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Abstract. This work presents an alternative view on the numerical simulation of diffu-
sion processes applied to the heat and moisture transfer through porous building mate-
rials. Traditionally, by using the finite-difference approach, the discretization follows the
Method Of Lines (MOL), when the problem is first discretized in space to obtain a large
system of coupled Ordinary Differential Equations (ODEs). Thus, this paper proposes to
change this viewpoint. First, we discretize in time to obtain a small system of coupled
ODEs, which means instead of having a Cauchy (Initial Value) Problem (IVP), we have
a Boundary Value Problem (BVP). Fortunately, BVPs can be solved efficiently today
using adaptive collocation methods of high order. To demonstrate the benefits of this
new approach, three case studies are presented, in which one of them is compared with
experimental data. The first one considers nonlinear heat and moisture transfer through
one material layer while the second one considers two material layers. Results show how
the nonlinearities and the interface between materials are easily treated, by reasonably
using a fourth-order adaptive method. Finally, the last case study compares numerical
results with experimental measurements, showing a good agreement.
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1. Introduction

The hygrothermal transfer through porous structures is a matter of concern in many
areas such as building physics, geophysics, environmental engineering and energy systems
whose the transient evolution of heat and moisture migration plays an important role. Par-
ticularly, in the area of building physics, the heat and moisture transfer process through the
porous envelope, roofing systems and the ground can strongly affect the energy efficiency,
the thermal comfort of the occupants and the durability of the components [4, 44, 47].
Therefore, reliable assessment of hygrothermal transfer in building materials is a major is-
sue, requiring efficient numerical tools for heat and moisture transfer in building materials
[7].

As building material properties are temperature- and moisture-dependent and the bound-
ary conditions are driven by weather variables, the models included in those tools are
based on numerical approaches using discrete representations of the continuous equations.
To compute the solution, standard discretization and incremental techniques are applied,
such as the Euler implicit scheme in [22, 29] to solve large systems of equations. Fur-
thermore, when dealing with nonlinearities, hygrothermal properties of porous materials
have to be updated as a function of the temperature and moisture content fields at each
iteration [15]. The difficulties to compute the solution increase, particularly when using
implicit schemes that require sub-iterations to treat those issues. In the literature [1, 9, 12],
the important numerical costs of simulation tools are also mentioned and it is a matter
of concern due to the substantial scale of buildings, where heat and moisture transfer
phenomena have to be simulated.

In addition, in the models proposed in literature, the problem previously described is
generally solved by traditional approaches such as the finite-difference method [17], the
finite-volume method [13, 28, 29] and the finite-element method [23, 39, 45], which are
well established in the fields of thermal sciences and building physics. In these classical
approaches, the higher accuracy obtained for the space discretization of the numerical
schemes is to order O (∆x 2) . For a space standard discretization ∆x = 10−2 , it implies
that the error ε on the solution of the equations cannot be lower than O (10−4) . Within
the issue of comparing the model numerical predictions with experimental observations as
carried out for instance in [26, 32, 34], it is of major importance to control the accuracy of
the solution.

For sure, the accuracy of the computed solution can be increased by reducing the
space and time discretization parameters. However, as mentioned before, the standard
approaches proposed in literature has a high degree of freedom. Therefore, increasing the
number of spatial and temporal grid points will inevitably increase the computational time
of the numerical model. With high-order numerical schemes, it is possible to have the same
precision of low-order numerical schemes but with a lower computational cost, as shown
in [30]. For this reason, these traditional methods have to be improved or even replaced
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by innovative and efficient ways of numerical simulation [33], particularly with the issue of
comparing the model predictions with experimental observations.

Therefore, this article aims at contributing to the numerical development of hygrothermal
transfer, by proposing a new approach to simulate the one-dimensional heat and moisture
diffusive transfer trough single and multilayered building porous materials. The Method
of Horizontal Lines is here proposed to solve the nonlinear heat and moisture transfer to
increase significantly the accuracy in space with a low computational time of the numerical
model. Usually, when using finite-differences, the discretization follows the Method of Lines
(MOL). It means that the problem is first discretized in space to obtain a large system of
coupled ODEs. Here, a different point of view is proposed based on discretizing first in the
time domain to obtain a Boundary Value Problem (BVP). Such problems can be easily
solved using adaptive collocation methods of high order. This approach is investigated in
this paper to compute with high accuracy combined heat and mass transfer problems in
porous materials.

The manuscript is organized as follows. Section 2 details the physical model of heat
and moisture transfer while fundamentals of the proposed method are shown in Section 3.
Numerical results are discussed in Section 4 and simulation are compared with experimental
data in Section 5. Finally, in Section 6, the main conclusions are outlined with future
perspectives.

2. Physical model

The physical problem considers one-dimensional heat and moisture transfer through a
porous material defined by the spatial domain Ωx = [ 0, L ] and time domain Ω t = [ 0, τ ] .
The following convention is adopted: x = 0 corresponds to the surface in contact with
the inside room and, x = L , corresponds to the outside surface. The moisture transfer
occurs due to capillary migration and vapour diffusion. The heat transfer is governed by
diffusion and latent mechanisms. The physical problem can be formulated as [27, 36]:

∂ρw

∂t
=

∂

∂x

(

k l

∂P c

∂x
+ δ v

∂P v

∂x

)

, (2.1a)

(

ρ 0 c 0 + ρw cw
) ∂T

∂t
+ cw T

∂ρw

∂t
=

∂

∂x

(

λ
∂T

∂x
+ L v δ v

∂P v

∂x

)

, (2.1b)

where ρw is the volumetric moisture content of the material, δ v and k l , the vapour and
liquid permeabilities, P v , the vapour pressure, T , the temperature, R v , the water vapour
gas constant, P c , the capillary pressure, c 0 , the material heat capacity, ρ 0 , the material
density, cw , the water heat capacity, λ , the thermal conductivity, and, L v , the latent
heat of evaporation. Equation (2.1a) can be written using the vapour pressure P v as
the driving potential. For this, we consider the physical relation, known as the Kelvin



S. Gasparin, J. Berger, D. Dutykh & N. Mendes 6 / 44

equation, between P v and P c, and the Clausius–Clapeyron equation:

P c = ρ lR v T ln

(

P v

P s (T )

)

,

∂P c

∂P v

=
ρ lR v T

P v

.

where P v comes from the relation φ =
P v

P s ( T )
, in which φ is the relative humidity. Thus,

by neglecting the variation of the capillary pressure and the mass content with temperature
[39], the partial derivative of P c can be written as:

∂P c

∂x
=

∂P c

∂P v

∂P v

∂x
+

∂P c

∂T

∂T

∂x
≃

ρ lR v T

P v

∂P v

∂x
.

In addition, we have:

∂ρw

∂t
=

∂ρw

∂φ

∂φ

∂P v

∂P v

∂t
+

∂ρw

∂T

∂T

∂t
≃

∂ρw

∂φ

∂φ

∂P v

∂P v

∂t
.

Considering the relation ρw = w (φ) , obtained from the sorption isotherm, and from the
relation between the vapour pressure P v and the relative humidity φ , we get:

∂ρw

∂t
=

w ′ (φ)

P s (T )

∂P v

∂t
.

We denote by

kM

def
:= k l

ρ lR v T

P v

+ δ v : the total moisture transfer coefficient

under vapour pressure gradient,

kTM

def
:= L v δ v : the heat coefficient due to a vapour pressure gradient,

kT

def
:= λ : the heat transfer coefficient under temperature gradient,

cM
def
:=

w ′ (φ)

P s (T )
: the moisture storage coeficient,

cT
def
:= ρ 0 c 0 + w (φ) cw : the energy storage coeficient,

cTM

def
:= cw T

w ′ (φ)

P s (T )
: the coupling storage coefficient.

Considering the previous notation, Equation (2.1) can be rewritten as:

cM (T, P v)
∂P v

∂t
=

∂

∂x

(

kM (T, P v)
∂P v

∂x

)

, (2.2a)

cT (T, P v)
∂T

∂t
+ cTM (T, P v)

∂P v

∂t
=

∂

∂x

(

kT (T, P v)
∂T

∂x
+ kTM (T, P v)

∂P v

∂x

)

.

