D. A. Caron, P. D. Countway, A. C. Jones, D. Y. Kim, and A. Schnetzer, Marine protistan diversity, Ann Rev Mar Sci, vol.4, pp.467-493, 2012.

E. , Primary Endosymbiosis: Emergence of the Primary Chloroplast and the Chromatophore, Two Independent Events, Methods Mol Biol, pp.3-16, 2018.

G. I. Mcfadden, Chloroplast origin and integration, Plant physiology, vol.125, pp.50-53, 2001.

F. A. Wollman, An antimicrobial origin of transit peptides accounts for early endosymbiotic events, Traffic, vol.17, pp.1322-1328, 2016.

D. Petroutsos, S. Amiar, H. Abida, L. Dolch, O. Bastien et al., Evolution of galactoglycerolipid biosynthetic pathways -From cyanobacteria to primary plastids and from primary to secondary plastids, Progress in Lipid Research, vol.54, pp.68-85, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00981370

Z. Fussy and M. Obornik, Complex Endosymbioses I: From Primary to Complex Plastids, Multiple Independent Events, Methods Mol Biol, pp.17-35, 2018.

T. Cavalier-smith, Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences, Protoplasma, vol.255, pp.297-357, 2018.

A. S. Benoiston, F. M. Ibarbalz, L. Bittner, L. Guidi, O. Jahn et al., The evolution of diatoms and their biogeochemical functions, Philos Trans R Soc Lond B Biol Sci, p.372, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02921882

O. Levitan, J. Dinamarca, G. Hochman, and P. G. Falkowski, Diatoms: a fossil fuel of the future, Trends Biotechnol, vol.32, pp.117-124, 2014.

J. Lupette and E. Maréchal, Phytoplankton glycerolipids, challenging but promising prospects from biomedicine to green chemistry and biofuels, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02238177

M. A. Scaife and A. G. Smith, Towards developing algal synthetic biology, Biochem Soc Trans, pp.716-722, 2016.

J. K. Wang and M. Seibert, Prospects for commercial production of diatoms, Biotechnol Biofuels, vol.10, p.16, 2017.

C. Bowler, A. E. Allen, J. H. Badger, J. Grimwood, K. Jabbari et al.,

T. Katinka, K. Mock, F. Valentin, J. A. Verret, C. Berges et al.,

A. Medlin, M. P. Montsant, C. Oudot-le-secq, M. Napoli, M. S. Obornik et al.,

J. Rokhsar, E. V. Weissenbach, B. R. Armbrust, Y. Green, I. V. Van-de-peer et al., The Phaeodactylum genome reveals the evolutionary history of diatom genomes, Nature, vol.456, pp.239-244, 2008.
URL : https://hal.archives-ouvertes.fr/cea-00910244

H. Abida, L. J. Dolch, C. Mei, V. Villanova, M. Conte et al., Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum, vol.167, pp.118-136, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01141164

P. G. Kroth, A. M. Bones, F. Daboussi, M. I. Ferrante, M. Jaubert et al., Genome editing in diatoms: achievements and goals, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02154331

H. M. Nguyen, M. Baudet, S. Cuiné, J. Adriano, D. Barthe et al., Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: With focus on proteins involved in lipid metabolism, PROTEOMICS, vol.11, pp.4266-4273, 2011.

J. Popko, C. Herrfurth, K. Feussner, T. Ischebeck, T. Iven et al., Metabolome Analysis Reveals Betaine Lipids as Major Source for Triglyceride Formation, and the Accumulation of Sedoheptulose during Nitrogen-Starvation of Phaeodactylum tricornutum, PLoS One, vol.11, p.164673, 2016.

S. Yao, A. Brandt, H. Egsgaard, and C. Gjermansen, Neutral lipid accumulation at elevated temperature in conditional mutants of two microalgae species, Plant Physiol Biochem, pp.71-79, 2012.

