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Quantitative approaches are part of the understanding of contour integration and the Gestalt law of good
continuation. The present study introduces a new quantitative approach based on the a contrario theory,
which formalizes the non-accidentalness principle for good continuation. This model yields an ideal
observer algorithm, able to detect non-accidental alignments in Gabor patterns. More precisely, this
parameterless algorithm associates with each candidate percept a measure, the Number of False Alarms
(NFA), quantifying its degree of masking. To evaluate the approach, we compared this ideal observer with
the human attentive performance on three experiments of straight contours detection in arrays of Gabor
patches. The experiments showed a strong correlation between the detectability of the target stimuli and
their degree of non-accidentalness, as measured by our model. What is more, the algorithm’s detection
curves were very similar to the ones of human subjects. This fact seems to validate our proposed mea-
surement method as a convenient way to predict the visibility of alignments. This framework could be
generalized to other Gestalts.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The question of how vision integrates a set of elements into the
contour of a shape was raised by the Gestaltists. They identified
several conditions that favored the emergence of such percepts
(Wertheimer, 1923; Metzger, 1975; Kanizsa, 1980; Wagemans
et al., 2012; Wagemans et al., 2012). Among them is the well
known grouping principle (or Gestalt) of good continuation, that
refers to the perceptual grouping of elements forming smooth
curves.

This principle has been further investigated in psychophysics,
with a recurring use of arrays of Gabor patches as stimuli (see
Hess, Hayes, & Field, 2003; Hess & Field, 1999; Hess, May, &
Dumoulin, 2014 for a review). The experiments described in
Field, Hayes, and Hess (1993) opened a long standing research line
dealing with various aspects of the association field hypothesis. For
example, some studies (Ledgeway, Hess, & Geisler, 2005; Vancleef
& Wagemans, 2013) compared the detection of paths formed by
Gabor patches oriented parallel to the contour (snakes), to the
detection of ladders, in which all the elements are orthogonal to
the path, and ropes (for Ledgeway et al., 2005), where elements
are obliquely oriented with respect to the path. In Nygård, Van
Looy, and Wagemans (2009), the effect of orientation jitter,
analogous to the ‘‘a” parameter of Field et al. (1993), was measured
on the detection and identification of everyday objects’ contours.
The combination of the association field grouping effect and other
potential cues, such as symmetry (Machilsen, Pauwels, &
Wagemans, 2009; Sassi, Demeyer, & Wagemans, 2014), closure of
contours as well as the surface enclosed in contours (Kovacs &
Julesz, 1993; Machilsen & Wagemans, 2011), was also studied. As
far as the detection of snakes is concerned, a result that is common
to all the previously mentioned experiments is that the visual
system is better at detecting smooth paths rather than jagged ones,
and all the more so as they are formed by elements that are
roughly parallel to the local tangent of the contour.

An important step towards the understanding of the mecha-
nisms underlying these observations is the definition of a model
that could explain and predict the quantitative results obtained
experimentally. Can we predict, for example, as observed in Field
et al. (1993), that a path composed of 12 Gabor patches embedded
in an array of 244 other elements randomly oriented, is likely to be
detected when the absolute angle b between two consecutive
edges is less than 60�, and without orientation jitter (a ¼ 0�)?
What about the decay of the detection performance for a fixed b
when a ¼ 15� and 30�? What if the path was composed of, say,
only 8 elements? Computational models designed to make such
predictions have already been proposed (Yen & Finkel, 1998;
Ernst et al., 2012). The framework described in Yen and Finkel
(1998) consists in a cortex-inspired network, in which the
, http://
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interaction between cells is ruled by a mathematical formulation of
the association field. In accordance with the experimental results
of Field et al. (1993), the latter favors the synchronization between
cells responding to close, co-circular stimulations, as well as
among straight ladders configurations. The resulting algorithm
contains 11 parameters that were tuned by optimizing the detec-
tion results on a few images. It is compared to the psychophysical
data of Field et al. (1993); Kovacs and Julesz, 1993; Kapadia, Ito,
Gilbert, and Westheimer, 1995, showing an interesting match
between the perceptual results and the model’s detections. Equally
interesting is the Bayesian approach of Ernst et al. (2012). By defin-
ing a generative model of contours, the authors could compare
human subjects to an ideal observer in their own experiment of
contour detection. They used the psychophysical data they col-
lected as a reference, and tuned the parameters of their algorithm
by optimizing the correlation between the subjects and the
model’s responses. Although the obtained ‘‘optimal observer” still
performed significantly better than the average of subjects, the
model managed to mimic the dynamics of the subjects’ responses,
and to reproduce some observed phenomena, such as the early
detection of longer contours. Another quantitative approach to
contour detection in noise is Wilder, Feldman, and Singh (2015),
which does not propose an ideal observer but a Bayesian prediction
of the detectability of contours relative to their regularity.