(2.2b)
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Finally, the problem of interest is a coupled system of two nonlinear parabolic partial
differential equations, with vapour pressure P v and temperature T gradients as driving
potentials. Their boundary conditions are expressed as:

n ·

(

kM (T, P v)
∂P v

∂x

)

= hM

(

P v − P v,∞ (t)
)

− g∞ (t) ,

n ·

(

kT (T, P v)
∂T

∂x
+ kTM (T, P v)

∂P v

∂x

)

= hT

(

T − T∞ (t)
)

− q∞ (t)

+ L v hM

(

P v − P v,∞ (t)
)

,

where P v,∞ and T∞ stand for the vapour pressure and temperature of the air, hM and hT

are the convective transfer coefficients and n is the normal that assumes +1 or − 1 at the
left or right boundary sides. If the bounding surface is in contact with the outside air, g∞

is the liquid flow from wind driven rain and q∞ is the sensible heat from the rain:

q∞ = g∞ ·H l ,

where, H l is the water enthalpy. If the bounding surface is in contact with the inside
building air then g∞ = 0 and the variable q∞ is the enclosure and long-wave radiative
heat exchanged among the room surfaces:

q∞ =

m
∑

j=1

s ξ σ

[

(

T j (x = 0)
)4

−
(

T (x = 0)
)4
]

,

where s is the view factor between two surfaces, σ is the Stefan–Boltzmann constant,
ξ is the emissivity of the wall surface, j represents the m bounding walls.

We consider a uniform vapour pressure and temperature distributions as initial condi-
tions:

P v (x, t = 0) = P v, i and T (x, t = 0) = T i .

One of the interesting outputs in the building physics framework are the sensible q s and
the latent q l heat fluxes [46], which are respectively defined as:

q s (t)
def
:= − kT (T, P v)

∂T

∂x

∣

∣

∣

∣

x 0

and q l (t)
def
:= − kTM (T, P v)

∂P v

∂x

∣

∣

∣

∣

x 0

.

The moisture flow g is similarly computed:

g (t)
def
:= − kM (T, P v)

∂P v

∂x

∣

∣

∣

∣

x 0

,

where x 0 ∈ [ 0, L ] .
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2.1. Dimensionless representation

Before solving this problem directly, it is of great importance to get a dimensionless
formulation. It enables us to determine important scaling parameters such as Biot and
Fourier numbers. It allows also to estimate the relative magnitude of various terms
in governing equations, and thus, eventually to simplify the problem using asymptotic
methods [31]. In addition, the dimensionless form enables to manipulate numerically the
quantities at the order of O (1) where the floating point arithmetics are designed to have
minimal rounding errors [24]. Considering the temperature range of interest in building
applications, temperature dependence was neglected when compared to their dependence
with moisture content, with all transport coefficients considered as moisture content de-
pendent. Therefore, the governing Equation (2.2) can be written in a dimensionless form
as:

c ⋆M (v)
∂v

∂t ⋆
= FoM

∂

∂x ⋆

(

k ⋆
M (v)

∂v

∂x ⋆

)

, (2.3a)

c ⋆T (v)
∂u

∂t ⋆
+ γ 1 c

⋆
TM (v)

∂v

∂t ⋆
= FoT

∂

∂x ⋆

(

k ⋆
T (v)

∂u

∂x ⋆
+ γ 2 k

⋆
TM (v)

∂v

∂x ⋆

)

, (2.3b)

which can be expressed by the following equation in a matrix form:









c ⋆M
FoM

0

γ 1 c
⋆
TM

FoT

c ⋆T
FoT









·









∂v

∂t
∂u

∂t









=
∂

∂x













k ⋆
M 0

γ 2 k
⋆
TM k ⋆

T



 ·









∂v

∂x
∂u

∂x

















. (2.4)

The dimensionless formulation of the boundary conditions is:

n ·

(

k ⋆
M (v)

∂v

∂x ⋆

)

= BiM

(

v − v∞ (t ⋆)
)

− g ⋆
∞
(t ⋆) , (2.5a)

n ·

(

k ⋆
T (v)

∂u

∂x ⋆
+ γ 2 k

⋆
TM (v)

∂v

∂x ⋆

)

= BiT

(

u − u∞ (t ⋆)
)

− q ⋆
∞
(t ⋆)

+ γ 2 BiTM

(

v − v∞ (t ⋆)
)

, (2.5b)
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where the dimensionless quantities are defined as:

u
def
:=

T

T 0
, v

def
:=

P v

P v, 0
, x ⋆ def

:=
x

L
,

u∞

def
:=

T∞

T 0
, v∞

def
:=

P v,∞

P v, 0
, t ⋆

def
:=

t

t 0
,

c ⋆M
def
:=

cM
cM, 0

, c ⋆T
def
:=

cT
cT, 0

, c ⋆TM

def
:=

cTM

cTM, 0
,

k ⋆
M

def
:=

kM

kM, 0

, k ⋆
T

def
:=

kT

kT, 0

, k ⋆
TM

def
:=

kTM

kTM, 0

,

BiM
def
:=

hM · L

kM,0
, BiT

def
:=

hT · L

kT, 0
, BiTM

def
:=

hM · L · L v

kTM,0
,

FoM

def
:=

t 0 · kM,0

L 2 · cM, 0

, FoT

def
:=

t 0 · kT, 0

L 2 · cT, 0
, g ⋆

∞

def
:=

g∞ · L

P v, 0 · kM, 0

,

γ 1
def
:=

cTM, 0 · P v, 0

cT, 0 · T 0
, γ 2

def
:=

kTM, 0 · P v, 0

kT,0 · T 0
, q ⋆

∞

def
:=

q∞ · L

T 0 · kT, 0
,

where the subscript 0 represents a reference value, chosen according to the application
problem and the superscript ⋆ represents a dimensionless quantity of the same variable.
The dimensionless values of each numerical application can be found in the Appendix B.

3. The Method of Horizontal Lines

The perception of objects might change depending on the viewpoint. Keeping that in
mind, in this study we apply the same idea to Partial Differential Equations (PDEs). Since
our main applications include the heat and/or moisture transfer, we explain the idea on
the simplest parabolic (or Fourier) equation, which is traditionally written as [14, 16]:

∂u

∂t
= ν

∂ 2 u

∂x 2
, x ∈ I ≡ [ 0, ℓ ] , t > 0 , (3.1)

where ν > 0 is the diffusion coefficient. The last equation has to be supplemented with
right and compatible initial and boundary conditions to obtain a well-posed problem [18].

The way how Equation (3.1) is written conditions the tools and, thus, the way how it
is solved numerically (or study it theoretically [14]). Indeed, the most popular approach
nowadays is the so-called Method Of Lines (MOL) [21, 25, 35, 41, 42]. It consists in semi-
discretization in space as the first step. With this goal in mind, let us consider a uniform
(for the sake of simplicity) discretization in space:

I∆x

def
:=
{

x j ≡ j ·∆x | j = 0, 1, 2, . . . N, N + 1
}

, ∆x
def
:=

ℓ

N + 1
.
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The classical second-order central finite difference scheme yields the following system of
coupled ordinary differential equations (ODEs) [37]:

du j

dt
=

ν

∆x 2

(

u j−1 − 2 u j + u j+1

)

, j = 1, 2, . . . , N ,

with u j (t)
def
:= u (x j, t) is the solution nodal value. For simplicity of the discussion, we

write here evolution equations only for interior nodes. There are still two remaining equa-
tions dependent on the boundary conditions which will be discussed in a further Section.

Hence, the Partial Differential Equation (3.1) solved with MOL yields approximatively to
a large system of coupled differential equations. In typical accurate numerical simulations
N & 10 2 . . . 10 3 . Then, the last system of equations can be discretized using various
explicit or implicit time-marching schemes [6]. This philosophy is shown schematically
in Figure 1(a). To make the language more accurate, we can refer to this approach as
the Method of Vertical Lines (MOVL). From a brief literature survey we can conclude
that the dominant majority of numerical simulations in the field of HAM transfer follow
this philosophy. However, in this study we would like to propose an alternative view on
diffusion equations. Namely, we claim that Equation (3.1) can be solved by a totally
different numerical technique, if it is rewritten in Cauchy–Kovalevskaya form as:

ν
∂ 2 u

∂x 2
=

∂u

∂t
, x ∈ I ≡ [ 0, ℓ ] , t > 0 . (3.2)

By defining a uniform time discretization:

I∆t

def
:=
{

tn ≡ n ·∆t | n = 0, 1, 2, . . . M, M + 1
}

, ∆t
def
:=

τ

M + 1
.

Equation (3.2) yields to the following system:

ν
∂ 2 u (x, tn)

∂x 2
=

∂u

∂t

∣

∣

∣

∣

t= tn

, x ∈ I ≡ [ 0, ℓ ] , t > 0 .

The main term now is the second-order elliptic differential operator in space, while the time
derivative can be seen (and treated) as a source term of secondary importance. In other
words, instead of having an evolution problem, we have a Boundary Value Problem (BVP),
which can be tackled by appropriate methods. This approach is schematically depicted in
Figure 1(b), which will be called in this work as the Method of Horizontal Lines (MOHL).
In the following Section 3.1, we propose a reformulation for scalar nonlinear equations.

