Electro-mechanical Resonant Ice Protection Systems: Initiation of Fractures with Piezoelectric Actuators

Abstract : Recent research is showing growing interest in low-power electromechanical de-icing systems and, in particular, de-icing systems based on piezoelectric actuators. These systems use the vibrations generated by piezoelectric actuators at resonance frequencies to produce shear stress at the interface between the ice and the support or to produce tensile stress in the ice. Many configurations of de-icing systems using piezoelectric actuators have been tested and showed that piezoelectric actuation may be a viable ice removal system. If the many experimental studies already achieved have the advantage to present tests in different configurations, they often lack analysis of the phenomena, which limits the optimization opportunities. This paper proposes a computational method for estimating voltages and currents of a piezoelectric de-icing system to initiate cohesive fractures in the ice or adhesive fractures at the ice/support interface. The computational method is validated by comparing numerical results with experimental results. Other contributions of this paper are the study of the types of mode (extensional or flexural) and of the frequency range with respect to de-icing performances and the proposal of some general rules for designing such systems while limiting their electric power consumption.
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01892100
Contributor : Open Archive Toulouse Archive Ouverte (oatao) <>
Submitted on : Wednesday, October 10, 2018 - 12:25:21 PM
Last modification on : Friday, October 11, 2019 - 8:22:59 PM
Long-term archiving on : Friday, January 11, 2019 - 2:53:49 PM

File

Budinger_20823.pdf
Files produced by the author(s)

Identifiers

Citation

Valérie Pommier-Budinger, Marc Budinger, Pierrick Rouset, Fabien Dezitter, Florent Huet, et al.. Electro-mechanical Resonant Ice Protection Systems: Initiation of Fractures with Piezoelectric Actuators. AIAA Journal, American Institute of Aeronautics and Astronautics, 2018, 56 (11), pp.0. ⟨10.2514/1.J056662⟩. ⟨hal-01892100⟩

Share

Metrics

Record views

109

Files downloads

226