The present paper introduces a new approach to build a non-
parametric predictive model of good continuation, based on the
non-accidentalness principle. This concept has emerged at the cross-
road of human and computer vision research. Indeed, faced with
the quantitative questions raised by the qualitative results found
by the Gestalt school (Wertheimer, 1923; Kanizsa, 1980;
Wagemans et al., 2012), vision scientists like Witkin and Tenen-
baum remarked that ‘‘the appearance of spatiotemporal coherence
or regularity is so unlikely to arise by the chance interaction of inde-
pendent entities that such regular structure, when observed, almost
certainly denotes some underlying unified cause or process” Witkin
and Tenenbaum, 1983, p. 481. This idea that perception relies on
non-accidental relationships to segment an observed scene into
meaningful structures, is usually called the non-accidentalness
principle. Although it was particularly well addressed in Witkin
and Tenenbaum (1983), previous or contemporary formulations
exist. It has inspired computer vision since the 1980s, when
researchers relied on the so called non-accidental features to per-
form automatic scene interpretation (Stevens, 1980; Stevens,
1981; Kanade, 1981; Binford, 1981; Lowe & Binford, 1981;
Witkin, 1982; Lowe et al., 1985; Lowe, 1987), and it was crucial
in the success of the scale-space filtering method (Witkin, 1983)
which led to actual breakthroughs in computer vision (Lowe,
1999; Lowe, 2004). What is more, the concept of non-accidental
features also sparked the interest of psychophysicists, who wanted
to test their relevance in perception (Wagemans, 1992;Wagemans,
1993; Van Lier, van der Helm, & Leeuwenberg, 1994; Feldman,
2007). The contribution of Feldman (2007) is actually beyond the
experimental measure of the particular status of non-accidental
properties in perception. It draws a parallel with their special sta-
tus in the minimal model theory (Feldman, 1997a; Feldman, 2003).
The latter theory was then featured a Bayesian structure (Feldman,
2009), in an attempt to bind together non-accidentalness, the like-
lihood principle and the simplicity principle at a perceptual level. A
different approach of these questions is exposed in Van Lier et al.
(1994); van der Helm, 2000; van der Helm, 2011, where an exten-
sive theory formalizes the simplicity principle and shows, among
many other things, its consistence with non-accidentalness, and
in particular with Rock’s rejection of coincidence (Rock, 1983).

Another mathematical formulation of non-accidentalness was
introduced in Desolneux, Moisan, and Morel (2008), although the
authors called Helmholtz principle what is more commonly called
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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non-accidentalness. This probabilistic approach is known in com-
puter vision and image processing as the a contrario theory. The
expression a contrario (Latin for ‘‘by or from contraries”) refers to
the fact that the theory focuses the probabilistic modeling on noise,
understood as the absence of signal. The model of the signal itself
is a deterministic description of an ideal structure (in our case, a
perfect alignment). When an a contrario detection algorithm
analyzes a candidate feature, it evaluates the expected number of
features with lower or equal error relative to the ideal structure,
that could happen by chance in noise. In a way, the a contrario
theory may remind of an aspect of the signal detection theory, as
‘‘a computational framework that describes how to extract a signal from
noise” (Gold & Watanabe, 2010, p. 1). In signal detection theory, a
detection in absence of signal is called a false alarm. Similarly,
the expected number of accidental detections in noise, associated
to a given feature by an a contrario algorithm, is called Number of
False Alarms (NFA). The lower this number, the less likely it is that
the detection of this feature be a false alarm. Thus, if the NFA is low
enough, the feature is termed non-accidental and therefore signif-
icant. This methodology will be precisely defined and explained in
more details in Section 6.

As a probabilistic formalization rooted in information theory,
the a contrario framework, applied to the good continuation prob-
lem, may be compared to Bayesian approaches (Feldman, 1997b;
Feldman, 2001; Feldman & Singh, 2005; Feldman, 2009; Wilder
et al., 2015; Ernst et al., 2012). A Bayesian formulation requires
prior and conditional distributions along with their parameters,
for each hypothesis to be tested. In some problems, these are well
known, or can be defined by natural assumptions; this leads to
optimal predictions. In others, the optimality is undermined by
the absence of sufficient knowledge. The a contrario methodology
restrains its assumptions to a deterministic description of the ideal
sought structure and a probabilistic background (or a contrario)
hypothesis H0, which models the absence of the relevant pattern
by a maximal entropy distribution. The Bayesian approach is
preferable when all the distributions and their parameters are well
known, as it is able to take full advantage of this information. In
some cases where we lack such knowledge, the a contrario
methodology offers a good alternative, as it may avoid some
heuristic assumptions. In our case, we don’t have, a priori, perfect
knowledge of what a salient alignment is for human perception.
(Note that this is different from the knowledge of how the stimuli
were generated for our particular experiments.) For example,
Feldman (2009) discusses the problem of deciding whether a set
of Gabor patches forms a smooth chain or not; in this setting, we
don’t know what should be the variance of a distribution on turn-
ing angles under the good continuation hypothesis. An a contrario
approach would precisely avoid to set this parameter, since it
would model smooth chains by a deterministic description of per-
fect good continuation, namely a zero value for turning angles.
Then, without a probabilistic model for the smooth chain hypoth-
esis, it is not possible to compute a likelihood ratio but, as
described earlier, the a contrario theory provides a different strat-
egy to decide if the null hypothesis should be rejected.