A. Alboresi, G. Perin, N. Vitulo, G. Diretto, M. Block et al., Light Remodels Lipid Biosynthesis in Nannochloropsis gaditana by Modulating Carbon Partitioning between Organelles, vol.171, pp.2468-2482, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01412424

L. Dolch, J. Lupette, G. Tourcier, M. Bedhomme, S. Collin et al., Nitric Oxide Mediates Nitrite-Sensing and Acclimation and Triggers a Remodeling of Lipids, vol.175, p.1407, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01664940

A. R. Burch and A. K. Franz, Combined nitrogen limitation and hydrogen peroxide treatment enhances neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum, Bioresource Technology, vol.219, pp.559-565, 2016.

J. R. Collins, B. R. Edwards, H. F. Fredricks, and B. A. Van-mooy, LOBSTAHS: An Adduct-Based Lipidomics Strategy for Discovery and Identification of Oxidative Stress Biomarkers, Analytical Chemistry, vol.88, pp.7154-7162, 2016.

J. Lupette, . Jaussaud, . Antoine, . Vigor, . Claire et al., Non-enzymatic synthesis of bioactive isoprostanoids in Phaeodactylum following oxidative stress, vol.178, pp.1344-1357, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02200346

M. Conte, J. Lupette, K. Seddiki, C. Meï, L. Dolch et al., Screening for Biologically Annotated Drugs That Trigger Triacylglycerol Accumulation in the Diatom Phaeodactylum, vol.177, p.532, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01851869

N. Wase, P. Black, and C. Dirusso, Innovations in improving lipid production: Algal chemical genetics, Prog Lipid Res, vol.71, pp.101-123, 2018.

N. Wase, B. Tu, J. W. Allen, P. N. Black, and C. C. Dirusso, Identification and Metabolite Profiling of Chemical Activators of Lipid Accumulation in Green Algae, Plant physiology, vol.174, pp.2146-2165, 2017.

H. Kim, S. Jang, S. Kim, Y. Yamaoka, D. Hong et al., The small molecule fenpropimorph rapidly converts chloroplast membrane lipids to triacylglycerols in Chlamydomonas reinhardtii, Front Microbiol, vol.6, p.54, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01219477

T. C. Walther, J. Chung, and R. V. Farese, Lipid Droplet Biogenesis, Annu Rev Cell Dev Biol, vol.33, pp.491-510, 2017.

C. Zhang and P. Liu, The lipid droplet: A conserved cellular organelle, Protein Cell, vol.8, pp.796-800, 2017.

D. J. Murphy, The dynamic roles of intracellular lipid droplets: from archaea to mammals, Protoplasma, pp.541-585, 2012.

D. J. Murphy, The biogenesis and functions of lipid bodies in animals, plants and microorganisms, Progress in Lipid Research, vol.40, pp.325-438, 2001.

A. Pol, S. P. Gross, and R. G. Parton, Biogenesis of the multifunctional lipid droplet: Lipids, proteins, and sites, vol.204, pp.635-646, 2014.

F. Wilfling, J. T. Haas, T. C. Walther, and R. V. , Lipid droplet biogenesis, vol.29, pp.39-45, 2014.

W. M. Henne, M. L. Reese, and J. M. Goodman, The assembly of lipid droplets and their roles in challenged cells, EMBO J, p.37, 2018.

M. H. Brok, T. K. Raaijmakers, E. Collado-camps, and G. J. Adema, Lipid Droplets as Immune Modulators in Myeloid Cells, Trends Immunol, vol.39, pp.380-392, 2018.

N. Kory, R. V. Farese, and T. C. Walther, Targeting Fat: Mechanisms of Protein Localization to Lipid Droplets, Trends Cell Biol, vol.26, pp.535-546, 2016.

K. D. Chapman, J. M. Dyer, and R. T. Mullen, Biogenesis and functions of lipid droplets in plants: Thematic Review Series: Lipid Droplet Synthesis and Metabolism: from Yeast to Man, J Lipid Res, vol.53, pp.215-226, 2012.

A. H. Huang, Plant Lipid Droplets and Their Associated Proteins: Potential for Rapid Advances, Plant physiology, vol.176, pp.1894-1918, 2018.

H. Itabe, T. Yamaguchi, S. Nimura, and N. Sasabe, Perilipins: a diversity of intracellular lipid droplet proteins, Lipids Health Dis, vol.16, p.83, 2017.

