reformulation) assert that there exists a universal constant ¢ > 0 such that

c
Vhelml, ML) > pAuD)
In particular, we can apply them to L(") for r > 0:
Vielml, A = ML) > GA(L) = A (21)

From Proposition [3] we know the behavior for large » > 0 of the Lh.s., for k € [v], so it remains to
investigate the r.h.s.
Fix A € A and consider for r > 0,

EL(T) (F7 F)
pr[F?]
It is the smallest eigenvalue of —Lg) , where LEZ) is the subMarkovian generator acting on F(A) whose
matrix is the (A x A)-restriction of the matrix corresponding to L") The proof of Proposition [3| can
easily be adapted to this situation to show that as r goes to +c0, the first card(A n V') eigenvalues

Ay = inf{ . F'e F(M) with F vanishing on M\A}

of —LEZ) converge to the eigenvalues of —S4. In particular we get

lim A(4) = o1(4)

r—+00

Since Ay is a finite set, it follows that

V ke [v], lim A() = kg

r—-+0

where the r.h.s. is defined in . The wanted result is thus obtained by passing to the limit in
as r goes to +00.
|

Proof of Theorem

To relate the kg, for k € [v], to isoperimetric quantities, we will adapt a computation of Jammes [23]
to the finite setting. Fix A € A and let us come back to . More precisely, consider f € F(AnV)
a minimizer of the infimum in the r.h.s. of and F' the associated solution of . From the
Perron-Frobenius’ theorem, we know that we can and do choose f to be non-negative and from ,
we also have F' = 0. We are looking for a lower bound on the ratio

EL(FF)  Sesen n@)La) (Fy) — F@)?
M[f21AﬂV] 2Zx€AmV:u($)f ( )

So multiply the numerator and the denominator by >, cpr (') L(2", ¥ ) (F(y') + F(z'))?. In the
numerator we get

Y, )L ) (FW) + F@)? Y pla)L,y)(F(y) - F(z))?

' #y'eM x#yeM

2
> ( > u(fﬂ)L(w,y)(F(y)+F(w))IF(y)—F(fﬂ)|> (22)

r#yeM
_ (Z u(m)L(az,yﬂFz(y)—FZ(ﬂ?)’)
x#yeM

where for the first bound we used the Cauchy-Schwarz inequality with respect to the measure u
outside the diagonal of M x M. Concerning the denominator, we begin by noting that

Y, w@)LE ) FW)+ F@)? < 20 ) pa) L'y ) () + F2a)

x'#y'eM ' #y'eM

13



4 ) pE L@,y ) F ()
z’'#£y'eM

437 p(a) L', 2)| F*(2)
x’'eM

)L D) pa)F3 () (23)

r’'eM

N

where we used the reversibility of p with respect to L for the first equality. For any G € F(M),
denote |dG| the function on M x M given by

Viz,y)e M,  [dG|(z,y) = [G(y) - G(z)]
Putting together the above computations, we have obtained

1 plldF?[] plldF?]
8L ulF?] plf*Lany]
To deal with the ratios of the r.h.s., recall the co-area formula (see for instance Formula (3.3.2) page

381 of the lecture notes of Saloff-Coste [33]): for any non-negative G € F(M) vanishing somewhere,
we have

Jl(A) =

ullac)) = ﬂpmmwt

where

Vt=0, Dy

{xe M : G(x) =t}
inf{ft >0 : Dy =} = inf{t >0 : u(dD;) = 0} (24)

\]
I

We also have

MW]=~EM&Nt

Applying these formulas with G := F? (which vanishes somewhere since A # M), we deduce that

G > i 20 2 o) pea e

since we have D; — A for all ¢ > 0. Furthermore we have
+00 +o0
pwlfany] = p{FQHAmV]:zif plDy " AnV]dt = J‘ p[Dy n V] dt
0 0

so we deduce similarly that

wlldF?|]
:U’[fQ]]-AmV]

Finally we have shown that

> min{n(B) : Be A, Bc A}

p(A)p'(A)
V A c A, g1 (A) 2 W
It follows that
Vke], wr > X (25)
8L

and Theorem [6] is now an immediate consequence of Theorem

Proof of Proposition

Consider the variational characterisation of oy:

o = min  max Es(h.f) _ min  max eL(Fy, Fy)
HeF (V) feH\{0y v[f?]  Her (V) fem\{o} p[f?1y]

14



where Fj(+) is the set of all k-dimensional subspace of F(-), and Fy is solution to (10, the harmonic
extension of f to M\V. We can rewrite the variational characterisation in the following equivalent
way.

min ma Eu(FF)

o = x -2

k HeFy (M) FeH\{0} p[F21y]
HlyeFp(V)

Indeed for every f e F(V), and all F' € F(M) with F|y = f we have
gL(Ff7Ff) < gL(FvF)

This is due to the harmonic property of Fy, for more details see (36). Let (A1, ..., A;) € Ax(V) and
consider H := Vect(1y4, : [ € [k]) € Fix,(M). It is also clear that H|y € F(V).

En(la,1a) _ Daewyens H@)L(2,y)(Lay(y) — 1a, (2)*
ulla,~v] 2u(A N V)
_ erAl,yeAf :U’(x)L(xa y) + M(y)L(% l’) _ /(A )
QM(AI N V) " !
It implies
op < min max 7' (4;) = hj,

(A1, Ap)eAL (V) Ie[k]

and completes the proof.

|
We conclude this section by the proof of Proposition [A]in the introduction.
Proposition 12 There is a universal positive constant ¢’ such that
V ke [v] d i
vl o _—
T ek + )L
Proof
By [27, Theorem 4.6] and [31], Section 2], we have
Vikelo], AP > & A0
[] k log?(k + 1) F
where c is a universal positive constant. Passing to the limit and using we get
Y ke v], Uzlim)\(r)Z ¢ K = ¢ Ltk
[v] PSR T gk + 1) 7 8log?(k + 1) L]
and the statement follows.
|

3 The measurable state space framework

Let (M, M, u) be a probability measure space, endowed with a Markov kernel P leaving p invari-
ant (i.e. u[P[F]] = p[F], for any bounded measurable function F'). The Markov kernel P defines a
map P : L?(u) — L?(p) by P[F|(z) := §,, P(z,dy)F(y). It has the following properties

P[1]=1, and YF>0 = P[F]>0

We assume that P is weakly mixing, in the following sense. Let Z := (Z(n))nez, be a Markov
chain whose transition kernel is P. As usual, we indicate that Z is starting from x € M, i.e. Z(0) = z,
by putting = in index of the underlying probability P, and expectation E, (more generally, this index
will stand for the initial law of Z(0)). Denote by A the set of A € M such that 0 < u(A) < 1. For
any A € A, define the hitting time of A by Z via

T4 = inf{neZi : Z(n) e A} (26)

15



The weak mixing assumption asks for 74 to be P,-a.s. finite, for any x € M and any A € A (but what
follows can be adapted to the situation where 74 is a.s. finite, y-a.s. in x € M and for any A € A).