A whole family of unsupervised algorithms in computer vision
are based on this theory. The framework has been used to detect
line segment and curves (Desolneux et al., 2008; Grompone von
Gioi, Jakubowicz, Morel, & Randall, 2012; Pătrăucean et al., 2012)
as well as to perform shape matching and identification (Musé,
Sur, Cao, & Gousseau, 2003; Cao et al., 1948), image segmentation
(Cardelino et al., 2009), clustering (Tepper et al., 2011), and mirror
symmetry detection (Pătrăucean, Grompone von Gioi, &
Ovsjanikov, 2013).

The a contrario theory was confronted to human perception in
Desolneux, Moisan, and Morel (2003). Although it was not explic-
itly presented as such, this work somehow tried to investigate the
e of alignments by their non-accidentalness. Vision Research (2015), http://
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role of non-accidentalness in visual perception. It already sug-
gested that this approach might give an interpretation and quite
accurate predictions of the perceptual thresholds. Its most remark-
able insight is to translate several detection-affecting parameters
into one unique measure of non-accidentalness, the NFA, which
correlates well with the subjects detection performance. Yet the
psychophysical protocols in Desolneux et al. (2003) had several
limitations that also limited the strength of its conclusions.

In particular, Desolneux et al. (2003) did not compare directly
human subjects to an algorithm. In contrast, we took inspiration
from the innovative work by (Fleuret, Li, Dubout, Wampler,
Yantis, & Geman, 2011) where human and machine performed
the same visual categorization task, ‘‘side by side”, on each stimu-
lus. In a nutshell, the algorithm became an artificial subject, as it
was also the case in Ernst et al. (2012). Similarly, our experiments
compare human and machine vision in a simple perceptual task:
the detection of jittered straight contours among a set of randomly
oriented Gabor patches (Fig. 1). Following the definition of Geisler
(2011, p. 2), ‘‘an ideal observer is a hypothetical device that
performs a given task at the optimal level possible, given the avail-
able information and any specified constraints.” In this sense, our a
contrario detection algorithm is an ideal observer under the
constraint that no relevant structure should be detected in noise.

The non-accidentalness principle can be interpreted as impos-
ing minimal reliability conditions to percepts. A configuration that
could have arisen by chance does not provide reliable information
and should be rejected. Natural selection evolved reliable percep-
tion mechanisms which may obey a similar sound requirement,
that no detection should occur in noise (Attneave, 1954). Undoubt-
edly, this minimal reliability condition is not the only factor
involved in the salience of a particular structure. Nevertheless, it
is interesting to evaluate whether this factor alone can predict
the visibility of a specific Gestalt to some extent. The purpose of
this paper is precisely to study to what extent the a contrario
formulation of non-accidental alignments can account for their
salience in a large set of stimuli. We shall illustrate that this theory
permits to summarize into one single measure, the NFA, the many
Experiment I Experime

)b()a(

)e()d(

Fig. 1. First row: three arrays of N Gabor patches with long, moderately jittered straigh
show dots representing the coordinates of the Gabor elements of images (a), (b) and (c)
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experimental parameters affecting this visibility. By addressing the
case of alignments, we hope to point out the key features that
make the approach applicable to other Gestalts. Indeed, given a
grouping law described qualitatively, the a contrario framework
proposes a way to evaluate quantitatively how strongly the
configurations of elements must stick to this grouping law, to be
distinguished from a general, accidental configuration.

In Sections 2,2,3,4,5 we present our experimental set up, con-
sisting in three versions of a straight contours detection task, and
expose the results obtained by 32 subjects. After describing our
model and detailing a parameterless detection algorithm in
Section 6, we characterize our set of stimuli by their level of
non-accidentalness, that we measure by the NFA. This enables us
to evaluate, in Sections 7 and 8, how non-accidentalness correlates
with detection performance, and if an a contrario algorithm mimics,
and therefore can predict, the subjects behavior on average. Finally,
Section 9 summarizes our conclusions.

2. Methods

This section presents the techniques that are common to all the
experiments described in the paper.

2.1. Stimuli

In all the following experiments, subjects were shown arrays of
Gabor patches of 496� 496 pixels, similar to those represented in
the first row of Fig. 1. They were generated with the software GERT
(v1.1) (Demeyer & Machilsen, 2011). An array contained a certain
number N of patches, each of which represented a symmetrical
Gabor function, characterized by its position in the image and its
orientation h. The family of Gabor functions we used is described
by

8ðx; yÞ 2 R2;

Gf ;h;rðx; yÞ ¼ 1
2

1þ e�
x2þy2

2r2 cos 2pf ðy cos h� x sin hÞð Þ
� �

ð1Þ
nt II Experiment III

)c(

)f(

t contours; N ¼ 200 in (a), N ¼ 100 in (b) and N ¼ 600 in (c). Images (d), (e) and (f)
, respectively.
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f being the spatial frequency, r the space constant set to r ¼ 1
4f and h

an angle in ½0�;360��. Note that this function is centered on the ori-
gin, and can then be placed at the desired position in the image.