3.1. Scalar nonlinear equations

Consider the following dimensionless nonlinear diffusion equation, which can describe
the heat or the moisture transfer in a 1D section∗ of a porous material:

c (u) u t −
[

D (u) u x

]

x
= F (x, t) , x ∈ I ≡ [ 0, ℓ ] , (3.3)

∗In higher dimensional problems we would require the domain I ⊂ R
m

(

m ∈
{

2, 3
})

to be bounded
with a Lipschitz-continuous boundary.
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(a) (b)

Figure 1. The classical numerical solution strategy based on the MOL (a) and
the proposed approach view based on BVPs (b).

where the right-hand side F (x, t) ∈ L 2
(

(0, T ), L 2 (I)
)

and describes eventual sources/sinks
inside the material. The time horizon T > 0 is fixed. We assume that coefficients c (u)
and D (u) are positive definite:

c (u) > cmin > 0 , D (u) > dmin > 0 , ∀ u . (3.4)

For the moisture diffusion, the coefficient c (u) is the moisture storage coefficient c ⋆M (u) and
the coefficient D (u) is the diffusion coefficient FoM ·k ⋆

M (u) . For the heat transfer, F (x, t)

incorporates the other terms. The subscripts denote partial derivatives, i.e., u t

def
:=

∂u

∂t
,

u x

def
:=

∂u

∂x
, etc.Equation (3.3) has to be completed by initial and boundary conditions.

The boundary conditions are described by Equation (2.5), which are of (mixed) Robin-
type and the initial condition as u 0 (x) ≡ u (x, 0) ∈ H 1(I) . Then, the Boundary-Value
Problem (BVP) (3.3) has a unique solution u (x, t) ∈ L 2

(

(0, T ), H 1 (I)
)

.

3.2. Problem reformulation as a BVP

For our purposes it will be more advantageous to recast Equation (3.3) in a non-conservative
form. By assuming that function D (u) is continuously differentiable, we introduce its de-
rivative:

d (u)
def
:=

dD (u)

du
≡ D

′ (u) .

After taking one derivative, Equation (3.3) becomes:

u t − ā (u, u x) u x − d̄ (u) u xx = f (x, t) , (3.5)

where we introduce the effective coefficients:

ā (u, u x)
def
:=

d (u) u x

c (u)
, d̄ (u)

def
:=

D (u)

c (u)
,
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and also the effective source term:

f (u, x, t)
def
:=

F (x, t)

c (u)
.

Equation (3.5) is equivalent to Equation (3.3) for smooth solutions. Under assumptions
(3.4) the solutions are indeed smooth.

Equation (3.5) is an evolution equation written in time–space: first we write the deriva-
tives with respect to time, then the spatial ones. According to the philosophy of the
approach described in Section 3, let us rewrite it in space–time:

d̄ (u) u xx + ā (u, u x) u x = f (u, x, t) + u t .

In other words, we see the time derivative u t as a source term for our convenience. Finally,
we rewrite the last equation as a system of first-order differential equations in the spatial
variable x :







u x = ϑ ,

ϑx =
f + u t

d̄ (u)
−

ā (u, ϑ)

d̄ (u)
ϑ .

The last system can be rewritten with original coefficients as well:






u x = ϑ ,

ϑx =
F + c (u) u t

D (u)
−

d (u)ϑ

D (u)
ϑ .

In order to have a true BVP, we have to get rid of the solution dependence on time. To
do it, we (semi-)discretize the solution u in time, i.e., we replace the surface u (x, t) by a
sequence of lines:

un (x)
def
:= u (x, tn) , tn = n∆ t , n ∈ N 0 ,

where ∆t > 0 is a chosen time step. See Figure 1(b) for an illustration. This method is
called the Method Of Horizontal Lines (MOHL). At each time layer tn we have to solve a
true BVP:







un
x = ϑn ,

ϑn
x =

F n + c (un)
(

u ⋆
t

)n

D (un)
−

d (un)ϑn

D (un)
ϑn ,

where
(

u ⋆
t

)n
is an approximation of the time derivative. Depending on the accuracy we

would like to achieve, we can take the following backward finite-difference formulas:

(

u ⋆
t

)n
=

un − un−1

∆t
+ O

(

∆t
)

,

(

u ⋆
t

)n
=

3 un − 4 un−1 + 2 un−2

2∆t
+ O

(

∆t 2
)

.

In this case, the second-order accuracy in time is implemented in the calculations in order
to have a more precise solution, so that we can use ∆t ⋆ > 10−1 . The final scheme is
unconditionally stable according to the construction of the method.
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3.3. Numerical methods

All numerical results in this paper were computed using Matlab™2017b.The solver bvp4c
[43] is employed to solve the BVP problem at every time step, other solvers also can be
employed such as the bvp5c [43] and even bvp6c [20]. The codes for bvp4c & bvp5c are
available within any standard Matlab™ distribution, while the code bvp6c was developed
by Dr. Nick Hale (Stellenbosh University, South Africa) and is freely available. All these
methods are based on finite-difference approximations that implement various orders of
Lobatto IIIA formula. This is a collocation method and the corresponding collocation
polynomial provides a C 1 (I) approximation of the uniform fourth, fifth or sixth orders
of accuracy in ∆x, respectively. Special attention should be given to the fact that other
implementation details are quite different among the solvers, the order is not the only
difference between them. In our numerical simulations we use adaptive methods of the
fourth order which in most practical applications are enough.

Let us consider a system of ordinary differential equations of the form u ′ (x) = f (x, u) ,
within the interval [ a, b ] subjected to two boundary conditions ψ (u (a), u (b)) = 0. To
use any of the BVP solvers, three inputs are required: the initial guess, a function with the
boundary conditions and another function with the system of ordinary equations. They
will return essentially three outputs: the spatial grid mesh, the solution approximation of
u (x) at the mesh points and the approximation to u ′ (x). Note that the solvers produce
a solution that is continuous in the considered interval [ a, b ] and with a continuous first
derivative. For more details on the methods and their implementations refer to [20, 43].

The essential feature of these algorithms is the adaptive distribution of collocation nodes.
The grid adaptation and error control are based on the residuals (there are two: one for
the equation and one for the boundary conditions) of the C 1 (I) continuous solution. The
convergence speed towards the BVP solution depends essentially on the quality of the
initial guess. Here we deal with an IVP-BVP problem. Thus, the BVP-solution value
on the previous time step can be a good approximation. However, some physics-based
or vector-based extrapolation techniques might also be used to further reduce internal
iterations on every time step. The boundary conditions are directly provide as one of the
inputs of the solver. No special treatment need to be carried out before supplying it.

3.4. Extension to the coupled transfer

There are two ways of using the BVP approach in the heat and mass transfer System (2.3).
The first one is to take advantage of the solver bvp4c that provides directly the derivative
of the field as output. First, it is computed the solution for v and then, it is computed
the solution for u , which is the approach used in the application Section. This approach
works because System (2.3) is weakly coupled. The procedure to implement the MOHL is
described in Algorithm 1.
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Therefore, using this approach, the system of first-order differential equations for the
mass balance equation Equation (2.3a) is written as:











v n
x = ϑn ,

ϑn
x =

(v ⋆
t )

n

d̄ (v n)
−

ā (v n , ϑn)

d̄ (v n)
ϑn ,

(3.6)

while the system of the energy equation Equation (2.3b) as:















un
x = µn ,

µn
x =

[

(u ⋆
t )

n

b̄ (v n)
+

c̄ (v n)− f̄ (v n)

b̄ (v n)
ϑn

x +
h̄ (v n, ϑn)− ḡ (v n, ϑn)

b̄ (v n)
ϑn

]

−
ē (v n, ϑn)

b̄ (v n)
µn ,

(3.7)

where,

ā (v n, ϑn) =
FoM

c ⋆M (v n)
·
d k ⋆

M (v n)

d v
ϑn , b̄ (v n) =

FoT · k ⋆
T (v n)

c ⋆T (v n)
,

ē (v n, ϑn) =
FoT

c ⋆T (v n)
·
d k ⋆

T (v n)

d v
ϑn , c̄ (v n) =

FoM · γ 1 · k
⋆
M (v n) · c ⋆TM (v n)

c ⋆T (v n) · c ⋆M (v n)
,

ḡ (v n, ϑn) =
FoT · γ 2

c ⋆T (v n)
·
d k ⋆

TM (v n)

d v
ϑn , d̄ (v n) =

FoM · k ⋆
M (v n)

c ⋆M (v n)
,

h̄ (v n, ϑn) =
FoM · γ 1 · c

⋆
TM (v n)

c ⋆T (v n) · c ⋆M (v n)
·
d k ⋆

M (v n)

d v
ϑn , f̄ (v n) =

FoT · γ 2 · k
⋆
TM (v n)

c ⋆T (v n)
.