Fix some V € A, we introduce corresponding Steklov Markov kernel K and Steklov gener-
ator S in the following way: let B(V') be the set of bounded measurable mappings defined on V. To
any f e B(V), we associate the mapping Fy € B(M) given by

Vxe M, Ff(az) = E.[f(Z(1v))] (27)
and we define
) K[f)x) = P[Ff]()
veev, { SU) = K[ - f(z) (28)

Note that K is a Markov transition operator, in the sense that it preserves the non-negativity
of functions, as well as 1y (the mapping always taking the value 1 on V). It is immediate to check
that the function F'y defined in is given by

Fy = Z (Lynv P)" Ly [f]

neZ+

where the indicator functions are seen as multiplication operators. It follows that the transition
kernel of K is ZneZ+ (PLpypy )" Ply. The function Fy is called the harmonic extension of f to M,
because we have

Vaee M\V, (P-D[Ffl) = 0 (20)

where I stands for the identity operator (it will always be so in the sequel, even when the underlying
space will not be the same). Indeed, we have on M\V,

P[Ff] = Ty P[Fy] = TynyP Z (Lanv P)"Iv[f] = Z(]lM\VP)n]lv[f]

neZ neN

Z (Tanv P)"Iv[f] =1y [f] = Z (LapvP)"Iv[f] = Fy

nely nely

where we used that 1y = 0 on M\V in the last but one equality.
Let v be the normalisation into a probability measure of the restriction of u to V.

Lemma 13 The probability measure v is invariant for K.

Proof
Indeed, we compute that for any f e B(V),

1 1
v[K[f]] = m#[ﬂvK[f]] = W(M[K[f]]*ﬂ[]lM\vK[fﬂ)

By invariance of p with respect to P, we have

pllayn v K[f]] = w[PavK[f]]] = p| Pl Z (PLypw)" Py f]

n€Z+

p| D (PLypy)" Py 1| = plK[f1] = p[PLvf1] = ulK[f]] - pllvf]

neN

In conjunction with the previous identity, we get

as wanted.
[ |

From now on, we will only be concerned with the more specific reversible situation where P
is symmetric in L2(u) (or equivalently u(dx)P(z,dy) = p(dy)P(y,dz)). It follows that P can be

16



extended into a bounded self-adjoint operator on L.?(1). Then v is also reversible with respect to K:
for any f,g € B(V), we have

VIKLD = il KLl = —i [ 1vf | 3 (Pl Pliva)
neZ4
= M(lv)ﬂ Lyg Z Py P)"[1v f] :u(1V)M Lyg Z(P]lM\V)"P[]lvf]
TLEZ+ n€Z+
= v[gK[f]]

As a consequence, K can also be extended into a bounded self-adjoint operator on L2(v). It leads
us to introduce the following quantities for k € N,

- i vfI = K)[f]]
o= Herf(V) fero) v[f?]

(30)

where H;,(V) is the set of subspaces of dimension k of L?(v). In the above definition and subsequently,
the convention inf (J := +00 is enforced. When K has no essential spectrum, the finite elements of
(0% )ken are eigenvalues of I — K = —S. due to their variational characterization. We want to estimate
them via higher order Cheeger inequalities. To go in this direction, let us consider

AV) = {AeA: AnVeA}

and for A € A(V), the Dirichlet—Steklov Markov kernel K 4 defined on B(A V) as follows. For
any f € B(An V), consider

Vzxe ]\47 FAJ(JC) = Em[f(Z(TAﬁV))]l{TAﬁVSTM\A}]
where T4~y is the hitting time of A NV by Z according to . The operator K4 is then given by
V.%'EA(WV, KA[f](x) = P[FAyf](.%')

Let v4 be the normalisation into a probability measure of the restriction of 4 (or v) to AnV. It
can be easily checked as above that K4 is Markovian and symmetric in 1.2(v4), so that K4 can be
extended into bounded self-adjoint operator on L?(v4). As in , we could introduce the quantities
(0k(A))gen, but only its first element will be important for us:

_ g Al = Ka)[f]]
uA) = few(uf)\m} valf?]

(31)

More precisely, for any k € N, let A (V) be the set of k-tuples (A, Asg, ..., Ax) of disjoint elements
from A(V). We introduce the Dirichlet—Steklov connectivity spectrum (kg )ken of K via

V keN, KL = inf max o1 (4;)
(A1, Ap)eAr (V) l[K]

Definition can be considered for any A € A, but with the usual convention, we get o1(A) = +0o0
when A ¢ A(V), because L2(v4) = {0} in this case (and we are left with the trivial K4 = 0).
Nevertheless, it enables to write

VEkeN, Kp = inf ma A 32
" (A1, Ag)eAy leﬂk}]ﬁgl( % (52)
where Ay, be the set of k-tuples (A1, Ag, ..., Ag) of disjoint elements from A.
The goal of this section is to show that the extension of Theorem [5| holds in this setting:

Theorem 14 There exists a universal constant ¢ > 0 such that
c
V keN, EﬁngkS/fk

As in the finite setting, the above result leads to higher order Cheeger inequalities presented
below. Nevertheless Theorem |14} is more robust than the latter inequalities and , as it will
appear in its proof. In a future work, we hope to take advantage of Theorem [14]to give an alternative
proof, as well as extensions, of Theorem [C| of the introduction.
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We need the natural extensions of the definitions given in the finite case to our present mesurable
state space setting. The boundary of any A € A is given by

0A = {(z,y) : xe A, ye M\A}

It is a measurable subset of M x M endowed with its product o-field M ® M. Consider the measure
pon M x M defined by

wldz,dy) = p(dz)P(z,dy) (33)

Here there is a slight difference with the finite case, as we do not impose that the diagonal D =
{(x,z) : © € M} is negligible with respect to yu: we cannot do so, because we are not sure D belongs
to M® M. It is not important, since we will only integrate with respect to y functions which vanish
on the diagonal. In particular yu enables to measure 0A through p(0dA). As a consequence, we can
define for A € A the isoperimetric ratios

w(dA)
p(A)

(by convention, n'(A) = +o0 if A ¢ A(V)). Again, the ratio n/(A) is the measurable analogue of
quantities introduced by Escobar [14] and Jammes [23], since in their terminology, 0A and A NV
can be seen respectively as the interior and exterior boundaries, when the set V itself is seen as a
boundary of M.

Next consider

u(0A)

m'(A) = WAV

n(A) =

3 / s 1/
p(4) = Inf 0(B) p(A) = Inf o/ (B)
BcA B'cA

For any k € N, introduce the k-th Cheeger—Steklov constant of V' by

= inf A)p (A
L (Al,...l,r};weAﬁ?ﬁ)ﬁp( 1)p' (Ar)

The next result can be seen as an extension to higher order Cheeger inequalities of Théoreme 1 of
Jammes [23], as in Theorem [6}

Theorem 15 Let ¢ be the constant of Theorem [ We have

C

VkeN, oL = FL]C (34)

Proof

The deduction of Theorem [T5] from Theorem [14]is very similar to that of Theorem [6] from Theorem [5}
For any function f € L?(v4)\{0}, due to Remark[10|for the measurable situation and Lemmal[17]below,
we have

valf(I = Ka[fl]  plFas(I = P)[Fagl]
valf?] pllyvaaf?]
B Sarsr Mdz)P(z, dy)]lFA,f(y)ipA,f(x)(FA’f(y) — Fuy(2))?
B 2N[ﬂVmAf2]

We multiply the numerator and the denominator by §,, . u(dz)P(z, AY)Lp, () 2Fa ) (Faf(y) +
Fa ¢(z))? and follow the same calculation as in the proof of Theorem @ The key point is that the
statement of the co-area formula is the same in the finite and measurable situations, replacing sums
by integrals. To illustrate the kind of slight modifications to be taken into account (also that |L| of
Theorem [5| can be replaced by 1 here), let us present the equivalent of the computation

f () P2, )L, yen (o) (Fap (1) + Fap(2)?