Each array included n aligned patches, regularly spaced by a dis-
tance ra. Their orientations were chosen as follows: given the line’s
direction hl, the n angles were randomly and independently sam-
pled according to a uniform distribution in ½hl � a; hl þ a�, with
a 2 ½0�;90��. This is equivalent to adding uniform noise, also called
angular jitter, to orientations equal to hl. The alignment position and
direction hl were selected randomly and uniformly in each image. In
all the paper, these aligned patches will be referred as target
alignment or target elements. TheN � n non-aligned elements, called
background elements, were randomly placed but respected a mini-
mal distance rb from each other and from the aligned patches. Their
orientations were randomly and independently sampled according
to a uniform distribution in ½0;180�Þ. Distances ra and rb were set as
functions of N to fulfill two requirements. First, rb was tuned so that
all N elements fit into the image and fill it homogeneously, avoiding
clusters and empty regions. Second, we chose ra larger than rb to
make the alignment almost impossible to detect from the coordi-
nates of the elements only, that is to say from the proximity and
width constancy cues only (Fig. 1(d)). More precisely, we set

rb ¼ 1:3rhex and ra ¼ 2rhex, where rhex ¼def 456ffiffiffiffiffiffiffiffiffi
2
ffiffi
3

p
N

p is, in pixels, the max-

imal radius for N discs to fit in a 456� 456 pixels square without
intersecting (the number 456 corresponds to the image side minus
two margins of 20 pixels, one at each border). Then the difficulty to
detect the aligned Gabors was essentially ruled by their number n,
and by the angular precision a. The larger n and the smaller a, the
more conspicuous the alignment.

2.2. Procedure

This work was carried out in accordance with the Code of Ethics
of the World Medical Association (Declaration of Helsinki).
Informed consent was obtained for experimentation with human
subjects.

Each experimental session counted 126 trials divided into three
blocks of 42, with pauses after the first and the second block. In each
trial, the subject was shown on a screen an array containingNGabor
patches, n of which were aligned (n 2 4; . . . ;9f g) and affected by an
angular jitter of fixed intensity a 2 9�;15�;22:5�;30�;45�;90�f g.
Four trials were conducted for each couple of conditions ðn;aÞwith
a 6 45�, and one trial per maximal jitter condition ðn;90�Þ, in a ran-
dom order. The subjects knew that every stimulus contained an
alignment, but did not know where, how long and how jittered it
was. They were asked to click on an element they perceived as part
of the alignment, and to give their best guess in case they did not see
any clear alignment. We wanted the task to be attentive. The stimu-
lus remained on the screen until an answer was given. The elapsed
time between the presentation of the stimulus and the click is what
we call the reaction time, and was measured at each trial. Subjects
were advised to spend no more than 20 s per stimulus. They were
free to follow this qualitative suggestion or not and no time infor-
mation was provided during the sessions. The coordinates of the
click were recorded as well. After the subject’s click, a transition
gray image was displayed for 500 ms and then the next stimulus
appeared.

To help understand the task, subjects were first shown two
training sequences of 5 and 10 trials, with the corresponding
target alignments at the end of each sequence.

2.3. Apparatus

The monitor properties, the distance to the screen and the
illumination conditions could vary from one subject to another.
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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Indeed, various computers were used at different places along the
sessions. However we can estimate the average distance between
the subjects’ eyes and the monitor to be about 70 cm, and the aver-
age size of a pixel to be approximately 0.02 cm � 0.02 cm, so that
the 496� 496 images subtented about 8� � 8� of visual angle in
average. The experiments were set up to work on a web browser,
and they were taken by selected subjects under our supervision.
They are accessible at http://bit.ly/na_alignments. Our bet was that,
for the scope of our study, some variability in the viewing
conditions would not have significant inter-subject effects. What
differed between the experiments described hereafter, was the
number N and the size of the Gabor patches.

3. Experiment I (N ¼ 200)

A previous version of this experiment was presented in
Blusseau, Carboni, Maiche, Morel, and Grompone von Gioi (2014).

3.1. Subjects

Twelve subjects, five women and seven men, with age between
20 and 40 years old, took the experiment (accessible at http://bit.
ly/ac_alignments). All the subjects were naive to the purpose of
the experiment and had normal or corrected to normal vision.

3.2. Stimuli

The stimuli of this experiment were those described in
Section 2.1, with N ¼ 200 Gabor patches per image, and a spatial
frequency f ¼ 0:077 cycles per pixel (see Fig. 1(a) for an example).
Four sequences of 126 images were pre-computed, according to
the categorization detailed in Section 2.2, and for each of the
twelve sessions one sequence was picked randomly by the com-
puter program. One subject was shown sequence 1, four subjects
saw sequence 2, sequence 3 was seen by two subjects and
sequence 4 by five subjects.

3.3. Results

Each click made by a subject was associated to the nearest
Gabor element in the image, and counted as a valid detection when
that element belonged to the target alignment. This count
permitted to define the detection rate. Fig. 2 displays the results
of Experiment I (represented by a solid line), as well as those of
Experiments II and III, described in the next sections. Fig. 2(a)
and (b) plot the detection rate as a function of the jitter level a
and the number n of aligned elements, whereas (c) and (d) plot
the reaction times as a function of the same parameters (all the
trials were counted; there was no attempt to remove outliers).
The error bars give 95% confidence; they are defined as

x� 2 rffiffi
q

p ; xþ 2 rffiffi
q

p
h i

, where x;r and q are respectively the mean,

standard deviation and number of trials of the corresponding con-
dition. In Table 1 are reported detection rates and reaction times
achieved by each subject of Experiment I.