E. R. Moellering and C. Benning, RNA Interference Silencing of a Major Lipid Droplet Protein Affects Lipid Droplet Size in Chlamydomonas reinhardtii, Eukaryotic cell, vol.9, pp.97-106, 2010.

G. O. James, C. H. Hocart, W. Hillier, H. Chen, F. Kordbacheh et al., Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation, Bioresource Technology, vol.102, pp.3343-3351, 2011.

I. P. Lin, P. L. Jiang, C. S. Chen, and J. T. Tzen, A unique caleosin serving as the major integral protein in oil bodies isolated from Chlorella sp. cells cultured with limited nitrogen, Plant Physiol Biochem, pp.80-87, 2012.

E. Peled, S. Leu, A. Zarka, M. Weiss, U. Pick et al., Isolation of a Novel Oil Globule Protein from the Green Alga Haematococcus pluvialis (Chlorophyceae), Lipids, vol.46, pp.851-861, 2011.

L. Davidi, A. Katz, and U. Pick, Characterization of major lipid droplet proteins from Dunaliella, Planta, pp.19-33, 2012.

A. Javee, S. B. Sulochana, S. J. Pallissery, and M. Arumugam, Major Lipid Body Protein: A Conserved Structural Component of Lipid Body Accumulated during Abiotic Stress in S. quadricauda CASA-CC202, Frontiers in Energy Research, p.4, 2016.

H. Siegler, O. Valerius, T. Ischebeck, J. Popko, N. J. Tourasse et al., Analysis of the lipid body proteome of the oleaginous alga Lobosphaera incisa, BMC Plant Biology, vol.17, p.98, 2017.
URL : https://hal.archives-ouvertes.fr/inserm-01536346

S. Flori, P. Jouneau, G. Finazzi, E. Maréchal, and D. Falconet, Ultrastructure of the Periplastidial Compartment of the Diatom Phaeodactylum tricornutum, Protist, vol.167, pp.254-267, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01327409

D. Nojima, T. Yoshino, Y. Maeda, M. Tanaka, M. Nemoto et al., Proteomics Analysis of Oil Body-Associated Proteins in the Oleaginous Diatom, Journal of Proteome Research, vol.12, pp.5293-5301, 2013.

K. Yoneda, M. Yoshida, I. Suzuki, and M. M. Watanabe, Identification of a Major Lipid Droplet Protein in a Marine Diatom Phaeodactylum tricornutum, Plant and Cell Physiology, vol.57, pp.397-406, 2016.

A. Vieler, S. B. Brubaker, B. Vick, and C. Benning, A Lipid Droplet Protein of Nannochloropsis with Functions Partially Analogous to Plant Oleosins, Plant physiology, vol.158, p.1562, 2012.

K. Yoneda, M. Yoshida, I. Suzuki, and M. M. Watanabe, Homologous expression of lipid droplet proteinenhanced neutral lipid accumulation in the marine diatom Phaeodactylum tricornutum, J Appl Phycol, 2018.

A. Falciatore, M. R. Alcalà, P. Croot, and C. Bowler, Perception of Environmental Signals by a Marine Diatom, Science, vol.288, pp.2363-2366, 2000.

K. E. Cooksey, J. B. Guckert, S. A. Williams, and P. R. Callis, Fluorometric determination of the neutral lipid content of microalgal cells using Nile Red, Journal of Microbiological Methods, vol.6, pp.333-345, 1987.

J. Folch, M. Lees, G. H. Sloane, and . Stanley, A simple method for the isolation and purification of total lipides from animal tissues, J Biol Chem, vol.226, pp.497-509, 1957.

D. Simionato, M. A. Block, N. L. Rocca, J. Jouhet, E. Marechal et al., The response of Nannochloropsis gaditana to nitrogen starvation includes de novo biosynthesis of triacylglycerols, a decrease of chloroplast galactolipids, and reorganization of the photosynthetic apparatus, Eukaryotic cell, vol.12, pp.665-676, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839543

G. E. Bligh and W. J. Dyer, A rapid method of total lipid extraction and purification, Can. J. Biochem. Physiol, vol.37, pp.911-917, 1959.