In addition, the boundary conditions that complement Equation (3.6) are:

{

R v,L = k ⋆
M (v n) · ϑn − BiM,L · v n + BiM,L · v∞, L + g∞ ,

R v,R = k ⋆
M (v n) · ϑn + BiM,R · v n − BiM,R · v∞, R ,

(3.8)

and, the boundary conditions that complement Equation (3.7) are:























Ru,L = Fo T

(

k ⋆
T (v n)µn + k ⋆

TM (v n) γ 2 ϑ
n
)

−BiT,L(u
n − u∞, L)− BiTM,L γ 2(v

n − v∞, L) + q∞ ,

Ru,R = Fo T

(

k ⋆
T (v n)µn + k ⋆

TM (v n) γ 2 ϑ
n
)

+BiT,R(u
n − u∞, R) + BiTM,R γ 2(v

n − v∞, R) ,

(3.9)

where, R represents the residual and the subscripts L and R represent values of the left
and right boundary conditions.

When dealing with highly coupled equations, the issue is to rewrite System (2.3) in a
vectorized way, such as Equation (2.4), and solve it at as only one equation. In the next
section, the MOHL is tested in two cases of numerical application.
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Algorithm 1 MOHL’s algorithm for the weakly coupled heat and moisture transfer problem.

1: Initialization;
2: Define functions: ODE of v and ODE of u ; ⊲ from Equation (3.6) and (3.7)
3: Define functions: BC of v and BC of u ; ⊲ from Equation (3.8) and (3.9)
4: Define initial solution: v 0 and u 0 ;
5: Set relative and absolute tolerances “tol” of the solver;
6: while t < τ do

7: [ v n, v n
x ] = bvp4c (ODE of v n , BC of v n , v 0);

8: [ un, un
x ] = bvp4c (ODE of un , BC of un , u 0);

9: Compute refined solution;
10: Update: v 0 and u 0 ;
11: Increment: t := t + ∆t and n := n + 1 ;

12: return v (x, t), vx (x, t) , u (x, t) and u x (x, t) .

4. Numerical benchmark

Simulations of one-dimensional coupled heat and moisture transport are carried out
with the MOHL method, the Euler implicit method used in a numbers of works (see for
instance [22, 29]) and a reference solution to verify the applicability and the advantages of
the proposed method. The Euler implicit scheme approximates the continuous operator
to the order O (∆x 2 + ∆t) . The reference solutions are computed using the Matlab™ open
source toolbox Chebfun [22].

To compare and validate the proposed method, the error between solution components
u num and v num, obtained by the MOHL method or the Euler implicit, and the reference
solutions u ref and v ref , are computed as functions of x using the following Euclidean norms:

ε 2, u (x)
def
:=

√

√

√

√

1

N t

N t
∑

j=1

(

u num
j (x , t j) − u ref

j (x , t j)
) 2

,

ε 2, v (x)
def
:=

√

√

√

√

1

N t

N t
∑

j=1

(

v num
j (x , t j) − v ref

j (x , t j)
)2

,

where N t is the number of temporal steps. The uniform norm errors ε∞, u and ε∞, v are
given by the maximal values of ε 2, u (x) and ε 2, v (x) :

ε∞, u

def
:= sup

x ∈

[

0, L
]

ε 2, u (x) , ε∞, v

def
:= sup

x ∈

[

0, L
]

ε 2, v (x) .

In the aftermath, the numerical case studies are presented.
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Figure 2. Temperature T (a) and relative humidity φ (b) boundary conditions.

4.1. Single layer case

In order to contemplate the applicability of the presented method, the first case study
considers the combined effects of the heat and moisture transfer. A physical application is
performed in a 10-cm monolithic bearing material. To test the robustness of the scheme
with strong nonlinearities, the properties of the material are gathered from [19] and re-
minded in Table 3 of the Appendix A. Initial conditions are considered uniform over the
spatial domain, with an initial temperature of T i = 293.15 K and an initial vapour pressure
of P v, i = 1636.53 Pa , referent to the relative humidity of 70% .

The boundary conditions, represented by the relative humidity φ and temperature T ,
are shown in Figure 2. They oscillate during 72 hours of simulation. The convective mass
and heat transfer coefficients are set to hM = 2 · 10−7 s/m and hT = 25 W/(m 2 · K)
at the left boundary, and to hM = 3 · 10−8 s/m and hT = 8 W/(m 2 · K) , at the right
boundary. No additional source term is considered for the moment.

Simulations with the MOHL method were performed using the solver bvp4c with the
relative and absolute tolerances set to tol = 10−5 for moisture and tol = 10−6 for temper-
ature. The time step discretization is of ∆t ⋆ = 10−1 and, for the space discretization an
adaptive technique is employed, as explained in Section 3.3. The initial guess is composed
by 10 spatial nodes, for vapour pressure and temperature fields. For the Euler Implicit
solution, simulations have been performed with ∆x ⋆ = 10−2 and ∆t ⋆ = 10−2.

Figure 3 presents the selected mesh determined by the solver for the last profile of
temperature and vapour pressure fields, with the reference solution and with the refined
solution. This last one is an evaluation of the solution that covers all the interval [ 0, L ] in
more points than the selected mesh. Note that at each time layer the number of points of
the selected mesh varies, with a maximum of 15 points for the moisture field and 19 points
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Figure 3. Selected mesh determined by bvp4c for the last profile (at t = 72 h)

of temperature (a) and vapour pressure (b) fields.

for the temperature field. Over the simulation time the number of nodes remained almost
the same, which means it was sufficient for the set tolerance. If we decrease the tolerance,
the number of nodes of the spatial grid would rise accordingly.

Simulation results of the temperature, vapour pressure and relative humidity evolution
on the boundaries of the building component (x = 0 m and x = 0.1 m ) are presented
in Figures 4(a), 4(b) and 4(c), respectively. The proposed method has been able to follow
successfully the solicitations from the boundary conditions and represent the solution. The
step on the relative humidity at the right boundary can be observed on the vapour pressure
and relative humidity evolution. The vapour pressure diffuses over the material almost
instantaneously with the step imposed. The level of moisture is high but the material is
not saturated. It can be noted that for the simulation of such cases with really high levels
of moisture, it is better to change the physical model using, for instance, the moisture
content or the capillary pressure as potentials [29].

The computed temperature and relative humidity distribution profiles for t = { 30, 36, 40 } h
are presented in Figures 5(a) and 5(b). As this material has a fast liquid transfer, the pro-
files of relative humidity are almost straight lines. The material is highly permeable but
with a low hygroscopicity, as it does not retain the moisture. For the temperature, it can
also be observed that it diffuses quickly and it has the opposite effect of the relative hu-
midity. Furthermore, it can be noted a good agreement between the MOHL method, the
Euler implicit and the reference solution.

The error ε 2 between the MOHL and the Euler implicit method with the reference
solution are given in Figure 6. For the temperature distribution, the error is to the order
of O

(

10−5
)

and, for the vapour pressure component is to the order of O
(

10−3
)

. The
error is not of the same order for each solutions perhaps due to the following reasons: (i)
the properties are more nonlinear for the moisture balance equations; (ii) or the residual
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Figure 4. Evolution of the temperature (a), vapour pressure (b) and of the

relative humidity (c) on the edges of the material (at x = 0 m and x = 0.1 m ).

effect of initial guess for the vapour pressure profile; (iii) or moisture diffusive is much
slower than heat, for the present case; (iv) the order of the dimensionless fields u and v
are not the same. Even with this difference, these results are consistent to the tolerance,
that was set to tol = 10−5 and to the discretization on time, that is second-order accurate
O (∆t 2) . It is admissible that the actual error is slight larger than the prescribed tolerance.
The solver estimates the residual and not the actual error strictu sensu (since the exact
solution is unavailable). It is required that the error decrease when the tolerance decrease
as shown in Table 1.

The accuracy of the solution depends on several factors, one of them is the absolute and
relative tolerances of the solver. To compare different values of the tolerance with the solver
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Figure 5. Temperature (a) and relative humidity (b) profiles at different times.
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Figure 6. Error ε 2 computed over the time with the MOHL and the Euler

approaches, for the dimensionless temperature -u- and vapour pressure -v-

solutions.

bvp4c, Table 1 presents the error ε∞ for both solutions, the dimensionless temperature (u)
and the dimensionless vapour pressure (v), as well as the number of mesh points used by
the solver. As the tolerances get more restrictive, the solver adapts the solution making
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Table 1. Maximum error ε∞ computed with different tolerances with the solver bvp4c.

tol ε∞, u mesh ε∞, v mesh CPU time

10−6 3.5 · 10−5 19 2.1 · 10−4 21 21.9 s

10−5 1.5 · 10−4 10 4.5 · 10−4 15 15.9 s

10−4 1.5 · 10−4 10 8.9 · 10−4 11 15.3 s

10−3 1.5 · 10−4 10 5.4 · 10−4 10 13.9 s

10−2 1.5 · 10−4 10 2.3 · 10−4 10 13.3 s

10−1 1.5 · 10−4 10 7.2 · 10−3 10 13.1 s

Table 2. Features and CPU time of the methods implemented in the single layer

case study.

