A. Buryak, Double ramification cycles and integrable hierarchies, Communications in Mathematical Physics, vol.336, issue.3, pp.1085-1107, 2015.
DOI : 10.1007/s00220-014-2235-2

URL : http://arxiv.org/pdf/1403.1719.pdf

A. Buryak and J. Guere, Towards a description of the double ramification hierarchy for Witten's r-spin class, Journal de Mathématiques Pures et Appliquées, vol.106, issue.5, pp.837-865, 2016.

A. Buryak, B. Dubrovin, J. Guéré, and P. Rossi, Tau-structure for the Double Ramification Hierarchies, Communications in Mathematical Physics, vol.363, issue.1, pp.191-260, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01899925

A. Buryak, B. Dubrovin, J. Guéré, and P. Rossi, Integrable systems of double ramification type

A. Buryak, J. Guéré, P. Rossi, D. R. , A. Buryak et al.,

A. Buryak, H. Posthuma, and S. Shadrin, On deformations of quasi-Miura transformations and the Dubrovin-Zhang bracket, Journal of Geometry and Physics, vol.62, issue.7, pp.1639-1651, 2012.

A. Buryak, H. Posthuma, and S. Shadrin, A polynomial bracket for the Dubrovin-Zhang hierarchies, Journal of Differential Geometry, vol.92, issue.1, pp.153-185, 2012.

A. Buryak and P. Rossi, Recursion relations for double ramification hierarchies, Communications in Mathematical Physics, vol.342, issue.2, pp.533-568, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01407979

A. Buryak and P. Rossi, Double ramification cycles and quantum integrable systems, Letters in Mathematical Physics, vol.106, issue.3, pp.289-317, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01413213

A. Buryak and P. Rossi, Extended r-spin theory in all genera and the discrete KdV hierarchy
URL : https://hal.archives-ouvertes.fr/hal-01945149

B. Dubrovin, S. Liu, and Y. Zhang, Frobenius manifolds and central invariants for the DrinfeldSokolov bihamiltonian structures, Adv. Math, vol.219, issue.3, p.780837, 2008.

V. G. Drinfeld and V. V. Sokolov, Lie algebras and equations of Kortewegde Vries type, J. Soviet Math, vol.24, p.81180, 1984.

B. Dubrovin, Geometry of 2D topological field theories, in Integrable Systems and Quantum Groups, vol.1620, 1996.

B. Dubrovin, Differential geometry of the space of orbits of a Coxeter group, Surveys in Differential Geometry, vol.IV, pp.181-212, 1999.

B. Dubrovin and Y. Zhang, Normal forms of hierarchies of integrable PDEs, Frobenius manifolds and Gromov-Witten invariants, vol.295, p.pp, 2005.

Y. Eliashberg, A. Givental, and H. Hofer, Introduction to symplectic field theory, GAFA 2000 Visions in Mathematics special volume, vol.II, pp.560-673, 2000.

O. Fabert and P. Rossi, String, dilaton and divisor equation in Symplectic Field Theory, International Mathematics Research Notices, pp.4384-4404, 2011.

H. Fan, A. Francis, T. J. Jarvis, E. Merrell, and Y. Ruan, Witten's D 4 Integrable Hierarchies Conjecture, Chinese Annals of Mathematics, Series B

H. Fan, T. Jarvis, and Y. Ruan, The Witten equation and its virtual fundamental cycle

H. Fan, T. Jarvis, and Y. Ruan, The Witten equation, mirror symmetry, and quantum singularity theory, Ann. of Math, vol.178, pp.1-106, 2013.

E. Frenkel, A. Givental, and T. Milanov, Soliton equations, vertex operators, and simple singularities, vol.3, pp.47-63, 2010.

A. , Semisimple Frobenius structures at higher genus, Internat. Math. Res. Notices, issue.23, pp.1265-1286, 2001.

C. S. Gardner, M. D. Kruskal, R. M. Miura, and N. J. Zabusky, Korteweg-de Vries Equation and Generalizations. V. Uniqueness and Nonexistence of Polynomial Conservation Laws, Journal of Mathematical Physics, vol.11, issue.3, p.952960, 1970.

A. Givental and T. Milanov, Simple singularities and integrable hierarchies, The breadth of symplectic and Poisson geometry, vol.232, pp.173-201, 2005.

V. G. Kac, Infinite-dimensional algebras, Dedekind's ?-functions, classical Mbius function and the very strange formula, Advances in Mathematics, vol.30, issue.2, pp.85-136, 1978.

B. Kostant, The Principle Three-Dimensional Subgroup and the Betti Numbers of a Complex Simple Lie Group, American Journal of Mathematics, pp.973-1032, 1959.

M. Kontsevich and Y. Manin, Gromov-Witten classes, quantum cohomology, and enumerative geometry, Communications in Mathematical Physics, vol.164, issue.3, pp.525-562, 1994.

S. Liu, Y. Ruan, and Y. Zhang, BCFG Drinfeld-Sokolov hierarchies and FJRW-Theory, Inventiones Mathematicae, vol.201, pp.711-772, 2015.

S. Liu, C. Wu, and Y. Zhang, On the Drinfeld-Sokolov hierarchies of D type, International Mathematics Research Notices, issue.8, pp.1952-1996, 2011.

T. Milanov, Analyticity of the total ancestor potential in singularity theory, Adv. Math, vol.255, pp.217-241, 2014.

R. Pandharipande, A. Pixton, and D. Zvonkine, Relations on M g,n via 3-spin structures, Journal of the American Mathematical Society, vol.28, issue.1, pp.279-309, 2015.

P. Rossi, Integrable systems and holomorphic curves, Proceedings of the Gökova GeometryTopology Conference, pp.34-57, 2009.

P. Rossi, Integrability, quantization and moduli spaces of curves, SIGMA, vol.13, p.60, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01612026

K. Saito, Primitive forms for a universal unfolding of a function with an isolated critical point, J. Fac. Sci. Univ. Tokyo Sect. IA Math, vol.28, issue.3, pp.775-792, 1981.

K. Saito, The higher residue pairings K (k) F for a family of hypersurface singular points, Singularities, Part, vol.40, pp.441-463, 1981.

K. Saito, Period mapping associated to a primitive form, Publ. Res. Inst. Math. Sci, vol.19, issue.3, pp.1231-1264, 1983.

C. Teleman, The structure of 2D semi-simple field theories, Inventiones Mathematicae, vol.188, issue.3, pp.525-588, 2012.