J. Jouhet, E. Marechal, R. Bligny, J. Joyard, and M. A. Block, Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation, FEBS letters, vol.544, pp.63-68, 2003.
URL : https://hal.archives-ouvertes.fr/hal-02673699

J. Jouhet, J. Lupette, O. Clerc, L. Magneschi, M. Bedhomme et al., LC-MS/MS versus TLC plus GC methods: Consistency of glycerolipid and fatty acid profiles in microalgae and higher plant cells and effect of a nitrogen starvation, PLOS ONE, vol.12, p.182423, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608321

B. Deme, C. Cataye, M. A. Block, E. Marechal, and J. Jouhet, Contribution of galactoglycerolipids to the 3-dimensional architecture of thylakoids, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, vol.28, pp.3373-3383, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00985043

C. M. Buseman, P. Tamura, A. A. Sparks, E. J. Baughman, S. Maatta et al., Wounding Stimulates the Accumulation of Glycerolipids Containing Oxophytodienoic Acid and Dinor-Oxophytodienoic Acid in Arabidopsis Leaves, Plant physiology, vol.142, p.28, 2006.

J. Cox and M. Mann, MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification, Nature Biotechnology, vol.26, p.1367, 2008.

B. Schwanhäusser, D. Busse, N. Li, G. Dittmar, J. Schuchhardt et al., Global quantification of mammalian gene expression control, Nature, vol.473, p.337, 2011.

T. N. Petersen, S. Brunak, G. Heijne, and H. Nielsen, SignalP 4.0: discriminating signal peptides from transmembrane regions, Nat Methods, vol.8, pp.785-786, 2011.

O. Emanuelsson, H. Nielsen, and G. Heijne, ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites, Protein Sci, vol.8, pp.978-984, 1999.

A. Gruber, G. Rocap, P. G. Kroth, E. V. Armbrust, and T. Mock, Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage, Plant J, vol.81, pp.519-528, 2015.

E. L. Sonnhammer, G. V. Heijne, and A. Krogh, A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences, Proceedings of the 6th International Conference on Intelligent Systems for Molecular Biology, pp.175-182, 1998.

L. P. Kozlowski, IPC -Isoelectric Point Calculator, Biology Direct, vol.11, p.55, 2016.

W. J. Hurkman and C. K. Tanaka, Solubilization of Plant Membrane Proteins for Analysis by Two-Dimensional Gel Electrophoresis, Plant physiology, vol.81, p.802, 1986.

S. Flori, P. H. Jouneau, B. Gallet, L. F. Estrozi, C. Moriscot et al., Imaging Plastids in 2D and 3D: Confocal and Electron Microscopy, pp.113-122, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01913145

D. L. Brasaemle, T. Barber, N. E. Wolins, G. Serrero, E. J. Blanchette-mackie et al., Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein, J Lipid Res, vol.38, pp.2249-2263, 1997.

D. L. Brasaemle and N. E. Wolins, Isolation of Lipid Droplets from Cells by Density Gradient Centrifugation, Curr Protoc Cell Biol, vol.72, p.13, 2016.

S. W. Rampen, B. A. Abbas, S. Schouten, and J. S. Damste, A comprehensive study of sterols in marine diatoms (Bacillariophyta): Implications for their use as tracers for diatom productivity, Limnol Oceanogr, vol.55, pp.91-105, 2010.

M. Fabris, M. Matthijs, S. Carbonelle, T. Moses, J. Pollier et al., Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum, vol.204, pp.521-535, 2014.

S. Lopez, B. Bermudez, S. Montserrat-de-la-paz, S. Jaramillo, L. M. Varela et al., Membrane composition and dynamics: a target of bioactive virgin olive oil constituents, Biochim Biophys Acta, pp.1638-1656, 2014.

K. Tauchi-sato, S. Ozeki, T. Houjou, R. Taguchi, and T. Fujimoto, The surface of lipid droplets is a phospholipid monolayer with a unique Fatty Acid composition, J Biol Chem, vol.277, pp.44507-44512, 2002.

G. Onal, O. Kutlu, D. Gozuacik, and S. D. Emre, Lipid Droplets in Health and Disease, Lipids Health Dis, vol.16, p.128, 2017.