< 2 fM p(da) P(a, dy)Lp, ()2 ) (Fa,p(y) + Fi 4 (2))
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The measurable indicator 1 ot () £F A (z) 18 inherited from the Cauchy-Schwarz’ inequality in
and must be kept to avoid the possible drawback that D ¢ M ® M.

In the same spirit, in 7 should be defined as the r.h.s. Then we apply the above calculation
to a family of functions f, € L?(v4) such that W — 01(A) as n tends to o0.

As in the previous section we consider

hh = inf "(A
g (Al,..A,fllIkl)eAk(V)?el[ﬁg}]ﬁn( ) (35)

and by the same proof, Proposition [7]is valid in the measurable situation, i.e.
VkeN, o < hy,

The proof of Theorem [I4] follows the same pattern as in the finite case: it will be deduced from
the higher order Cheeger inequalities from [31], once the above quantities will be shown to be limits
of spectra associated to speed-up Markov processes. More precisely, for r > 0, consider the jump
Markov generator L") on M given by the kernel

. _ r(P(x,dy) — 6z(dy)), ifxe M\V
L (@,dy) = { P(z, dy)y— 5x(dy)zf ifreV

Define the probability measure u(") on (M, M) by

W (dz) = (]IVZ(Ta:) N 111\1\2(:6)) (dz)

where Z, = pu(V') + (1 — u(V))/r is the normalisation constant.
The proof of Lemma [11]is still valid and leads to

Lemma 16 The operator L") is self-adjoint in L2(u(").

Similarly to and , consider

, M (=LMNF
/\,(C) = inf sup L ((T) 5 )]
HeMk pep\ {0} plr)[F2]

where H, is the set of subspaces of dimension k of L?(u) = LZ(M(T)), and for any A € A,

Ay = inf
1 (4) PeL2 (A (0} L [F?]

where L2(A, 1) is the space of F' € LL2(u) which vanish on M\A. The larger )\Y) (A) is, the easier it
is for a (continuous time) Markov process associated to the generator L") to exit A: the quantity

)\gr)(A) corresponds to the first Dirichlet eigenvalue of A and measures the asymptotical rate of exit
from A.

The numerators in the above r.h.s. are only slightly dependent on r > 1 and related to the similar
quantities relative to K:

Lemma 17 We have for any r > 0 and F € L?(p),

KLY = 5y [ e Pla,dy)(Fw) ~ F@)F = -ulF (T - P)F]
Furthermore, for any f € L2(v),
1 . 1
VI =) = o WP = PFN) : By = 1) = sl Fy(1 = P)LF]

where Fly stands for the restriction of F to V.
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Proof
By definition, for any » > 0 and F € L?(u), we have

WO (-LO)F]] = - f 1O (de) L) (2, dy) F(2) F ()
MxM

- f 1) (d2) L (2, dy) F () F(y) — f 1O (dz) L (, dy) F () F(y)
VxM (M\V)x M

= | ) Gatdy) — PG, dy) P F()
rJVxM

- (da) (3 (dy) — P(z, dy)) F(x) F(y)
(M\V)x M
1

- - pu(dz) P(x, dy)(F(x) — F(y))F(x)
r JMxM

- 2; MXM“(dfv)P(%dy)(F(y)—F(x))2

where we used the reversibility (under the form p(dz)P(x,dy) = u(dy)P(y,dz)) in the last equality.
Note that the last but one r.h.s. is just u[F(I — P)[F]]/Z,.
Similarly, we compute that for any f e L2(v),

v[F(I = K)[f]]

f () K (., dy) () — [(9)) () = f v(dn)K[f () — f1(2) /()
VxV 1%

f v(dx) P () — Ffl() f(z) = f v(dr) P, dy) (f (z) — Fy(9)) /()
1% VxM

f v(d) P(z, dy) (Fy(x) — Fy(y)) F (x)
VxM

f v(d) P(x, dy) (Fy(x) — Fy()Fy(x) = —plFy(I — P)[FY]]
MxM

(V)

where in the last but one equality, we used that F; is harmonic on M\V according to . It remains
to see that

inf{u[F(I - P)[F]] : Ffy = f} = uplFy(I - P)[Ff]] (36)

namely that among all F' € L.?(u1) coinciding with f on V, the quantity p[F (I — P)[F]] is minimum
when F' = Fy. This is a well-known fact, due to the harmonic property of Fy, let us recall the
argument. Write any such function F' under the form F; + G where G € IL2(y) vanishes on V. We
have

plE(I = PIF]] = plFy(I = P)[Ff]] + plFf (I = P)[G]] + plG(I = P)[Ff]] + p[G(I — P)[G]]
= plFf(I = P)[Ff]] + 2u[G(I = P)[Ff]] + p[G(I — P)[G]]
= ulFy(I = P)[Ff]] + p[G(I = P)[G]]
where we used reversibility, Gyy = 0 and . The announced minimisation comes from the non-

negativity of

plG(I = PG = foM v(dz)P(z, dy)(G(z) — G(y))?

Our first approximation results are:

Theorem 18 Assume that A := )\ (M\V) > 0 (this quantity will be subsequently called the Dirichlet
gap of M\V ), namely that it is qmte easy for the Markov chains (Z)zepn to enter into V.. Then for
any k € N, we have

Ay

lim = 0y
r— 400
and for any A€ A,
: (r) _
Jm AT(4) = oi(4) (37)
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More precisely, the latter convergence is uniform, in the following sense: let 0 be a distance on the
compact set [0, +00] compatible with its usual topology. We have

lim supd(A(4),01(4)) = 0
r—>+%0 gc A

More generally, the proof of will show that lim,_, )\,(:) (A) = o(A), for any k € N, but it will
not be useful for our purposes.

Proof

The proof is mainly concerned with the first convergence, since the second one will follow by recycling
the obtained quantitative bounds.
We begin by checking that for any k € N, we have

lim sup )\,(:) < o (38)

r—+00

This result does not require that )\gl)(M\V) > 0. Note that any H € Hp(V) can be seen as an
element of Hy, through the one-to-one mapping

L2w)sf — Frel’(u)

so that we have

M Fe(—LNF
A < inf max X L£ (L) [Fy]]
HeHy, (V) feH pI[FF]

According to Lemma , for any f e L2(v),

HOFHLONE = - ulFAT = PF) = 2

Furthermore, we compute that

WO = -l 2]+ Ly F) > uliv ] = B0
Thus we get that
A < i max Y=L

HeH, (V) feH v[f?]

from which follows at once.

Conversely, to any subspace H < L2(u) associate H the subspace of IL?(v) generated by the
functions Fjy for F' € H. For k € N, let H}; stand for the set of H € H; which are such that

He Hy(V'), namely such that H has dimension k. We begin by remarking that for £ € N such that
k < dim(L?(v)) (< +o0) and for any r > 0,

(39)

(M[E(=LM)
A i max AECLOE]]
HeMF FeH\{0} M(T) [F?]