3.4. Discussion

Subjects 8 and 11 achieved higher rates than the rest of the
subjects, but they also dedicated more time to the task. The
results plotted in Fig. 2 are consistent with those obtained in pre-
vious studies on the influence of orientation jitter on contour
detection (Field et al., 1993; Ledgeway et al., 2005; Nygård
et al., 2009). The more jittered the alignments are, the lower
the average detection performance, and the longer the subjects
took in looking for them (Figs. 2(a) and (c)). It was also harder
e of alignments by their non-accidentalness. Vision Research (2015), http://
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Fig. 2. Results of the Experiments I–III (see also Tables 1–3). The subjects’ detection rates (top row) and reaction times (bottom row) are plotted as functions of the jitter
intensity a (left hand column) and the number n of aligned elements (right hand column). The error bars give 95% confidence; they are defined as x� 2 rffiffi

q
p ; xþ 2 rffiffi

q
p

h i
, where

x;r and q are respectively the mean, standard deviation and number of trials of the corresponding condition.

Table 1
Individual detection rates and average reaction time per trial, for Experiment I.

Subject 1 2 3 4 5 6 7 8 9 10 11 12 all

Det. rate 0.63 0.65 0.65 0.56 0.64 0.52 0.67 0.80 0.61 0.64 0.80 0.63 0.65
Aver. r. t. (s) 7.7 9.5 8.4 12.9 14.1 7.5 9.3 20.9 7.9 8.2 21.0 14.4 11.8
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to detect short alignments than long ones (Fig. 2(b) and (d)). It is
worth noting that subjects still achieved about 10% detection
rate in the maximal jitter condition (8 detections out of 72 trials),

while chance level is 1
6

P9
k¼4

k
N ¼ 3:3% for N ¼ 200. Three factors

could explain these 8 clicks on one of the target elements in
the maximal jitter conditions. The first one is pure chance, when
the subject did not see any alignment and clicked on a random
element, that turned out to belong to the target. This kind of
event seems to have occurred in one of the eight mentioned
cases. Indeed, the corresponding alignment appears to be impos-
sible to detect, and the clicked point does not seem to belong to
any other relevant structure (see Fig. 3, first row). The second
factor is the overlapping of the target and a random structure
that looks like a jittered alignment. From the observation of the
concerned stimuli and the subjects’ answers, it seems that this
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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scenario may explain 4 out of the 8 detections in noise (see
two of these in Fig. 3, second row). The three remaining clicks
seem to be actual detections of a part of the target nine-
elements-alignment. Indeed, they occurred on the same stimulus,
showing an agreement of three subjects on the same linear struc-
ture (Fig. 3, third row). The latter case is the most interesting,
since it shows that random orientations are not always enough
to mask the alignment.

The a contrario detection theory allows the definition of
parameterless algorithms that automatically adapt to changes in
the size of the data. In order to demonstrate this property and
compare it with perception, it was natural to set up experiments
with stimuli containing less (see Section 4) and and more (see
Section 5) patches than in Experiment I. This is the motivation
for Experiments II and III.
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Fig. 3. Three examples of detections in the maximal jitter condition in Experiment I. Each row represents an example. The left hand column shows the original stimuli, the
central column displays the subjects’ clicked points, and in the right-hand column are represented the target alignments. First row: one subject seems to have clicked
completely randomly on the target alignment. Second row: the two subjects who clicked on the target probably saw a different random structure. Third row: three subjects
seem to agree on the detection of a subset of the target, composed of nine elements.
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4. Experiment II (N ¼ 100)

4.1. Subjects

Ten subjects participated in Experiment II (accessible at http://
bit.ly/ac_alignments_100elts). They were three women and seven
men, with age between 20 and 60 years old, and had normal or cor-
rected to normal vision. Contrary to Experiment I, here one of the
subjects is co-author of the present paper (subject 9 in Table 2); the
others were naive to the purpose of the experiment.
4.2. Stimuli

The stimuli for this experiment differed from Experiment I by
two parameters: first, they counted N ¼ 100 Gabor patches each;
second, the spatial frequency was set to f ¼ 0:12 cycles per pixel,
that is to say approximately 1:5 times the frequency used to build
the stimuli of Experiment I. Fig. 1(a) is an example of this kind of
stimulus. In images with half as many elements but with same size
as in Experiment I, the patches are more distant from each other.
By increasing the spatial frequency f and making Gabor patches
Table 2
Individual detection rates and average reaction time per trial, for Experiment II.