Z. Yi, M. Xu, M. Magnusdottir, Y. Zhang, S. Brynjolfsson et al., Photo-Oxidative Stress-Driven Mutagenesis and Adaptive Evolution on the Marine Diatom Phaeodactylum tricornutum for Enhanced Carotenoid Accumulation, Marine Drugs, vol.13, pp.6138-6151, 2015.

Y. Lu, X. Wang, S. Balamurugan, W. D. Yang, J. S. Liu et al., Identification of a putative seipin ortholog involved in lipid accumulation in marine microalga Phaeodactylum tricornutum, J Appl Phycol, vol.29, pp.2821-2829, 2017.

K. L. Farquharson, Deciphering the role of CGI-58 in lipid metabolism in Arabidopsis, Plant Cell, vol.25, p.1485, 2013.

S. Park, S. K. Gidda, C. N. James, P. J. Horn, N. Khuu et al., The alpha/beta hydrolase CGI-58 and peroxisomal transport protein PXA1 coregulate lipid homeostasis and signaling in Arabidopsis, Plant Cell, vol.25, pp.1726-1739, 2013.

A. Khatib, Y. Arhab, A. Bentebibel, A. Abousalham, and A. Noiriel, Reassessing the Potential Activities of Plant CGI-58 Protein, PLoS One, vol.11, p.145806, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01693107

D. Moog, S. A. Rensing, J. M. Archibald, U. G. Maier, and K. K. Ullrich, Localization and Evolution of Putative Triose Phosphate Translocators in the Diatom Phaeodactylum tricornutum, Genome Biol Evol, vol.7, pp.2955-2969, 2015.

Y. Laizet, D. Pontier, R. Mache, and M. Kuntz, Subfamily Organization and Phylogenetic Origin of Genes Encoding Plastid Lipid-Associated Proteins of the Fibrillin Type, Journal of Genome Science and Technology, vol.3, pp.19-28, 2004.

A. Youssef, Y. H. Laizet, M. A. Block, E. Maréchal, J. Alcaraz et al., Plant lipid-associated fibrillin proteins condition jasmonate production under photosynthetic stress, The Plant Journal, pp.436-445, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00468813

C. Bréhélin, F. Kessler, and K. J. Van-wijk, Plastoglobules: versatile lipoprotein particles in plastids, Trends in Plant Science, vol.12, pp.260-266, 2007.

H. D. Goold, S. Cuine, B. Legeret, Y. Liang, S. Brugiere et al., Saturating Light Induces Sustained Accumulation of Oil in Plastidal Lipid Droplets in Chlamydomonas reinhardtii, Plant physiology, vol.171, pp.2406-2417, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02065372

T. Moriyama, M. Toyoshima, M. Saito, H. Wada, and N. Sato, Chloroplast Lipid Droplet": The Absence of an Entity That Is Unlikely to Exist, Plant physiology, vol.176, pp.1519-1530, 2018.

Z. Li, K. Thiel, P. J. Thul, M. Beller, R. P. Kühnlein et al., Lipid Droplets Control the Maternal Histone Supply of Drosophila Embryos, Current Biology, vol.22, pp.2104-2113, 2012.

D. L. Brasaemle, G. Dolios, L. Shapiro, and R. Wang, Proteomic Analysis of Proteins Associated with Lipid Droplets of Basal and Lipolytically Stimulated 3T3-L1 Adipocytes, Journal of Biological Chemistry, vol.279, pp.46835-46842, 2004.

A. Gelzinis, V. Butkus, E. Songaila, R. Augulis, A. Gall et al., Mapping energy transfer channels in fucoxanthin-chlorophyll protein complex, Biochim Biophys Acta, pp.241-247, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01449619

P. Kuczynska, M. Jemiola-rzeminska, and K. Strzalka, Photosynthetic Pigments in Diatoms, Mar Drugs, vol.13, pp.5847-5881, 2015.

J. Huang, F. Chen, and G. Sandmann, Stress-related differential expression of multiple ?-carotene ketolase genes in the unicellular green alga Haematococcus pluvialis, Journal of Biotechnology, vol.122, pp.176-185, 2006.

G. Chen, B. Wang, D. Han, M. Sommerfeld, Y. Lu et al., Molecular mechanisms of the coordination between astaxanthin and fatty acid biosynthesis in Haematococcus pluvialis (Chlorophyceae), vol.81, pp.95-107, 2015.