Indeed, fix some H € Hj, and choose F, Fy, ..., F, a basis of H. Consider for [ € [k], f; the restriction
of Fy to V.. If (fi)ie[x] is not an independent family of L2(V), then we can find another family (/f;) le[k]
of L2(V) such that for any € € (0, 1], the family (f; + Eﬁ)le[[k]] is independent. For € € (0, 1], consider
H, the space generated by (F; + d?'l) le[x], Where the EF,le [k], are the functions coinciding with f

on V and e.g. vanishing outside. Since H., belongs to Hy(V'), we have that H. € H;. Furthermore,
it is clear that
pDE(=L)[F]] pIF(=L)[F]]

li =
504 Femoy  pO[F2 ey p@[F?]

showing .

Recall that we have by definition

u[F(P — D)[F]] plLanv F (I = P)[Lany Fl]

= 1nf = lnf
FeL2(M\V,u)\{0} plF?] Fel?(u) p[Lap v F2
1 M\V F+#0
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It follows that for any F € L2(u),

allanv ] < %M[RM\VFU = P)[LyvF]] < %u[(F—]lvF)(I—P)[F—]lvF]]
< ; (u[F(I = P)[F]] + p[ly F(I — P)[1vF]]) < % (L[F(I — P)[F]] + 2u[1y F?])

where we used that the mapping L2(u) 3 F +— u[F(I — P)[F]] is a (non-negative) quadratic form
(called the Dirichlet form associated to the Markov generator P — I, see Remark and that the
spectrum of the operator I — P is included into [0, 2]. We deduce that for any r > 0,

P[] = Zl <u[]1VF2] + :N[HM\VF2]>
< er (<1 + f)\) plly F?] + %M[F(I— P)[F]]>
It follows that
HOE(-LO)F]) plF(I = P)[F]]

=

plE( — P)[F]])

HO[F?] (Lt ) pllv F?] + ZulF( - P)F]] ¢””< W[y 2]

where
U

qu:[O,JrOO]Bu > T4 . 9u
1+ﬁ+)\*7;

Note that the latter mapping is increasing, so taking into account Lemma we have, with f = Fjy,
s <M[F(I - P)[F]]> > 4 (M[Ff(f - P)[Ff]]> _ (V[f(f - K)[f]]>
p[lv F?] u(Vv[f?] v[f?]
We deduce from the above computations that for H € HJ,

pM[F(=LIN[F]] v[f(I - K)[f]]
rervoy  p[F2] 7 o) & < v[f?] )

R It 51V A
- (feﬁ\{O} v[f2] ) > drlow)

since H € Hy,(V).
When k < dim(LL2(v)), it follows from that

and it remains to let r go to +00 to get

A (r) . N
mpfr” > I drlow) = o (40

When k > dim(L?(v)), for any H € Hy, we can find F* € H\{0} such that F|”“/ = 0 and so

WOF(LONF]) _ pO[F (L))
- plr) [F7#2]

max

> r == )\
FeH\{0} /l(r) [F2] ¢ (+OO) ‘A

It follows that )\,(:) > A\r/2 and letting r go to +o0 we get

o (r _ _
1;E$&f>\k = +0 = o0

Thus (40)) is always true and in conjunction with (38]), we obtain the first announced convergence.

For the second convergence, note that for A € A, the definition of o1(A) is similar to that of oy
where V is replaced by V' u (M\A), except we only consider functions that vanish on M\ A. It leads
us to consider

o= AP
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and for r > 0, the mapping ¢4, given by

u
¢A,T . [0,+OO] S2U m
Aar AAT

The above computations show that for any r > 0,
1(4) = A\(4) = 64,(01(4))

Note that the mapping A > B — )\gl)(B) is non-increasing with respect to the inclusion of sets

(because )\gl)(B) corresponds to an infimum over the space of functions L2(B, 11)\{0}, which is non-
decreasing with respect to B), so we deduce

Aa = A
VT>O, ¢A,r = ¢r

It follows that to get the wanted uniform convergence, it is sufficient to show that

lim sup o(u,¢p(u)) = 0

7=+ 4e[0,+ 0]
which is an elementary computation, since it can be reduced to

1 1
u  op(u)

lim max | sup |u— ¢(u)|, sup
T+ uel0,1] u€[1,+00]

Remark 19 The assumption of positive Dirichlet gap in Theorem is really needed. Indeed,
remark that when )\gl)(M\V) = 0, then for any r > 0, we have )\Y)(M\V) = 0. Due to Lemma
this is an immediate consequence of

1 uFU=P)F]] _ pO[F(LD)[F]] 1 plF(I - P)[F]]

max(1,r) [ F?] = u[F2?] < min(1,r) u[F?]

v F e L2(),

Furthermore, the fact that )\Y) (M\V') = 0 implies that )\g) = 0: consider a sequence of functions
(Fp)nen from L2(M\V, u)\{0} such that

(r) —_Lm
o O LR
e ]

and consider for n € N, H,, := Vect(1, F,) € Ha. We easily get that

lim max a = 0
n—w0 FeH,\{0} ) [F2]

ie. )\g) = (. In particular, we have

lim AV = o
r——+00

But it may happen that o9 > 0. Consider for instance an ergodic birth and death transition kernel
P on Z,: we take M = Z, endowed with a probability measure p charging all the points. The
reversible transition kernel P is defined via a Metropolis procedure:

%(%M), if ly— x| =1

Va,yeZy,  Plz,y) = { 0, if |y — x| > 2
1= ez Pla,2), ifz=y

where p A ¢ := min{p, q}. The definition of P via the above Metropolis procedure implies that it is
irreducible with respect to u (see for example [4, Section 3.1]). Recall that by definition, P is ergodic
if and only if

VFel?(n), P[F]=F = F e Vect(l)
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Thus, irreducibility implies ergodicity in the above example. As a result, P is also weakly mixing.
Assume that the queues of p are sufficiently heavy, in the sense that

lim 7#(1‘)

A )

An application of discrete Hardy’s inequalities (see [29], they are given for finite birth and death pro-
cesses, but are also valid in the denumerable setting) implies that )\gl)(ZJr\{O, 1}) = 0. Nevertheless
considering for instance V' = {0,1} we get that oo > 0, as a consequence of K(0,1) = P(0,1) > 0
and K (1,0) = P(1,0) > 0. More generally it can be proven that ogp > 0 for any finite subset of Z,
non-empty and not reduced to a singleton.

Note that under the weak mixing assumption (or under the ergodicity assumption), )\gl) = () means
that 0 is the lower bound of the essential spectrum, so that /\,(cl) =0 for all 1 <k < dim(L?(p)) + 1
and similarly, A" = 0 for any r > 0 and 1 < k < dim(L2 (1)) + 1.

To prove Theorem [14] without the assumption of a positive Dirichlet gap on M\V, we will accel-
erate the Markov process associated to the generator P — I more strongly on the slow points of M\V
(near o0 in the above remark). More precisely, we look for a measurable function ¢ : M — [1, +00),
taking the value 1 on V, such that by defining for r > 0, the jump Markov generator L") by

. . ro(z)(P(z,dy) — 6.(dy)), ifze M\V
L0, dy) = { (@) (Plardy) — 8o(dy)). it zeV (4

we have that L) admits a positive Dirichlet gap on M \V. Then, with the corresponding spectra,
Theorem 18| will hold. Note that the notions of harmonic functions on M\V with respect to P — I
and L"), for all r > 0, coincide and the corresponding Steklov Markov kernels and generators are
the same.