BVP Euler implicit Euler explicit

∆t ⋆ 10−1 10−2 10−5

N x, u 10 101 201

N x, v 15 101 201

ε∞, u O (10−4) O (10−4) O (10−4)

ε∞, v O (10−4) O (10−4) O (10−4)

CPU time
[

s
]

18.5 57.5 2572

CPU time
[

−
]

0.49 1 44

the number of mesh points to increase to provide a consistent solution with the specified
accuracy. The initial number of points was 10 . For the tolerance tol 6 10−3, more than
10 nodes are needed to compute the solution. For this case study, a tolerance of tol = 10−3

would be enough to provide an accuracy to order of O (10−4).
The CPU time required to compute the solution of this case study is provided in Table 2.

The compuational time required for the Euler explicit approach is also included. It has
been evaluated using Matlab™ platform on a computer with a processor Intel® Core i5
CPU 2.80 GHz and 15.6 GB of RAM memory. The Euler explicit requires more time due
to the CFL stability condition, since it is not possible to increase the time discretization.
For the Euler implicit solution, it takes an average of 11 iterations at each time step
to converge to the solution which increases the global computational time of the method.
The MOHL method is faster than the two Euler approaches implemented here. It can
be remarked that for the same order of accuracy of the solution, the proposed method is
two times faster. Moreover, as it can be seen in Table 1, the accuracy of the solution can
be increased with a relatively low increase of the spatial mesh and of the CPU time.

One of the advantages of using the solver bvp4c is that it has as output the respective
derivatives of the fields, making the computation of the fluxes straightforward. Thus,
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Figure 7. Sensible, latent and total heat fluxes at the left boundary and (a) at
the right boundary (b), for the one-layer case.

Figures 7(a) and 7(b) present the sensible and latent heat fluxes at the left and right
boundaries. As illustrated in those figures, the sensible heat flux is the main component
of the surface energy balance. The latent heat flux at the right boundary slightly changes
with the step on the relative humidity at t = 36 h , showing its little influence on the heat
diffusion.

The total moisture flow (liquid plus vapour) at both boundaries are shown in Figure 8.
As it can be observed, the flow follows variations of the boundary conditions. Furthermore,
the left boundary has higher variations because its convective mass transfer coefficient is
higher than the one at the other boundary. The step of relative humidity at the right
boundary can also be observed on the moisture flow which suddenly changes.

4.2. Multilayered domain

In building constructions, multiple layers are commonly found. The configuration as-
sumed at the interface between materials follows the hydraulic continuity (P v, 1 = P v, 2

and T v, 1 = T v, 2 ), which considers interpenetration of both porous structure layers [10].
Both materials are homogeneous and isotropic, and only heat and moisture transfer are
simulated, through a perfectly airtight structure.

Consider Equation (2.3b) over a multidomain in which x ⋆ ∈ [ 0, x ⋆
int ) ∪ [ x ⋆

int, 1 ] . The
coefficients are written in a general form as illustrated for the moisture diffusion:

k ⋆
M(v, x ⋆) =

{

k ⋆
M, 1 (v) , x ⋆ < x ⋆

int ,

k ⋆
M, 2 (v) , x ⋆ > x ⋆

int ,
(4.1)
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Figure 8. Moisture flow at the boundaries, for the one-layer case.

where x ⋆
int is the location of the interface between materials and the indices 1 and 2 represent

each material layer.
Thus, by using the MOHL approach, it is assumed that at the interface, the solution

and the solution derivative of the problem are continuous. In this way, the method will
search for the solution that can satisfy both conditions automatically. These interface
assumptions are verified with an analytical solution in the Appendix C.

4.2.1 Application

This case study considers a porous wall formed by 2 layers: 10-cm of a load bearing
material and 2-cm of finishing material. Figure 9 shows schematically this physical situa-
tion. The selected materials further complicate the case, with the first layer having a faster
liquid transfer while the second layer acts as a hygroscopic finish. The properties used for
these materials were obtained from [19] which are given in Tables 3 and 4.

Initial conditions are considered uniform over the spatial domain, with an initial tem-
perature of T i = 293.15 K and an initial vapour pressure of P v, i = 1.16 · 10 3 Pa , referent
to a relative humidity of 50% . The boundary conditions oscillate sinusoidally during 120
hours of simulation, which are represented in Figure 10. The convective mass and heat
transfer coefficients are set with the same values as in the previous case study.

The rain is present in the simulation between hours [ 40, 65 ] h , reaching a maximum
value of 2 · 10−4 kg/(m2 · s) at 52 h , as presented in Figure 11(a), which generates a
sensible heat flux of 12 W/m2 at this boundary as shown in Figure 11(b). The rain flux is
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Figure 9. Schematic representation of the two-layered wall.
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Figure 10. Boundary conditions of temperature T (a) and relative humidity φ

(b) for the multilayered case.

included at the left boundary, which causes a rapid increase of moisture within the material.
The liquid flow from the rain can vary according to the wind speed [5]. In the literature
[17, 19, 22, 39], it is possible to find values within the range [ 2 · 10−5, 8 · 10−4 ] kg/(m2 · s) .

Simulations were performed using the bvp4c, with relative and absolute tolerances of
the solver set to 10−5 . The time is incremented with a discretization of ∆t ⋆ = 10−1 ,
with an initial guess composed by 20 spatial nodes, for both the vapour pressure and the
temperature. The main advantage of using the approach of MOHL is that there is no need
to perform sub-iterations at each time step to consider the nonlinearities of the material
properties. Besides, no special treatment is needed at the interface. Everything is handled
automatically. For the Euler implicit solution, simulations have been performed with
∆x ⋆ = 10−2 and ∆t ⋆ = 10−1 .
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Figure 11. Rain flow imposed at the left boundary (a) and the sensible heat flux
caused by the rain (b).
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Figure 12. Selected mesh determined by bvp4c for the last profile (at

t = 120 h ) of temperature (a) and vapour pressure (b).

Figures 12(a) and 12(b) present the selected mesh for the last profile of temperature and
vapour pressure fields, respectively, and also, the refined and the reference solutions. At
each time iteration, the number of mesh points varies with an average of 498 mesh points for
the moisture field and 235 mesh points for the temperature field. Due to high nonlinearities,
a concentration of nodes is noted at the interface between materials and where the gradients
are higher. For the domain of the second layer, with the finishing material, only 33 nodes
were used to compute the vapour pressure field, where 20 are concentrated closer to the
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Figure 13. Error ε 2 computed for the MOHL method, for the temperature and

vapour pressure solutions of the multilayered case.

interface between the two materials. It indicates that the method proposed can be adapted
according to the physical phenomenon.

The MOHL has demonstrated a good agreement with the reference solution given by
Chebfun to reproduce the physical phenomenon. Distributions of the error ε 2 on function
of x are shown in Figure 13. The error of the MOHL is ε∞, v = 8.3 · 10−4 for the vapour
pressure and ε∞, u = 10−4 for the temperature. These values depend on the order of the
discretization in time and on the chosen tolerance of the solver.

Figure 14(b) presents the relative humidity profiles when the rain flow occurs. It is
possible to observe a liquid concentration on the left edge, and, a stable situation on
the right edge. This behaviour is observed due to different material properties. As the
second layer is less hygroscopic than the first layer, the rain flow crosses both materials and
arrives at the right boundary with little intensity. Additionally, Figure 14(a) presents the
temperature profiles for the same time instants. The temperature increases in the middle
of the material are due to the moisture content gradients on the storage coefficient.