K. Grünewald, J. Hirschberg, and C. Hagen, Ketocarotenoid Biosynthesis Outside of Plastids in the Unicellular Green Alga Haematococcus pluvialis, Journal of Biological Chemistry, vol.276, pp.6023-6029, 2001.

S. Ota, A. Morita, S. Ohnuki, A. Hirata, S. Sekida et al., Carotenoid dynamics and lipid droplet containing astaxanthin in response to light in the green alga Haematococcus pluvialis, vol.8, p.5617, 2018.

T. S. Moore, Phosphatidylcholine synthesis in castor bean endosperm, Plant physiology, vol.57, pp.382-386, 1976.

T. S. Moore, Z. Du, and Z. Chen, Membrane lipid biosynthesis in Chlamydomonas reinhardtii, vitro biosynthesis of diacylglyceryltrimethylhomoserine, vol.125, pp.423-429, 2001.

R. Bartz, W. H. Li, B. Venables, J. K. Zehmer, M. R. Roth et al.,

. Chapman, Lipidomics reveals that adiposomes store ether lipids and mediate phospholipid traffic, J Lipid Res, vol.48, pp.837-847, 2007.

K. Grillitsch, M. Connerth, H. Kofeler, T. N. Arrey, B. Rietschel et al., Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome, Biochim Biophys Acta, pp.1165-1176, 2011.

V. A. Ivashov, K. Grillitsch, H. Koefeler, E. Leitner, D. Baeumlisberger et al., Lipidome and proteome of lipid droplets from the methylotrophic yeast Pichia pastoris, Biochim Biophys Acta, pp.282-290, 2013.

C. Botella, E. Sautron, L. Boudiere, M. Michaud, E. Dubots et al., ALA10, a Phospholipid Flippase, Controls FAD2/FAD3 Desaturation of Phosphatidylcholine in the ER and Affects Chloroplast Lipid Composition in Arabidopsis thaliana, Plant physiology, vol.170, pp.1300-1314, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01260255

C. Y. Botte, Y. Yamaryo-botte, T. W. Rupasinghe, K. A. Mullin, J. I. Macrae et al., Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites, Proc Natl Acad Sci U S A, vol.110, pp.7506-7511, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00839109

B. A. Van-mooy, H. F. Fredricks, B. E. Pedler, S. T. Dyhrman, D. M. Karl et al., Phytoplankton in the ocean use nonphosphorus lipids in response to phosphorus scarcity, Nature, vol.458, pp.69-72, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02163908

C. Benning, Z. H. Huang, and D. A. Gage, Accumulation of a novel glycolipid and a betaine lipid in cells of Rhodobacter sphaeroides grown under phosphate limitation, Arch Biochem Biophys, vol.317, pp.103-111, 1995.

L. J. Dolch and E. , Inventory of fatty acid desaturases in the pennate diatom Phaeodactylum tricornutum, Mar Drugs, vol.13, pp.1317-1339, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01142057

O. Sayanova and J. A. Napier, Transgenic oilseed crops as an alternative to fish oils, Prostaglandins Leukot Essent Fatty Acids, vol.85, pp.253-260, 2011.

O. Sayanova, V. Mimouni, L. Ulmann, A. Morant-manceau, V. Pasquet et al., Modulation of lipid biosynthesis by stress in diatoms, Philos Trans R Soc Lond B Biol Sci, p.372, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02001096

W. R. Riekhof, B. B. Sears, and C. Benning, Annotation of genes involved in glycerolipid biosynthesis in Chlamydomonas reinhardtii: discovery of the betaine lipid synthase BTA1Cr, vol.4, pp.242-252, 2005.

H. Murakami, T. Nobusawa, K. Hori, M. Shimojima, and H. Ohta, Betaine Lipid Is Crucial for Adapting to Low Temperature and Phosphate Deficiency in Nannochloropsis, Plant physiology, vol.177, pp.181-193, 2018.

L. Alipanah, J. Rohloff, P. Winge, A. M. Bones, and T. Brembu, Whole-cell response to nitrogen deprivation in the diatom Phaeodactylum tricornutum, J Exp Bot, vol.66, pp.6281-6296, 2015.