Let X = (X (t))t=0 be a jump Markov process of generator P — I (see Chapter 4 in [16] for the
definition). Fix some x € (0,1) and consider the function ¢ defined by

VaoeM, o(z) =

E.[x"]

where 7 = inf{t > 0 : X; € V}. Note that when z € M\V is a point from which it is difficult to hit
V', namely such that 7 has a propensity to be large, then ¢(x) is quite large also: the jump Markov
process X (1) = (X(l)(t))t>0 associated to LM is strongly accelerated at z in comparison with X, as
wanted. From now on, the notation L"), for r > 0, will only refer to the operators given in .
Here is the consequence of the acceleration procedure:

Lemma 20 We have, with 7V := inf{t > 0 : Xt(l) eV},

1

M E.[rD] <
VaxeM, T < (1)

Proof

Let us recall the time change transformations (cf. for instance Chapter 6 from the book of Ethier and
Kurtz [16]), which enable to construct X from X when both processes start from a fixed z € M.
Due to [16, Theorem 1.4], if we define (6;);>0 via

0 1
V=0, f ds = t
0 P(Xs)

then we can take
vi=0, XM = X(6)

In particular, we get

T 1
@ = f d
T s
0 p(Xs)
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It follows that

E,[rV] = E, [LT gp(;(s) ds} = JOJFOC E; {18@90(;(5)] ds = f:oo E; [1s<-Ex,[x]] ds

+00 +00
L Ey []ISSTxisEx[Xq(Xu)ue[o,s]]] ds = J;) E. []lssrXisXT] ds

where we use the measurability of the event {s < 7} with respect to the o-field generated by
(Xu)uelo,s]> the fact that on {s < 7}, we have 7 = s + 7 0 05, where 0 is the shift of the trajec-
tories by an amount s of time, and the Markov property, stating that for any measurable functional
F on the trajectories, we have a.s. Ey[F o 0s[(Xu)yue[0,s]] = Ex,[F]. In this formula, Ex, is the
expectation with respect to a diffusion X starting from X, at time 0. Since all the integral elements
are non-negative, we can use again Fubini’s formula to get that the last integral is equal to

+00 T T XT _ 1 1
E, Leerx X ds| = E, T=Sds| = E, Sds| = Ep|2—"| € ———
Uo XX } Uo X ] Uo X ] [Inm] In(1/x)

as announced.

From the previous uniform boundedness of the expectations of 71, we deduce uniform exponen-
tial bounds on its queues:

Lemma 21 We have, with o :=In(2)1In(1/x)/2,

VeeM,Vs=0, P >s] < 2exp(—as)

Proof

For any n € Z, we have

where

In(1/x)

This is shown by iteration on n € Z, . It is clear for n = 0 and if it is true for some n € Z,, then by
the Markov property and Lemma for any z € M,
Po[r) > a(n+1)] = Eufl.zPxoyglr™ =an]] < 27"P[r) > df
2—nE$[T(1)] < 27" 1 — 9—(n+1)
a aln(1/x)

where in the third line we use the Markov inequality.
For any s € R, write n := |s/a] € Z4, so that for any V z € M,

S

]P’x[T(l) > 5] < ]Px[T(l) >na] < 27" = 9—ls/al < 2(2*s/a) = 2exp(—as)

as announced.

To simplify the notation, we now take x = exp(—2/In(2)), so that @ = 1. Uniform exponential
bounds on the queues of exit times from a domain are well-known to imply that the associated
Dirichlet gap is positive. Here is a simple proof of this fact:

Lemma 22 We have
1
MWanv) = 5

where the l.h.s. is relative to the accelerated generator L.
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Proof
As in Lemma we see that the measure ﬁ p(dzx) is reversible for L), Its total weight is

7 = f E.[x""]u(dz) € (0,1)

which leads us to define u)(dx) := m p(dzx), the invariant probability for L),
Our goal is to show that

pIF(-LO)[F]] _ 1

(1) :
ADany f >
1 (MAY) FeL2 (VN0 p[F7] 2

(42)

So consider F' a bounded and measurable function on M, vanishing on V. By the martingale
problems associated to X (1), there exists a L martingale (My)i=0 such that

ve=0, F2A(xW@) = F2XxD(0)) +JtL(1)[F2](X(1)(s))ds+Mt
0

Replace in this relation ¢ by t A 7(1) and take the expectation to get

tarD)
E[F2(XD @t A7) = E[F*(XD0)]+E [ f LO[F2)(xW(s)) ds]
0

where we use the martingale property E(M;) = E(My) = 0. Via dominated convergence, we can let
t go to infinity to obtain

(1)
E[F*(XW ()] = IE[I’Q(X(l)(()))]JrEU L(l)[FZ](X“)(S))dS]
0

Note that since X1 (7(1)) € V the Lh.s. vanishes, we deduce

0

A1)
E[FA(xXM(0)] = -E [ f L<1>[F2]<X<”<s>>ds]

We have not yet specified the initial distribution of X(l)(O), but take it now to be u(l), so the Lh.s.
is

B, [F2(XV(0)] = f u () F2 () = u[F?)

Concerning the r.h.s., recall that the carré du champs I'™) associated to L(!) and defined on any
bounded and measurable function G on M by

rG] = LW[G?] -26LY[G]

is a non-negative function (cf. for instance the book of Bakry, Gentil and Ledoux [3]). It follows that

(D)
—E,0) Uo L“>[F2]<X<”<s>>ds] < —2E,q

ey
f F<X<1><s>>L<1>[F](X“)(s))ds]

0

A1)
< 2K, UO !F(X(l)(S))L(”[F](X(”(8))!d8]

+00
= | B [l PO OO )] ds
For any s > 0, taking into account Lemma we have

B, [Loer o FXO)LOFIX D)) = By [Pxogls < rONFX D) LOFIXO(s)|
< 2exp(=s)E, o | IF(XD(5) LO[FI(X D (s)) ]

= 2exp(—s)uV[[FLV[F]|]
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where we used the invariance of (! (meaning that for any s > 0, the law of X(1(s) is equal to p(!
when the initial law is (1)), We have thus proven that

WO[F?] < j o exp(—s I FLO[FYds = uOFLO[F]] < 23 uO[F2a0[(LO[F])2)
0

pOF? < 4pO[(LOF)D?]

The fact that L) is a non-positive self-adjoint operator enables to see that this relation extend to
any function in the domain of L() with Dirichlet condition on V. It follows that the spectrum of
— LW with Dirichlet condition on V is above 1/2, which amounts to .