Subject 1 2 3 4 5

Det. rate 0.75 0.83 0.79 0.78 0.89
Aver. r. t. (s) 5.2 5.0 13.1 5.5 7.0
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look thinner than in Experiment I, we wanted to accentuate the
sensation of empty spaces between neighboring elements. Only
one pre-computed sequence of 126 images was used for this
experiment, because we wanted to compare all the ten subjects
on the very same stimuli.
4.3. Results and discussion

In Experiment II the subjects obtained globally better detection
rates than those of Experiment I (see Tables 1 and 2 and Fig. 2).
This is not surprising since in this last experiment, the stimuli were
less crowded than in the previous one. As a consequence, the set of
stimuli presented less difficulty on average. Here we observe
almost 30% for the detection rate in the maximal jitter condition
(detection in 16 out of 60 trials), the chance rate being approxi-
mately 6:5%. Although the hypothesis formulated in Section 3.4
still hold to account for this observation, it seems that in most of
the 16 cases the subjects did detect the target alignment, thanks
to other cues such as the perfect alignment of the elements’ coor-
dinates, and their perfectly regular spacing. Since the proportion of
aligned elements relative to the total number of elements was
6 7 8 9 10 all

0.79 0.66 0.84 0.87 0.77 0.80
7.9 6.8 5.9 2.6 7.8 6.7
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Table 3
Individual detection rates and average reaction time per trial, for Experiment III.

Subject 1 2 3 4 5 6 7 8 9 10 all

Det. rate 0.70 0.68 0.62 0.67 0.72 0.79 0.68 0.71 0.67 0.66 0.69
Aver. r. t. (s) 7.8 6.1 4.4 5.1 3.7 11.4 7.9 7.5 4.8 9.2 6.8
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higher than in Experiment I, it is not surprising that the masking
was sometimes less efficient here.

5. Experiment III (N ¼ 600)

5.1. Subjects

As in the previous experiment, we had ten participants in
Experiment III (accessible at http://bit.ly/ac_alignments_600elts),
three women and seven men. They were between 20 and 60 years
old, and had normal or corrected to normal vision. Except for one of
them, who is co-author of the present paper (the same person as in
Experiment II and subject 5 in Table 3), the subjects were naive to
the purpose of the experiment.

5.2. Stimuli

The stimuli were of the same kind as the one of Fig. 1(c). They
counted N ¼ 600 Gabor patches each and the spatial frequency
was set to f ¼ 0:12 cycles per pixel, like in Experiment II. This time,
the spatial frequency was chosen to avoid overlapping between
neighbors. Only one pre-computed sequence of 126 images was
used for this experiment, like in Experiment II.

5.3. Results and discussion

Like in Sections 3.4 and 4.3, we shall discuss the detection per-
formance of almost 7% for the maximal jitter condition (4 out of 60
trials), above chance level (approximately 1%). Here the masking
effect seems to have been efficient in 5 out of 6 stimuli with max-
imally jittered alignments. Indeed, the observed performance is
mainly due to one stimulus, in which three subjects seem to have
detected a subset of the nine elements forming the target align-
ment. In the remaining case it is more difficult to guess if the
subject perceived the target alignment or another structure over-
lapping with it.

Since this experiment is the one with the most crowded stimuli,
we would expect the detection rates to be lower than in all the
previously presented experiments. This holds for the comparison
between Experiments II and III, but subjects of Experiment I, in
which there were N ¼ 200 Gabor patches per stimulus, achieved
a generally lower performance than those of Experiment III (see
Table 1, 3 and Fig. 2). This could be related to the difference of spa-
tial frequency defining the Gabor functions. In Experiment I, this
frequency was lower and thus the patches’ central blobs looked
thicker than in Experiments II and III. This may have created a
more efficient crowding effect, explaining lower detection rates
in the former experiments, despite a smaller number of patches
per image compared to Experiment III.

6. Model and algorithm

We propose to introduce briefly the intuitive ideas and formal
concepts behind the a contrario approach. For further details, we
refer the reader to Desolneux et al. (2008).

An a contrario method requires two models. On the one hand, a
geometric model, which is deterministic and, on the other hand, a
probabilistic model.
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The geometric model defines an ideal structure x� along with a
function dx� ð�Þ measuring a deviation from it. For example, in our
case, the ideal structure is a set of aligned Gabor patches with per-
fectly aligned orientations. The measure of a deviation from this
ideal configuration, is detailed in Section 6.1 but we can already
provide a hint of it: in Fig. 5(e) for example, the smaller the angles
ai, the closer the depicted chain to a perfect alignment.

The probabilistic model, also called a contrario or background
model, is the statistical hypothesis H0 of the absence of relevant
structure – the so called ‘‘null hypothesis”. It represents the most
general assumption on the data. Consistently with Attneave’s prin-
ciple stating that we do not perceive any structure in white noise
(Attneave, 1954), an a contrario model generally gives a maximal
entropy to the position of the building blocks of the percept. For
example if these building blocks are oriented, their orientations
must be random, independent, and uniformly distributed for each
block. By Attneave’s principle the emergence of a percept in a real-
ization of such a model should be unlikely, and in any case purely
accidental. Therefore this background model is used to test the sig-
nificance of an observation, as follows. Let X be a random variable
consistent with H0. Given an observed feature x with a deviation
dx� ðxÞ from the ideal structure, its relevance is measured by the
probability PH0 ðdx� ðXÞ 6 dx� ðxÞÞ to be at least as close to x� under
H0. Small deviations yield small probabilities, and are thus rare
events in the background model.

The purpose of the a contrario framework is precisely to help
decide when an observed deviation is small enough to be consid-
ered non-accidental. The occurrence of an event does not only
depend on its probability. It also depends on the number of obser-
vations. For example, at the roulette game, the odds of a given
number n between 0 and 36 is 1=37 � 0:027. With a single bet
on that given n, it would be quite lucky to win. On the contrary,
if a player keeps betting 1000 times on that same number, it would
be surprising not to win at least once. This intuition finds a formal-
ization in the Bonferroni correction method to test statistical sig-
nificance of p-values, as it is well explained in Mumford and
Desolneux (2010, pp. 114–118).