O. Levitan, J. Dinamarca, E. Zelzion, D. S. Lun, L. T. Guerra et al., Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress, Proc Natl Acad Sci U S A, vol.112, pp.412-417, 2015.

R. Beck, M. Rawet, F. T. Wieland, and D. Cassel, The COPI system: molecular mechanisms and function, FEBS letters, vol.583, pp.2701-2709, 2009.

M. Beller, C. Sztalryd, N. Southall, M. Bell, H. Jackle et al., COPI complex is a regulator of lipid homeostasis, PLoS Biol, vol.6, p.292, 2008.

W. Wang, S. Wei, L. Li, X. Su, C. Du et al., Proteomic analysis of murine testes lipid droplets, Sci Rep, vol.5, p.12070, 2015.

T. Serafini, L. Orci, M. Amherdt, M. Brunner, R. A. Kahn et al., ADP-ribosylation factor is a subunit of the coat of Golgi-derived COP-coated vesicles: a novel role for a GTP-binding protein, Cell, vol.67, pp.239-253, 1991.

F. Wilfling, A. R. Thiam, M. J. Olarte, J. Wang, R. Beck et al., Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting, Elife, vol.3, p.1607, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01316698

G. Jurgens, Membrane trafficking in plants, Annu Rev Cell Dev Biol, vol.20, pp.481-504, 2004.

Y. Guo, C. Chang, R. Huang, B. Liu, L. Bao et al., AP1 is essential for generation of autophagosomes from the trans-Golgi network, J Cell Sci, vol.125, pp.1706-1715, 2012.

K. Soreng, T. P. Neufeld, and A. Simonsen, Membrane Trafficking in Autophagy, Int Rev Cell Mol Biol, vol.336, pp.1-92, 2018.

S. Martens and H. T. Mcmahon, Mechanisms of membrane fusion: disparate players and common principles, Nat Rev Mol Cell Biol, vol.9, pp.543-556, 2008.

J. Longworth, D. Wu, M. Huete-ortega, P. C. Wright, and S. Vaidyanathan, Proteome response of Phaeodactylum tricornutum, during lipid accumulation induced by nitrogen depletion, Algal Res, vol.18, pp.213-224, 2016.

T. Ma, Y. Y. Li, J. Zhu, L. L. Fan, W. D. Du et al., Enhanced autophagic flux by endoplasmic reticulum stress in human hepatocellular carcinoma cells contributes to the maintenance of cell viability, Oncol Rep, vol.30, pp.433-440, 2013.

B. Pajak, M. Songin, J. B. Strosznajder, A. Orzechowski, and B. Gajkowska, Ultrastructural evidence of amyloid beta-induced autophagy in PC12 cells, Folia Neuropathol, vol.47, pp.252-258, 2009.

N. Nelson, N. Perzov, A. Cohen, K. Hagai, V. Padler et al., The cellular biology of protonmotive force generation by V-ATPases, J Exp Biol, vol.203, pp.89-95, 2000.

Q. Shi, H. Araie, R. K. Bakku, Y. Fukao, R. Rakwal et al., Proteomic analysis of lipid body from the alkenone-producing marine haptophyte alga Tisochrysis lutea, Proteomics, vol.15, pp.4145-4158, 2015.

S. , Lipid droplet mobilization: The different ways to loosen the purse strings, Biochimie, vol.120, pp.17-27, 2016.

C. Deruyffelaere, Z. Purkrtova, I. Bouchez, B. Collet, J. L. Cacas et al., PUX10 associates with CDC48A and regulates the dislocation of ubiquitinated oleosins from seed lipid droplets, Plant Cell, 2018.

F. K. Kretzschmar, L. F. Mengel, A. Muller, K. Schmitt, K. F. Blersch et al., PUX10 is a lipid droplet-localized scaffold protein that interacts with CDC48 and is involved in the degradation of lipid droplet proteins, Plant Cell, 2018.

Y. Okuda-shimizu and L. M. Hendershot, Characterization of an ERAD pathway for nonglycosylated BiP substrates, Mol Cell, vol.28, pp.544-554, 2007.

J. Stevenson, E. Y. Huang, and J. A. Olzmann, Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis, Annu Rev Nutr, vol.36, pp.511-542, 2016.