[ |

As already mentioned, the Steklov Markov kernel K(!) associated to L") and V is the same as
K. Since in general the generator L(!) cannot be written under the form P — I, where P would
be a Markov kernel on M, the definitions and must be slightly generalized: denote for any

feB(V),

VeeM, F@) = EJ[f(xVEO))] (43)

veeV,  EU[fl@) = LOF]@) + f(@)
where 7(1) was defined in Lemma The latter expression for K may appear strange at first view;
it is due to the fact that it is a Markov kernel operator. If we rather consider the Steklov generator
SW = KW — I, we get the more natural formulation: SV[f] = LW[Fy], for f € B(V), as in the

section on finite Markov process. Coming back to our previous convention of Steklov Markov kernels,
note that for any x € V, we have

LOEM)@) + £@) = LE N+ FV@) = [F @) Pady) - PLE)

more in adequacy with . Note furthermore that the function F ng) defined by is the L()-
harmonic extension of f to M: it satisfies

LO[Ff]=0, on MV
F}l) =f, onV

Since L) = ¢L, with ¢ non-vanishing, the condition L(V[F] = 0 is the same as L[F}] = 0. It follows
that F;l) = Fy and finally KW[f] = K[f]. By completion, this is true on L2(v), i.e. K() = K. The

equality F}l) = F} is also obvious from the probabilistic point of view, since X M) is a time change
of X (as seen in the proof of Lemma , which itself is the Poissonisation of the Markov chain Z
with the same initial condition and associated to P: let (&, )nen be independent exponential random
variables of parameter 1, X can be constructed from Z via

Vit=0, Xi = Zn, wherene€Zy issuch that 3}, & <t < Zz;rll &

The previous considerations are also valid for the operators K (1), defined in a similar fashion for

A€ A(V) and we get that KS) = K 4. We can now apply Theorem |18 with respect to the generator
LM, which by construction admits a Dirichlet gap on M\V. The Lh.s. in the two convergences of
Theorem correspond to the generators given by and the r.h.s. are given by and ,
according to the above discussion. These convergences are our final approximation results for the
quantities (ox)ken and (01(A)) acA.

We can now come to the

Proof of Theorem [14]

The upper bound is an immediate consequence of the definition of 0. Indeed for every (Ay, ..., Ax) €

Ay it is enough to consider the vector space generated by a family {f;, € L2(A;,p) : L € [k]} of test

va [fng(I=Ka)[fnull
VAl[ 72171]

For the lower bound, similarly to , define for any r > 0,

functions such that tends to o1(A4;) as n — .

vieN, A = inf  maxAl”(4)
(Al,...,Ak)E.Ak lEIIk]]
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We have seen in [31], extending the similar result Lee, Oveis Gharan and Trevisan [27] gave in a
finite setting, that there exists a universal constant ¢ > 0 such that

Vr>0VkeN, A7 > %A@ (44)

Fix some k € N. The first convergence of Theorem [L8| shows that the 1.h.s. converges to o as r goes
to 400. Its uniform convergence leads to

lim A,(:) = Kk
r—+00

so we can pass to the limit in (44)) to obtain the announced inequality.

We end this section with Proposition [A]in the introduction.
Proposition 23 There is a universal positive constant ¢’ such that

cl

VkeN, __°
72k log?(k + 1) F

Proof
By [31], the proof of Proposition 12| can be extended here. In particular, we have

VieN, A0 > ¢ A0
2k log2(k +1) *

and
V ke [v], A = —u

and the statement follows.

4 The Riemannian manifold framework

Let (M, g) be a compact Riemannian manifold of dimension n with smooth boundary. We assume
that M is connected. Recall the Steklov problem considered in the introduction:

Af =0, in M
%zaf, on oM

where v is the unit outward normal to the boundary. Our goal, as in the previous sections, is to relate
its eigenvalues 0 = 01 < 09 < -+ < g < --- / o0 to some isoperimetric constants. We first show
that that can be seen as a limit of a family of Laplace eigenvalue problems. This is already known
due to the results of Lamberti and Provenzano [25, 32]. They showed that the Steklov eigenvalue
problem can be considered as the limit of the family of Neumann eigenvalue problems

{Af+Amf=0, in M

45
g—sz(), on oM (45)

for € small enough (one can choose € for example smaller than the focal distance of dM). Here
Me:={xreM: d(z,0M) < €}, and

€, if x e M\M,

We denote the eigenvalues of problem by
0=A] <A< <A <+ J
Then we have

Theorem 24 [25, [32] For every k € N

lim Aj, o (47)

e—0
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Remark 25 We remark that Lamberti and Provenzano [25], 32] stated the above convergence for
bounded domains in R™ with smooth boundary, and the definition of p. on dM is slightly different.
However, a verbatim proof also results in the convergence on a compact Riemannian manifold
(M, g) with smooth boundary, see [32, Chapter 3] for the details of the proof.

a
One can see the similarity of the above theorem with the statement of Proposition [3|and Theorem
It would be very interesting to have an alternative approach to prove Theorem [24] and Theorem [2§]

below by using the results of the previous section. We hope to obtain a unified approach in a future
work.

Let A © M be a nonempty open domain in M. Let d,A := A n 0M and 0;A := 0A n Int M
be smooth manifolds of dimension n — 1 when they are nonempty sets. We consider the mixed
Dirichlet—Steklov eigenvalue problem

Af=0 in A
g—l{:af on 0.A (48)

f=0 on 0;A
We also need to consider the following mixed Dirichlet—Neumann eigenvalue problem

Af+Xpef=0 in A
%:0 on 0.A (49)
f=0 on 0;A

where p, is defined in ((46]).

If 0;A = (J, then A = Int M and the first eigenvalue is zero. Otherwise the first eigenvalues of
the eigenvalue problem and are not zero and we denote their eigenvalues by

0<o01(A)<0o(A) < <op(A) <+ S

and
0<A{(A) <NA) << A< o

respectively. When 0. A = ¢, our convension is that o;(A) = oo, for every k € N. Denote by A the
set of nonempty open domains in M such that 0;A and d.A are smooth sub-manifolds of dimension
n— 1 when they are nonempty. Let Ay be the set of k-tuple (A, ..., Ag) of mutually disjoint elements
of A. We define

AL = inf A (A 50
F (Alv---laIf}lk)eAkIlIel[ﬁf}]( 1) (50)

The higher order Cheeger inequality for eigenvalues Aj (M), k € N was proved by Miclo in [31]:

Theorem 26 ([31]) There exists a universal constant ¢ > 0 such that for any compact Riemannian
manifold M with smooth boundary, the eigenvalues i, of Neumann eigenvalue problem satisfy

%A;<A2<Az VkeN
Remark 27 The above theorem in [31] is originally stated for the Laplace eigenvalue problem with
smooth coefficients on closed manifolds. But the argument remains the same when we consider the
Neumann eigenvalue problem on a compact manifold with smooth boundary.

Similar to Defintion , we define

= inf A
i (A1,...1,I}4k)€v4k112[%§]fal( 2

Theorem 28 There exists a universal constant c1 such that for any compact Riemannian manifold
M with boundary and for any k € N, the eigenvalues oy (M) of problem satisfy

C1
ﬁﬁk < 0 < KR
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As a consequence of Theorem 28 we get the higher order Cheeger—Steklov inequalities, see Theorem
below. We first define the Cheeger—Steklov constants in this setting similar to those already
discussed in the previous sections. For any open subset A of M with piecewise smooth boundary,
let ©1(A) denote its Riemannian measure and p(0A) be the induced (n — 1)-dimensional Riemannian
measure of 0A. We define for every A € A the isoperimetric ratios

1(0:A) : w(0;A)
A) = A) =
1= 1A= @)
Note that n'(A) = c0 if An oM = J. Let
e : / L . 1/
p(4) == inf = n(B) p(A) == Inf (B (51)
~ BcA B'cA
BnoiA=g B no; A=

For any k € N we define the k-th Cheeger—Steklov constant of M by

= f Ao (A)).
Lk " lﬁk)eAkﬁlﬁp( 0P (Ar)

The following theorem extends the results of Escobar [31] and Jammes [23].