The evolution of temperature, vapour pressure and relative humidity at the boundary
surfaces (x = 0 m and x = 0.12 m ) are shown in Figures 15(a), 15(b) and 15(c), respec-
tively. The vapour pressure varies according to the sinusoidal fluctuations of the boundary
conditions affected by the rain flow. At x = 0 m , the vapour pressure suddenly increases
due to the rain flow imposed at the surface. The moisture due to the rain flow diffuses
through both layers. Although, as the second layer is composed with a less hygroscopic
material, the vapour pressure completely reaches this surface by 70 h . In Figure 15(a), it is
possible to observe a peak of temperature on the right boundary, which is caused because
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Figure 14. Temperature (a) and relative humidity (b) profiles at different times
for the multilayered case.

the heat transfer coefficient under vapour pressure gradient k ⋆
TM is ten times higher in the

second layer than in the first one.
Figure 16(a) indicates the sensible, the latent and the total heat fluxes over both materi-

als, at the instant t = 60 h , a while after the peak of rain flow. Furthermore, Figure 16(b)
presents the total moisture flow for the same time. In Material 1 , the sensible and latent
heat fluxes have high values but with opposite signs. As the latent heat flux is slight higher
they do not cancel each other. Material 2 has a higher diffusive coefficient than Material
1 , which explains the horizontal line for the fluxes and flow profiles. Another important
point is that the total flux and flow across the interface between the two materials are
continuous, which is consistent with the assumption of hydraulic continuity [10, 11].

The moisture storage coefficient and the moisture diffusive coefficients are shown in Fig-
ures 17(a) and 17(b), respectively. They are presented on function of the space distribution
for different time instant t = { 40, 50, 60, 70 } h. The differences are high between the
material properties and it is possible to observe the non-linearities due to the moisture
content gradients.

5. Comparison of the numerical predictions with experi-

mental data

In this section, the physical model with the MOHL numerical model is compared with
experimental data gathered from the French project HYGRO-BAT [2]. The measurements
were performed at the French laboratory LOCIE (Laboratory of Optimisation of the Con-
ception and Engineering of the Environment). One dimensional coupled heat and moisture
transfer through a single-layered wall is monitored by sensors placed within the material
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Figure 15. Evolution of the temperature (a), of vapour pressure (b) and of
relative humidity (c) on the boundary surfaces for the multilayered case.

and at its surfaces. The liquid transfer k l in the moisture balance equation — Equa-
tion (2.1a) — is neglected in this study. Surface sensors provide boundary conditions for
the coupled simulation, while the other sensors provide reference measurements for the
model confirmation.

The wall considered in their study is composed of a 16-cm layer of wood fibre material,
which is subjected to variations on the temperature and relative humidity for a 2-week
period. The material properties are given in Table 5 of the Appendix A. The reference
data for the evaluation is provided by temperature and humidity sensors SHT75 Sensirion,
located at x = { 4, 8, 12 } cm inside the wall. They are located sparsely within the wall
to avoid interferences among them.
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Figure 16. Profile of sensible, latent and total heat fluxes (a) and of moisture

flow (b) at t = 60 h .
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Figure 17. Moisture storage coefficient (a) and total moisture transfer
coefficient (b) values over space domain for different times.

The sensors have an uncertainty of measurement of σmeas
T = 0.3◦ C for temperature

and of σmeas
φ = 0.018 for relative humidity. In addition, the uncertainty regarding the

position of the sensors is of σ pos = 1 cm for the sensors located at x = { 4, 12 } cm and of
σ pos = 0.5 cm for the other sensors. The uncertainty on position is higher for the sensor
at x = { 4, 12 } cm , since according to the experiment design, they have been settled by
perforating a whole in the wood fibre layer.
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Figure 18. Ambient temperature (a) and relative humidity (b) of the
experimental investigation.

The temperature and relative humidity at the interior and exterior boundaries are mea-
sured and given in Figures 18(a) and 18(b), respectively. In these figures, the uncertainties
related to the sensors measurements are shown in gray color. At the interior boundary, the
temperature is set to approximately 24◦ C and the relative humidity set to 40% , at the
first week, and to 70% at the second week. The exterior temperature and relative humidity
values are given by their measurement at the boundary, which is filtered by a 2-cm coating
layer, excluding solar radiation and driving rain phenomena. Thus, both boundaries are
expressed as Dirichlet conditions for the model confirmation. For more details about
the experiment one may refer to [38] and [40]. In this wok, the temporal derivative of ρw

in Equation (2.1b) was also taken into account, differently from [40].
For confirming simulations, the relative error - ǫ - between the solutions and the data

are computed as:

ǫ (t)
def
:=

√

(

Y num
k (x k, t) − Y meas

k (x k, t)
)2

Y meas
k (x k, t)

,

where Y num
k is the computed solution and Y meas

k is the measured data.
Simulations are performed on a single-layered wall of a material that separates two

ambiances. The initial condition for the temperature and vapour pressure profiles are
given by an interpolation of the measurements at x = { 0, 4, 8, 12, 16 } cm , at the first
time instant. The solver chosen to perform the MOHL method is the bvp4c, with relative
and absolute tolerances set to 10−4 . The solution has been computed with a time step of
∆t ⋆ = 0.1 , the equivalent of 6 min .

Results of the simulation are compared in terms of temperature and vapour pressure.
Figure 19 presents the measured data and the simulation results in each one of the locations
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of the sensors, at x = { 4, 8, 12 } cm . The error between the predicted solution and the
experimental observations is between the uncertainties of the sensors during almost all
simulation period. The uncertainties are displayed on gray in Figure 19 and they are
calculated according to the position of the sensor (σ posi ) and according to the sensor
measurement error (σmeas ):

σ total =
√

(σmeas) 2 + (σ pos) 2

where σ total are the total uncertainties regarding the temperature and the vapour pressure
fields. The detailed computation of the measurement uncertainties can be verified in [3].
For the temperature evolution, the highest difference is when the relative humidity at
the left boundary change from 40% to 70% . From the 7th day, the measured value of
temperature rises more than on the simulated one as can be observed in Figure 19(a). With
the variations at the boundaries, the simulated temperature (v. Figures 19(c) and 19(e))
varies more than the measured temperature. It seems that the total diffusion coefficient of
the temperature used for the simulation is higher than the real one. The difference between
the simulated and measured values of temperature reaches a maximum of 2◦ C affected by
the moisture flow.

A high influence of the step on the relative humidity can be observed at x = 4 cm in
Figure 19(b), which decreases along the thickness. Simulations do not completely follow
the variations of vapour pressure, but not because of the numerical method, but because
of the physical model, which does not consider liquid transport neither hysteresis. In
Figures 19(d) and 19(f), the differences between simulations and measurements get higher,
with the incoming moisture flow reaching a maximum of 77 Pa and 80 Pa , respectively.
The absolute difference is higher at x = 4 cm , as it is closer to the left boundary and
consequently to the incoming flow.

The relative error ǫ of the computed solutions are presented in Figure 20. Simulations
with the MOHL method showed a good agreement with the reference data. The maximum
relative error for temperature solution is 0.7% and for vapour pressure is 5.7% . The
average error on the dynamic profiles is 0.2% for temperature and 1.7% for vapour pressure,
values which are close to the ones obtained by Rouchier et al.[40].

The MOHL method can provide a very accurate solution of the physical model. The
difference that it is observed in Figure 19 is attributed to the model that describes the
phenomenon, as previously mentioned, and to the values of the estimated properties. Nev-
ertheless, despite these discrepancies, simulated results are considered satisfactory for the
prediction of heat and moisture transport.

6. Conclusions

Mesh refinement is a great issue in the field of numerical simulations of thermal sciences
problems. Therefore, the present article shows that the unsteady problem of heat and
moisture transfer can be solved from a different perspective. Namely, we interchange the
order of discretization by proposing a numerical model accurate to the order O (∆x 4

∼
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Figure 19. Evolution of the temperature and vapour pressure at
x = { 4, 8, 12 } cm inside of the material of the measured data versus the
simulation solution.
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Figure 20. Relative error of the simulated temperature (a) and vapour pressure

(b) solutions computed at the interior of the material.

∆x 6) with a moderate decrease of computational efforts. Traditionally, the numerical
analysts discretize the differential governing equations first in space and, then, the coupled
system of ODEs is solved in time. This approach is usually referred to as the Method Of
Lines (MOL) [21].

Here, we proposed another point of view on the same problem, the so-called Method Of
Horizontal Lines (MOHL). It consists of a semi-discretization; first, in time and only then in
space using appropriate methods. So, the Initial-Boundary Value Problem (IVP–BVP) is
replaced by a sequence of BVPs. Moreover, we took advantage of the fact that today there
are well-tested robust adaptive numerical methods to tackle BVPs in one space dimension
[20, 43]. The resulting discretization is fully implicit, thus, unconditionally stable. In other
words, the semi-discretization in time is not subject to any kind of restriction regarding
the time step [8]. Thus, the time step can be chosen based on the accuracy considerations
solely. The distribution of spatial nodes is adaptive and can change at every time step. The
grid is further refined (or unrefined) to meet a prescribed error tolerance. The numerical
solution error is estimated by computing the continuous residual (inside the domain and
at the boundaries).