The a contrario methodology uses the same kind of correction
term: to evaluate the non-accidentalness of an event, one should
take into account the whole set of observations that were neces-
sary to come across that particular event. For example, when look-
ing for alignments in an array of Gabor patches, we define a priori a
family of sets of patches, that will be tested as candidates to be
alignments. This is what is usually called the family of tests, noted
T, and NT denotes the number of tests in T. Then, given a tested can-
didate x that yielded the deviation dx� ðxÞ, denote by X1;X2; . . . ;XNT ,
the random issues to the NT tests, under the background model H0.
The question is now how common or, on the contrary, how surpris-
ing it would be to observe a deviation smaller than dx� ðxÞ among
these NT tests. An answer is to compute the expected number of
variables Xi that verify dx� ðXiÞ 6 dx� ðxÞ. This quantity is called
Number of False Alarms associated to x, noted NFAðxÞ. Since all
the Xis follow H0, we get
NFAðxÞ¼defE
X
i2T

1dx� ðXiÞ6dx� ðxÞ

" #
¼
X
i2T

P½dx� ðXiÞ 6 dx� ðxÞ�

¼ NT � P½dx� ðXÞ 6 dx� ðxÞ� ð2Þ
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where X also follows H0. NFAðxÞ represents the number of devia-
tions to the ideal model smaller than dx� ðxÞ that are expected to
happen by accident in a set of NT random tests. Since we are looking
for a non-accidental small deviation, accidental ones are considered
as ‘‘false alarms”.

By definition, if NFAðxÞ P 1, we expect to observe at least one
deviation smaller than, or equal to dx� ðxÞ, in random data consis-
tent with H0. In other words, it would not be surprising that such
an event happen by accident, and the observation of x should not
lead to reject H0. On the contrary, NFAðxÞ < 1 means that a devia-
tion smaller than dx� ðxÞ is rather unexpected under H0, and may
indicate the presence of a relevant pattern. Thus, small NFAs char-
acterize non-accidentalness and large ones accidental features,
with a transition zone around NFAðxÞ ¼ 1.

In the following subsections, we detail the geometric and a con-
trario models for our study.

6.1. The geometric model

For a given a tuple ðg1; . . . ; gnÞ of n Gabor patches, we consider
the variables a1;a2L;a2R; . . . ;aðn�1ÞL;aðn�1ÞR;an, as illustrated in
Fig. 5(e). Variable aiL is the absolute angle between the orientation
of Gabor patch i and the line joining it to the patch i� 1, while aiR is
the same thing changing i� 1 for iþ 1. Since the first and last
patches in the tuple have no previous and next elements respec-

tively, we simply note a1 ¼def a1R and an ¼def anL. Then we define

x1 ¼def a1;xn ¼def an and for i ¼ 2; . . . ;n� 1;xi ¼def maxðaiL;aiRÞ; see
Fig. 5(f).

The ideal alignment that will be our reference structure in the
present study, is such a tuple of Gabor patches for which all angles
xis are equal to 0�. In words, it is a set of aligned patches whose
orientations are the same as their line’s orientation.

Then we measure the deviation of a general tuple from an ideal

alignment by its maximum angle x� ¼def maxfx1; . . . ;xng.

6.2. The a contrario model

Now we need to define the a contrario model for our stimuli.
Fig. 4 shows three arrays of Gabor patches with only background
elements and thus no significant alignment. Formally, we model
an array of N Gabor patches by a set g ¼ fðxi; hiÞgi¼1...N , where

xi 2 ½0;1�2 represents the coordinates of patch number i, and
hi 2 R its orientation (in this section the variables representing

angles will be expressed in radians). We note x ¼deffx1; . . . ; xNg and,
for any three points x; y; z 2 x;/xyz is the angle between vectors

xy
!

and yz
!
. Finally, the set of the 6 nearest neighbors of a point

x 2 x is notedN 6ðxÞ (see Fig. 5(a) and (b)). Then we define an a con-
trario array of Gabor patches as a random set G ¼ fðXi;HiÞgi¼1...N

verifying two properties:
)b()a(

Fig. 4. Three arrays of Gabor patches containing only backg
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1. The random variables H1; . . . ;HN are independent and uni-
formly distributed in ½0;2pÞ.

2. For any X 2 X and Y 2 N 6ðXÞ the angle U�
XY ¼def minZ2N 6ðYÞjUXYZ j is

uniformly distributed in ½0; p6Þ (see Fig. 5(d)), and is independent
from U�

X0Y 0 for any ðX0;Y 0Þ – ðX;YÞ.