Theorem 29 There exists a universal constant ¢ such that for any compact Riemannian manifold
M with smooth boundary and for any k € N, the eigenvalues o (M) of problem satisfy

c
o = ﬁ’}k
Remark 30

i) One can check that for every k € N one has ¢y < t541. This is also true in finite and measurable
situation.

ii) Note that n/(B) is scale invariant. Hence, as mentioned in [23], the power of n(B) has to be
one so that ¢, has the same scaling as oy.

Note that for k = 2, Theorem [29| gives a version of Jammes’ result [23]. The above theorem is
the direct sequence of Theorem [28 and Lemma [31] below.

Lemma 31 Let 01(A) be the first eigenvalue of the Dirichlet-Steklov eigenvalue problem . Then
we have

Proof

Let f be the eigenfunction associated with o1(A). We repeat the same argument as Jammes’ argu-
ment in [23] to estimate o1 (A).

oty = SV Sy (§u V)" 1 (5 VP (SAIVfQIdu>
! Sa A fPdu SAdeN SaAf2dli SAf2dN T SaeAde/i SAf2d'“

where dp and dp are n-dimensional and (n—1)-dimensional Riemannian volume elements respectively.
Let h := f2 and H; := h™![t,0). Note that H; € A almost surely in t. Then by the co-area formula

we have
§4 VAl (S,IVRldu  ( §7 w(oiH, (% u(0:Hy )t /
(wa) < ?Ahdu > B (gg’?’g(ae ) ( EO (H,) dt ) > p(A)p'(4)

which completes the proof.

It remains to prove Theorem

Proof of Theorem 28]
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Recall that by the variational characterisation of Steklov eigenvalues

ax gA(f]’fJ)

o <
" Jjelk] SaMf du

where {f;} is a family of test functions in H'(M) with mutually disjoint supports and Ea(f, f) :=
SM |V f|?dp is the Dirichlet form associated to A. Hence, the upper bound of oy is a direct conse-
quence of the variational characterisation of Steklov eigenvalues.

We now prove the lower bound. We need the following key lemma.

Lemma 32 The following inequality holds.

1
limA, > -
P R 4"

Proof

Let (A, -,Ar) € Ag and Hj(A;,0;A;) be the closure of {f € C*(A;) : f = 0 on ¢;A;} in
H1(A;). We can assume 0.A; # . For any € small enough (will be determined below) and every
f e Hj(Aj,0;A;), j € [k] we give an upper bound for the denominator of

Sa, IVIPdp §a, IV FIPdp (52)
SAj pedeﬂ %SA§7Ef2dM+6SA]'\A§’e fzdlu

where A5, 1= {z € A; : d(x,0M) < €}. For every f € H{(Aj,0;A;) consider 14, f as an element of
HY(M). Then

1 1

o|opde = o s
€ € JM.

A;‘,e
There exists g > 0 such that for every € € (0, ) the map
E:0M x (0,¢) 3 (x,t) — exp,(—tv(z))e M,

is a diffeomorphism. Note that |det DE(x,t)| = 1 4+ O(t). Hence, by choosing ¢p even smaller, we
can impose that for all (z,t) € 0M x (0,€)

|det DE(z,t)]

sup +———————— < 2, which also implies, |det DE(z,t)| <2
se(o,) | det DE(z, s)|

Let F e H'(M) and by abuse of notation, denote F o E by F. For a.e. (z,t) € dM x (0, ¢) we have

t

F(z,1)| < |F(x,0)\+j

0

Thus

1 1 (¢
J F?du < f F%(x,t)| det DE(x,t)|dpdt
€

2
< J J <\F z,0) |+ (m s) ds) |det DE(x,t)|dudt
oM s
< J F(z,0)? \detDE(af,t)\dgdt
oM
2
J J ( (z,s) d5> |det DE(x,t)|dudt
oM
|det DE(x,t)]
< 4J (x,0) d/i—i- ————————dsdudt
oM o * )‘|detDE($»8)|
< 4 deg+2ef |VF| m
oM M.

Taking F' = 14, f in the above inequality we get

1
- frdp < 4J
Oe

P+ 2¢ [ Ve (53)
€Jac, A;

Aj
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We proceed with bounding the second term ESA‘\AG f2du. Let € : M — R, be a Lipschitz
J j,e
function such that [V¢| < 1 and

=1, in M\M¢
0<€é<1, in M€
£E=0, on oM

We get
2 2, 2
ef fd,u<ef &f du—ef §ILAjf du
ANAS Aj M
<Py f IV (€14, f2)|ds = P f V(EfD)ldu
M Aj

<Py ( LV Ve f2dp + 2 L' 5f|Vf|du>

<ePy (i . fdu + 2 (L_(gf)%) (L \Vdeu) )
" Py <4L N fdp + 2¢ L' |Vf|2d,u>

+ 2P A (M) V2 (L !V(ff)IQdu> (L IVf!2du>

< 4ePy f deg +2¢2P, f IV f2dp

+ 2PN (M ”2( ( f deu) (f er\2du)2+e | Vf2du)
Aj Aj

(53) _
D ,ep F2dp + 2Py (e + M\ (M) 2) J IV f|2dp
66Aj Aj

2 2 ? 2 %
| Pdue ij du) ( Lj vl du)

J

+ 2y/eP A (M) <4J
Oe

< 46P1f fdu + 2eP; (e +(1+ \/i)Xl(M)*%) f IV f2du
55Aj Aj
1

([, ) ([ 1)

where Pj is the L!-Poincaré constant and A (M) is the first Dirichlet eigenvalue of M. In the second
and fifth inequalities we used the Poincaré inequality on Sobolev spaces VVO1 (M) and VVO1 2(M)
respectively. Hence, for any € € (0, ¢g) we get

2 2
oy [VIPds— J, 1V d

f?d 3
b bR ), P €Oy IV IR+ Cae) (3, ) (5, 19F2d0)
. SA |Vf|2d,u
Sae frdu
Ci(e) = 2¢ (1 + Py (e 1+ ﬁ)Xl(M)—%)) , COa(e) 1= Ay/ePa (M)~
and 1 : (0,00) — (0,00) defined as

N

u

4(1 + €P1) + Cl(e)u + 02(6)\/’12

@be(u) =
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is an increasing function. Remark that €j is independent of the set A; and depends only on (M, g).
Let f; be the eigenfunction associated with A{(A4;).

$4, |V fiPdu $a, |V fiPdu
max \{(4;) = max ———5—— > maxy. | 55—
jelk] jelk] §a, pefidp ~ jelk] Sooa, 17 du

= € A == € A = € i f A
%ﬁ)ﬁw(“( i) 1/1(;1;[%01( i) 1/]((,41,-‘},1}4;6)6,4,6?61[%3}?01( i)

Therefore,

1
limAS > -
gk 4"k

which completes the proof.

We continue the proof of the theorem. By Theorem 26] we have

€ C €
Passing to the limit and applying Lemma [32] and Theorem [24] we conclude:
c

c
o = limA > —1limAS > —k
k e—0 k= kG e—0 - 5k6 k

Similar to Propositions [I2] and 23] we have the following improvement on manifolds.

Proposition 33 There is a universal positive constant ¢’ such that
C/
25
)

VkeN, S
T 7 ok + 1

Proof

Due to [27, B1], there is a universal positive constant ¢; such that

__a
log?(k + 1)

€

VkeN, S A

Passing to the limit and using Lemmas [31] and [32] we get

c1 C1
K
)

VEeN, _a
72k 4log?(k + 1

>— 1
"7 16log2(k+1) "

Remark 34 The methods and results above can be adapted to a more general Steklov eigenvalue
problem

div(¢Vf) =0, in M
% = O".Yfa on OM

where «y is a continuous positive function on dM and ¢ is a smooth positive function on M. But in
this paper we stick to the so-called homogenous Steklov problem when ¢ =1 and v = 1.