This new method has been evaluated on two numerical case studies of heat and mois-
ture transfer in porous media. Each case aimed at exciting the non-linear properties of
the material to induce sharp profiles of temperature and vapour pressure. The first case
considered a single material layer with sinusoidal variations of boundary conditions, taking
into account a sudden rain effect at one boundary. The second case studied the heat and
moisture diffusive transfer through a multi-layered material. For both cases, the numerical
method has shown a high accuracy and perfect agreement with the respective reference
solutions. The error was of the order O (10−4) or less. The advantage of the proposed
method is the adaptive spatial mesh grid according to the solicitations of the physical phe-
nomena. Moreover, it has been demonstrated that for the same order of accuracy of the
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solution, the MOHL numerical model is twice faster than the classical implicit Euler with
central finite-difference approach. In the multilayered domain case study, for example, the
nodes were concentrated at the interface between materials and at higher gradients, which
allowed a solution with high order of accuracy.

The last case study aimed at highlighting the use of the numerical model to compare
the numerical predictions with experimental data. The configuration represents a one
layer wall exposed to climatic boundary conditions. On the other side, the boundary
conditions are controlled so as to impose a step in relative humidity from 40% to 70%
with a constant temperature. The comparison revealed a satisfactory agreement between
the numerical results and the experimental data. The MOHL numerical model can provide
a very accurate solution of the physical model to predict the heat and moisture transfer in
porous materials.

As a technical improvement of the present method, there is another possible direction.
Namely, one could notice that we have used a higher-order (at least, fourth order) C 1

continuous interpolation in space and only second-order discretization in time. It might
appear as an imbalanced discretization. Hence, this point might be improved in future
works by choosing higher-order differentiating in time as well. Another improvement can
be achieved if we generalize the method to non-uniform time steps as well.
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Nomenclature

Latin letters

c 0 material specific heat capacity [J/(kg · K)]

cw liquid water specific heat capacity [J/(kg · K)]

cM moisture storage coefficient [s2/m2]

cTM coupling storage coefficient [W · s3/(kg ·m2)]

cT energy storage coefficient [W · s/(m3
· K)]

hM convective vapour transfer coefficient [s/m]

hT convective heat transfer coefficient [W/(m2
· K)]

H l water enthalpy [J/kg]

g moisture flow [kg/(m2
· s)]

k l liquid permeability [s]

kM moisture transf. coeff. under vap. press. grad. [s]

k TM heat transf. coeff. under vap. press. grad. [W · s2/kg]

k T heat transf. coeff. under temp. grad. [W/(m · K)]

L length [m]

L v latent heat of evaporation [J/kg]

P c capillary pressure [Pa]

P s saturation pressure [Pa]

P v vapour pressure [Pa]

q heat flux [W/m2]

R v water gas constant [J/(kg · K)]

s view factor between surfaces [−]

t time [s]

T temperature [K]

w moisture content [kg/m3]

x coordinate direction [m]

Greek letters

δ v permeability [s]

ξ emissivity [−]

λ thermal conductivity [W/(m · K)]

σ Stefan–Boltzmann constant [W/(m2
· K4)]

φ relative humidity [−]

ρ specific mass [kg/m3]



Adaptive simulation of heat and moisture transfer 35 / 44

Parameters involved in the dimensionless representation

u, v fields [−]

Bi Biot number [−]

Fo Fourier number [−]

ν diffusion coefficient [−]

c ⋆ storage coefficient [−]

k ⋆ permeability coefficient [−]

q ⋆, g ⋆ source terms [−]

A. Material properties

Table 3. Hygrothermal properties of the load bearing material [19].

Property Value Unit

Thermal capacity ρ 0 c 0 = 2005 · 840 [J/m3 · K]

Sorption isotherm w (φ) = 47.1

[

1 +
(

−1692.94 · ln(φ)
)1.65

]

−0.39

+

109.9

[

1 +
(

−2437.83 · ln(φ)
)6
]

−0.83

[kg/m3]

Vapour permeability δ v (φ) = 6.413 · 10−9 ·

(

1− w (φ)
157

)

0.503
(

1− w (φ)
157

)2

+ 0.497
[s]

Liquid permeability k l (φ) = 2.52 · 10−4 · exp(−1.55 · 10 6 · φ) [s]

Thermal conductivity λ (φ) = 0.5 + 0.0045 · w (φ) [W/(m · K)]

B. Dimensionless parameters

B.1. Case from Section 4.1

Problem (2.3) is considered with FoT = 1.6 · 10−1 , FoM = 3.2 · 10−2 , γ 1 = 2.3 · 10−2

and γ 2 = 1.58 · 10−1 . The reference time is t 0 = 1 h, thus, the final simulation time
is fixed to τ ⋆ = 72 . The reference temperature and vapour pressure were taken the
same as the initial condition. At the boundaries, the Biot numbers assume the following
values: BiM,L = 3.65, BiM,R = 0.55 , BiT, L = 6.45 , BiT,R = 2.06 , BiTM,L = 0.13 and
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Table 4. Hygrothermal properties of the finishing material [19].

Property Value Unit

Thermal capacity ρ 0 c 0 = 790 · 870 [J/m3 · K]

Sorption isotherm w (φ) = 209

[

1 +
(

−2.7 · 10 14 · ln(φ)
)1.27

]

−0.21

[kg/m3]

Vapour permeability δ v (φ) = 6.413 · 10−9 ·

(

1− w (φ)
209

)

0.503
(

1− w (φ)
209

) 2

+ 0.497
[s]

Liquid permeability k l (φ) = exp[−33 + 0.0704 · (w − 120)
−1.742 ·10−4 · (w−120)2−2.795 ·10−6 · (w−120)3

−1.157 ·10−7 · (w−120)4+2.597 ·10−9 · (w−120)5]

[s]

Thermal conductivity λ (φ) = 0.2 + 0.0045 · w (φ) [W/(m · K)]

Table 5. Hygrothermal properties of the wood fibre [40].

Property Value Unit

Thermal capacity ρ 0 c 0 = 1103 · 146 [J/(m3 · K)]

Sorption isotherm w (φ) = 7.063 · 10−5 ·φ 3− 0.00736 · φ 2+0.4105 ·φ+
0.2688

[kg/m3]

Vapour permeability δ v (φ) = 4.85 · 10−13 · φ+ 3.28 · 10−11 [s]

Thermal conductivity λ (φ, T ) = 0.038 + 0.192 ·
w (φ)

ρ l

+ 1.08 · 10−4 · T [W/(m · K)]

BiTM,R = 0.02 . The temperature and vapour pressure vary sinusoidally over the time as
the following expressions:

u∞, L (t
⋆) = 1 + 0.02 · sin ( 2 π t ⋆/48 )2 ,

u∞,R (t ⋆) = 1 + 0.005 · sin ( 2 π t ⋆/24 ) 2 ,

v∞, L (t
⋆) =

(

0.7 + 0.25 · sin( 2 π t ⋆/24 ) 2
)

·
(

P s(u∞, L (t
⋆) · T i)/P v, i

)

,

v∞, R (t ⋆) =
(

0.825 + 0.125 · tanh(t ⋆ − 36)
)

·
(

P s(u∞,R (t ⋆) · T i)/P v, i

)

.

The properties are dimensionalised with the following reference values:

cM, 0 = 0.061 , cT, 0 = 8.6125 · 10 5 , cTM, 0 = 5.0963 · 10 3 ,

kM, 0 = 5.4712 · 10−9 , kT, 0 = 0.3873 , kTM,0 = 0.0154 .
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For the dimensionless properties of the material, they can be written as:

c ⋆M (v) =
169.5 v 5 − 814.2 v 4 + 534.4 v 3 + 2625 v 2 − 4642 v + 2217

v 5 + 2182v 4 − 12520v 3 + 27210v 2 − 26680 v + 10050
,

c ⋆T (v) =
246.6 v 2 − 778.9 v + 656.9

v 4 − 41.37 v 3 + 395.2 v 2 − 985.6 v + 760.7
,

c ⋆TM (v) =
4207 v 4 − 24860 v 3 + 50920 v 2 − 43030 v + 14570

v 3 + 8614 v2 − 28190 v + 23480
,

k ⋆
M (v) = 4.045 v 6.448 + 16.23 ,

k ⋆
T (v) =

15.3 v 2 − 46.53 v + 38.04

v 4 − 10.46 v 3 + 46.24 v 2 − 85.34 v + 56.1
,

k ⋆
TM (v) =

1.644 v 2 − 7.013 v + 7.505

v 4 − 3.133 v 3 + 4.859 v 2 − 8.003 v + 7.408
.