S. Hatakeyama, M. Yada, M. Matsumoto, N. Ishida, and K. Nakayama, U Box Proteins as a New Family of Ubiquitin-Protein Ligases, Journal of Biological Chemistry, vol.276, pp.33111-33120, 2001.

S. Schmollinger, T. Muhlhaus, N. R. Boyle, I. K. Blaby, D. Casero et al., Nitrogen-Sparing Mechanisms in Chlamydomonas Affect the Transcriptome, the Proteome, and Photosynthetic Metabolism, vol.26, pp.1410-1435, 2014.

J. J. Park, H. Wang, M. Gargouri, R. R. Deshpande, J. N. Skepper et al., The response of Chlamydomonas reinhardtii to nitrogen deprivation: a systems biology analysis, Plant J, vol.81, pp.611-624, 2015.

R. Satoh, K. Hagihara, and R. Sugiura, Rae1-mediated nuclear export of Rnc1 is an important determinant in controlling MAPK signaling, Curr Genet, vol.64, pp.103-108, 2018.

S. Cermelli, Y. Guo, S. P. Gross, and M. A. Welte, The lipid-droplet proteome reveals that droplets are a protein-storage depot, Curr Biol, vol.16, pp.1783-1795, 2006.

J. L. Soulages, S. J. Firdaus, S. Hartson, X. Chen, A. D. Howard et al., Developmental changes in the protein composition of Manduca sexta lipid droplets, Insect Biochem Mol Biol, vol.42, pp.305-320, 2012.

Y. Yu, T. Li, N. Wu, L. Jiang, X. Ji et al., The Role of Lipid Droplets in Mortierella alpina Aging Revealed by Integrative Subcellular and Whole-Cell Proteome Analysis, Scientific Reports, vol.7, p.43896, 2017.

Y. Ding, Y. Wu, R. Zeng, and K. Liao, Proteomic profiling of lipid droplet-associated proteins in primary adipocytes of normal and obese mouse, Acta Biochimica et Biophysica Sinica, vol.44, pp.394-406, 2012.

H. Wan, R. C. Melo, Z. Jin, A. M. Dvorak, and P. F. Weller, Roles and origins of leukocyte lipid bodies: proteomic and ultrastructural studies, vol.21, pp.167-178, 2007.

S. Larsson, S. Resjö, M. F. Gomez, P. James, and C. Holm, Characterization of the Lipid Droplet Proteome of a Clonal Insulin-producing ?-Cell Line (INS-1 832/13), Journal of Proteome Research, vol.11, pp.1264-1273, 2012.

X. Yu, L. Ye, H. Zhang, J. Zhao, G. Wang et al., Ginsenoside Rb1 ameliorates liver fat accumulation by upregulating perilipin expression in adipose tissue of db/db obese mice, Journal of Ginseng Research, vol.39, pp.199-205, 2015.

M. Beller, D. Riedel, L. Jänsch, G. Dieterich, J. Wehland et al., Characterization of the Drosophila Lipid Droplet Subproteome, pp.1082-1094, 2006.

C. Lundin, R. Nordstrom, K. Wagner, C. Windpassinger, H. Andersson et al., Membrane topology of the human seipin protein, FEBS letters, vol.580, pp.2281-2284, 2006.

E. M. Trentacoste, R. P. Shrestha, S. R. Smith, C. Gle, A. C. Hartmann et al.,

. Gerwick, Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth, Proc Natl Acad Sci U S A, vol.110, pp.19748-19753, 2013.

M. Pyc, Y. Cai, M. S. Greer, O. Yurchenko, K. D. Chapman et al., Turning Over a New Leaf in Lipid Droplet Biology, vol.22, pp.596-609, 2017.

X. L. Li, Y. F. Pan, and H. H. Hu, Identification of the triacylglycerol lipase in the chloroplast envelope of the diatom Phaeodactylum tricornutum, Algal Research-Biomass Biofuels and Bioproducts, vol.33, pp.440-447, 2018.

D. Ewe, M. Tachibana, S. Kikutani, A. Gruber, C. Bartulos et al., The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum, Photosynth Res, vol.137, pp.263-280, 2018.