Remark 35 We now give a more explicit relationship between the higher order Cheeger constants
and the higher order Cheeger—Steklov constants. Let

M) = inf A
pr(M) (Al,-~1,134k)eAk?elﬁ}]]{p( 1)

We show that

M) = inf Ap) = hpy(M 54
(M) = - of (A =: hi(M) (54)
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where hy (M) denotes the k-th Cheeger constant. Indeed, it is easy to check that p(A) < n(A) which
implies pg(M) < hi(M). Thus it is enough to show that for every e > 0, we have hy(M) < px(M)+e.
Note that

VBcC A, p(B)=plA)

Recall the definition of p(A) in (51)). For every e > 0, there exists B € A subset of A such that
B n 0;A = and

0<n(B)—p(B) <n(B)—p(Ad) <e (55)
Let Aj be a subset of Ay such that

V(A Ap) e AL, 0<n(A) —p(A) <6, Yie[k]

We claim
inf A)) = inf A
(Al,“'l,rzl‘lk)EAkgg[%j]](p( % (Al»"}}lAk)EAigg[%f}]fp( !
Indeed, let
Ap, Ap)] = (AL A : Ay = A
(e a0] = { (e A e A e p(4) = maxp(in |
The definition of px(M) does not change if we choose a representation in each class [(Ay, -+, Ag)]

and take infimum only over the family of representations. By , it is clear that each class has a
representation in A7. This proves the claim. Therefore

M)=  inf A inf Aj) — €= hy(M) -
pr(M) (Al,...l,rixk>e,4;]§2ﬁ}ﬁp( l)>(A1,---lﬁk)eA;§?ﬁ)ﬁn( 1) —e=hp(M) —e

This proves identity . Now for a given (Aj, -, Ag) € Ak, let Inax € [k] be such that

A - A
(Al ) gﬁn( 1)

Then we define

R(M) = inf (A
k(M) (Ah.__lyr;‘k)eAkp( Imax)

It is easy to check that we have the following lower bound for ¢y (M)

Similarly we can define

'(M) = inf (A
P (M) (Al,...lﬁk)eAk%ﬁ)ﬁp( 1)

With the same argument as above, the following equality holds.

M) = nf e (A =: hi (M)
For a given (Aj,- -, Ag) € A, let I, € [k] be such that
7 (Ar,,,) = masr (A
Then define B
hi (M) = (AL_“iflAfk)eAk p(Ar,,.)
and we get

te(M) = hyp(M)h}, (M)

Jammes in [23] considered several examples to show that for £ = 2 the geometric quantities 7(B)
and n/(B) appearing in the definition of ¢;(M) are both necessary in the lower bound of oo(M).
Inspired by his examples, we give examples which show the necessity of quantities such as n(B) and
n'(B) in the lower bound for all k € N.
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Example 1 Ezemple 4 of [23] can be used to show the necessity of quantities such as n(B) and n'(B)
in the definition of v for all k = 2: Consider My, = N x (—Ly,, Ly,), where N is a closed manifold
and Ly, = % The Steklov spectrum of M, can be calculated explicitly, see [10, Lemma 6.1]. They

{o,mel,«/Ak(N)tanh( M (V) L) /AR (V) coth (/A (N) L) : k;eN} (57)

where A\p(N) are the Laplace eigenvalues of N. It is clear that for every k € N, o, = O(%) as
m — o, while hao(M,,) = ¢ for some positive constant ¢ independent of m as shown in [23, Exemple
4]. Note that hi(My,) is a non-decreasing sequence in k. Hence we have hy(M) = hao(My,) = ¢, for
every k = 2. This together with and Theorem show the necessity of a quantity such as n'(B)
in the definition of vx(M,,) for all k € N.

Example 2 Let St be the unit circle and S, denote a circle of radius m with their standard metric.
Consider the sequence (M, := St x (0, m*?))men with product metric. The set of Steklov eigenvalues
or(My,) is given by with Ly, :== m>?. Note that \,(S})) = L \(SY). Hence, for any fived k € N
we have

1
k(M) ~ m*2 X (S},) = ﬁAk(Sl) as m — o
Therefore
V keN, limoo op(My,) =0

It is easy to check that for every k € N, lim,, o hi(M,y,) = 0. Indeed, if we choose A; = SL x
(E=Um®2 m2y e (k] then

w(0;Ap) dmm 2k
h Mm < = = e 07
k(M) ?El[ﬁ‘c)]ﬁ w(Ap) 2rmd/2 [k m3/2 m o

We now show that there exists a positive constant C independent of m such that h) (M,,) = C. Note
that hj(My,) is a non-decreasing sequence in k. Thus, it is enough to show that hy(M,,) = C for
some constant C > 0 independent of m. Let (A1, Az) be a partition of My, (w.l.o.g. we can assume
A1 is connected). Let assume 0; A1 only intersects one of the boundary components of M,,. Fizing

the area of Ay, max{i:((giﬁﬂ,iz((gzﬁz))} is minimized when 0;A1 = S} x {x} for some x € (0,m)
(where p,, is the one-dimensional Riemannian measure of a set in My, ). Thus,

L (0iA1) Ly (0 A2) }

Mm(aeAl) ’ /im(aeA?)

We now assume otherwise, i.e. 0; A1 intersects both boundary components of M,,. We have

max{‘gm(aiAl) ’ /im(aiAZ)} > 2m? _/m
U (O A1)y, (Oe A2)

1<max{

2mm T

We conclude that for m > 72,

Iy, (M) = ho(Mpn) > 1

This example shows the necessity of a quantity such as n(B) in the definition of tp(M,y,) for all k € N.
For k =2, a similar example has been studied in [25)].

Example 3 (Cheeger dumbbell) Girouard and Polterovich in [20] studied a family of Cheeger
dumbbells M, and showed that lim._,q o (M) = 0 for every k € N. In their example, M, is a domain
in R? consisting of the union of two Euclidean unit disks D1 U Dy connected with a thin rectangular
neck Le of length ¢ and width €3. It is easy to check that ha(M.) — 0 as e — 0. We show that for
k=3, hg (M) = ¢ > 0, where ¢ is a constant independent of €. Since hy(M¢) = h3(M,), it is enough
to show that h3(M¢) > c. By contrary, we assume that hg(M.) — 0 as € — 0. Hence there is a family
of (A{, AS, AS) such that

i A i AS i AS

s LD 10 WO,
u(A7) © p(As) - p(AS)

Hence we have 0;A] < L, for all l € [3]. Therefore, there exists | € [3] such that Aj < L. (Notice

that the argument uses the fact that M, is a subset of R%.) Taking e = =, m € N, and then using the

m
similar argument as in [23, Ezemple 4 |, we conclude that for any € small enough
0; AS
w(0i el) >c>0
M(Az)
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where c is independent of €. It is a contradiction.

This example as in Example |1 shows the necessity of n/(B) in vx(M.). However, in Example |1] the
volume of the family of manifolds tends to zero, while in this example the area and the boundary
length of M. are uniformly controlled.
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