B.2. Case from Section 4.2

Problem (2.3) is considered with FoT = 0.02 , FoM = 0.07 , γ 1 = 0.01 and γ 2 =
0.13 . The reference time is t 0 = 1 h , and, the final simulation time is fixed to τ ⋆ =
120 . The reference temperature and vapour pressure were taken the same as the initial
condition. At the boundaries, the Biot numbers assume the following values: BiM,L =
4.4 , BiM,R = 0.6 , BiT,L = 6 , BiT,R = 2 , BiTM,L = 0.1 and BiTM,R = 0.02 . The
ambient temperature, vapour pressure and rain flow are written as follows:

u∞, L (t
⋆) = 1 − 0.02 · sin ( 2 π t ⋆/24 ) ,

u∞,R (t ⋆) = 1 + 0.01 · sin ( 2 π t ⋆/48 ) ,

v∞, L (t
⋆) =

(

0.5 + 0.3 · sin ( 2 π t ⋆/48 ) 2
)

·
(

P s(u∞, L (t
⋆) · T 0)/P v, 0

)

,

v∞, R (t ⋆) =
(

0.5 + 0.2 · sin ( 2 π t ⋆/72 ) 2
)

·
(

P s(u∞,R (t ⋆) · T 0)/P v, 0

)

,

g ⋆
∞, L (t

⋆) = 3.8 · sin (π t ⋆/105) 70 ,

q ⋆
∞, L (t

⋆) = 1.8 · 10−4 · g ⋆
∞, L (t

⋆) · (u∞, L − u ref) .

The properties are scaled with the following reference values:

cM, 0 = 0.061 , cT, 0 = 1.6862 · 10 6 , cTM, 0 = 5.0963 · 10 3 ,

kM, 0 = 5.4712 · 10−9 , kT, 0 = 0.5021 , kTM,0 = 0.0161 .
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Thus, the dimensionless properties of the Material 1 are written as:

c ⋆M (v) =
− 0.1244 v 4 + 0.4949 v 3 − 0.6025 v 2 + 0.1802 v + 0.06364

v 5 − 5.101 v 4 + 9.802 v 3 − 8.408 v 2 + 2.713 v + 0.0055
,

c ⋆T (v) =
16330 v 4 − 80020 v 3 + 127900 v 2 − 75310 v + 17920

v 5 + 16340 v 4 − 80050 v 3 + 127900 v 2 − 75340 v + 17930
,

c ⋆TM (v) =
− 0.124 v 4 + 0.4937 v 3 − 0.6015 v 2 + 0.18 v + 0.0638

v 5 − 5.103 v 4 + 9.812 v 3 − 8.42 v 2 + 2.719 v + 0.0055
,

k ⋆
M (v) =

− 0.8682 v 4 + 6.371 v 3 − 10.02 v 2 + 1.842 v + 3.542

v 5 − 7.075 v 4 + 18.65 v 3 − 20.95 v 2 + 6.635 v + 2.601
,

k ⋆
T (v) =

4692 v 4 − 17720 v 3 + 16330 v 2 − 3385 v + 8137

v 5 + 4678 v 4 − 17650 v 3 + 16210 v 2 − 3336 v + 8152
,

k ⋆
TM (v) =

− 1002 v 4 + 1727 v 3 − 94.85 v 2 + 253.6 v + 2091

v 5 − 1002 v 4 + 1714 v 3 − 70.93 v 2 + 240.7 v + 2092
,

and, the dimensionless properties of the Material 2 are written as:

c ⋆M (v) =
− 11870 v 4 + 36160 v 3 − 27730 v 2 + 11480 v + 878

v 5 + 223500 v 4 − 212400 v 3 + 172100 v 2 + 41290 v + 14.34
,

c ⋆T (v) =
− 3.72.3 v 4 + 203.7 v 3 + 344.9 v 2 + 956 v + 1440

v 5 − 320 v 4 − 975.6 v 3 + 2050 v 2 + 1061 v + 3012
,

c ⋆TM (v) =
− 65880 v 4 + 196800 v 3 − 163100 v 2 + 49850 v + 7210

v 5 − 105800 v 4 + 583000 v 3 − 146000 v 2 + 336500 v + 119.1
,

k ⋆
M (v) =

− 7049 v 4 − 8193 v 3 + 36200 v 2 − 10330 v + 55820

v 5 − 2888 v 4 + 7947 v 3 − 7103 v 2 + 3269 v + 4471
,

k ⋆
T (v) =

139.5 v 4 − 668 v 3 − 28.81 v 2 + 1191 v + 974.1

v 5 + 333.6 v 4 − 1308 v 3 + 448.4 v 2 + 943.6 v + 1468
,

k ⋆
TM (v) =

− 77400 v 4 + 202700 v 3 − 245700 v 2 + 239400 v + 120600

v 5 − 8436 v 4 + 22580 v 3 − 26780 v 2 + 25320 v + 12160
.

B.3. Case from Section 5

Problem (2.3) is considered with FoT = 0.06 , FoM = 0.02 , γ 1 = 5.17 · 10−3 and
γ 2 = 7.72 ·10−3 . The reference time is t 0 = 1 h , and, the final simulation time is fixed to
τ ⋆ = 336 . The reference temperature is T 0 = 293.15 K and the reference vapour pressure
is P v, 0 = 1166.91 Pa .

The boundary conditions are gathered from the experimental data and just adimension-
alized. The dimensionless form of the initial condition are:

u 0 (x
⋆) = − 0.08806 · (x ⋆) 4 + 0.1688 · (x ⋆) 3 − 0.1143 · (x ⋆) 2 − 0.01621 · x ⋆ + 1.015 ,

v 0 (x
⋆) = − 0.408 · (x ⋆) 4 + 1.188 · (x ⋆) 3 − 1.053 · (x ⋆) 2 + 0.08969 · x ⋆ + 1.092 .
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The dimensionless properties of the material can be written as:

c ⋆M (v) = − 0.01799 v + 1.018 , k ⋆
TM (v) = 0.007343 v + 0.9927 ,

c ⋆T (v) = 0.005168 v + 0.9948 , k ⋆
M (v) = 0.007343 v + 0.9927 ,

c ⋆TM (v) = − 0.01799 v + 1.018 , k ⋆
T (v) = 7.343 · 10−4 v + 0.9994 ,

with the following reference values:

kM, 0 = 3.31 · 10−11 s , kT, 0 = 6.98 · 10−2W/(m · K) , kTM,0 = 8.27 · 10−5m2/s) ,

cM, 0 = 1.72 · 10−4 s2/m2 , cT, 0 = 163073.8W · s/(m3 · K) , cTM, 0 = 211.7Ws3/(kg ·m2) .

C. Analytical solution for the interface assumptions

Consider the simplified boundary value problem:






− (k (x) · u ′ (x)) ′ = f(x) = sin (π x) , x ∈ [−1 , 1 ] ,

u (− 1) = − 1 ; u (1) = 1 .

with

k (x) =

{

k 1 , x < 0 ,

k 2 , x > 0 .

The problem at the left can be written as:
{

−k 1 · u
′′ (x) = f(x) ,

u (−1) = −1 .
(C.1)

And, the problem at right as:
{

−k 2 · u
′′ (x) = f(x) ,

u (1) = 1 .
(C.2)

The analytical solution of Problems (C.1) and (C.2) are, respectively:

u 1 (x) =
sin (π x)

k 1 π 2
+ x + C 1 (1 + x) ,

u 2 (x) =
sin (π x)

k 2 π 2
+ x + C 2 (1 − x) ,

whit the following derivatives:

u ′

1 (x) =
cos (π x)

k 1 π
+ 1 + C 1 ,

u ′

2 (x) =
cos (π x)

k 2 π
+ 1 − C 2 .

By assuming that the solution is continuous, u 1(0) ≡ u 2(0) , we can have the relation
between the constants: C 1 = C 2 = C.
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If we assumed that the flux is continuous at the interface x = 0 we have:

k 2 u
′

2 (0) = k 1 u
′

1 (0) ,

which leads to the following relation:

C =
k 2 − k 1

k 2 + k 1
= CA .

Although, if we assumed that the derivative solution is continuous at the interface x = 0
we have:

u ′

2 (0) = u ′

1 (0) ,

which leads to the following relation:

C =
k 1 − k 2

2 π k 1 k 2

= CB .

Now, we have two analytical solutions, one that considers the flux continuous, called
here as Analytical-A, and the other analytical solution that consider the derivative solution
continuous, called here as Analytical-B. Figure 21 presents both analytical solutions, with
the Chebfun solution and the one computed with MOHL. It is shown that the Chebfun and
MOHL solutions are in perfect agreement with the solution Analytical-B. This means that
both numerical solutions compute the more regular solution and the flux is not continuous
at the interface.
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