Let’s clarify the relation between this definition and the back-
ground stimuli of Fig. 4. Property 1 corresponds exactly to the rule
we used to define the background elements’ orientations in our
arrays of patches (see Section 2.1). The relevance of Property 2
needs more justification. As explained in Section 2.1, we built each
stimulus so that N elements fit in it, that two elements were not
too close to each other (being distant of at least rb), and that there
were no empty regions in the image. These requirements are
somehow a converse to those of the well known problem consist-
ing in filling a region with as many spheres as possible, given their
radius r. Indeed, in our case we know the number of discs to fit into
the square image, and we want to set their radius, noted rb, in
order to get the most homogeneous layout. The most compact
way to fit discs in a given region is to lay them on a hexagonal lat-
tice. That is why we set rb ¼ 1:3rhex (see Section 2.1), the value 2rhex
corresponding to placing the elements on an exact lattice, while we
wanted to allow some randomness in their coordinates. The result-
ing stimuli look like hexagonal lattices affected by some noise, in
which Property 2 approximately holds (see Fig. 5(a)).
6.3. Description of the algorithm

Input: The input of the detection algorithm is a set
g ¼ fðxi; hiÞgi¼1...N , that models a Gabor array composed of N
patches (see Section 6.2).

Step 1: List the N distances of each point xi to its nearest neigh-
bor, and define davg as the mean value of this list.

Step 2: Define an oriented graph c ¼ ðx; eÞ, x being the set of ver-
tices of c, and e the set of edges, defined as follows: ðxi; xjÞ 2 e if
and only if xj is one of the 6 nearest neighbors of xi and
dðxi; xjÞ 6 2davg , where dðxi; xjÞ is the Euclidean distance between
the two points. We will denote by N cðxÞ the set of neighbors of x
in c; see Fig. 5(a).

Step 3: Set C ¼ £. Then for each point x 2 X, and for each
neighbor y 2 N cðxÞ, initialize a chain c ¼ ðx; yÞ, and add c to C. This
initialization step is illustrated in Fig. 5(a) and (b).

Step 4: Expand each started chain c trying to keep it as rectilin-
ear as possible. More precisely, denote by x and y the penultimate
and last points of c. Set z� ¼ argminz2N cðyÞj/xyzj the neighbor of y
that minimizes j/xyzj. Following the notations of Section 6.2,
j/xyz� j ¼ /�

xy. If z� is not already in c then add z� at the end of c,
add c to C and carry on expanding c as long as it contains less thanffiffiffiffi
N

p
points. By this process, represented in Fig. 5(b–d), we build all
)c(

round elements and illustrating the a contrario model.
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(a)

(d)

(b)

(e)

(c)

(f)

Fig. 5. (a) On this array of 100 Gabor patches, we represent the associated graph c (the orientations of the edges were omitted). In this graph, most of the points are linked to
their 6 nearest neighbors, except when a neighbor is too remote, as it often happens for elements that are close to the image border. For a point x 2 x (surrounded in white in
(a)), a chain ðx; yÞ is started for each y 2 N cðxÞ in (b), and expanded in (c) into the most rectilinear possible chain. Picture (c) shows the result after 3 iterations of the
expansion process. (d) Given two neighbors x and y, we look for the neighbor z of y that minimizes the absolute angle between xy

!
and yz

!
. (e) and (f) The variables the

algorithm measures when analyzing a chain containing n ¼ 4 points.
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the chains to be tested as candidate alignments. Then the number
of tests is approximately

NT ¼def 6� N �
ffiffiffiffi
N

p
: ð3Þ

NT is actually an overestimation of the number of tests, since not all
nodes in c have six neighbors.

Step 5: Compute the Number of False Alarms (NFA) of each
chain of C containing at least three points, as follows. For a given
chain c ¼ ðz1; . . . ; znÞ with n P 3, consider the variables
x1; . . . ;xn, as defined in Section 6.1 and illustrated in Fig. 5(e)
and (f). Under the assumption that g is a realization of an a
contrario array of Gabor patches, the orientations x1;x2; . . . ;xn

are samples of n independent random variables X1;X2; . . . ;Xn. X1

and Xn are uniformly distributed in ½0; p2�, and a short development
shows that X2; . . . ;Xn�1 have a cumulative distribution function
FðxÞ ¼ PðX2 6 xÞ ¼ . . . ¼ PðXn�1 6 xÞ, defined by

FðxÞ ¼

12x2

p2 if 0 6 x < p
12

12
p2 ðp6x� p2

122
Þ if p

12 6 x < 5p
12

12
p2 x2 � 2px

3 þ p2

6

� �
if 5p

12 6 x 6 p
2 :

8>>><
>>>:

ð4Þ

Note that for a random patch Zi in a chain, the probability law of
maxðaiL;aiRÞ depends on the angle U�

Zi�1Zi
. The cumulative distribu-

tion function F is obtained by integrating over all possible values
for U�

Zi�1Zi
, according to the law hypothesized in the a contrario

model. Noting x� ¼def maxfx1; . . . ;xng and X� ¼def maxfX1; . . . ;Xng,
the probability that all Xi be less than the observed x� is

P X� 6 x�ð Þ ¼ px�

2

� �2

� Fðx�Þn�2
: ð5Þ

As usual in the a contrario theory, we get a natural definition of the
NFA of chain c:

NFAðcÞ ¼def NT � P X� 6 x�ð Þ
¼ NT � px�

2

� �2 � Fðx�Þn�2
:

ð6Þ
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Output: The algorithm returns the lowest NFA and the chain
that achieves it.

6.4. Property of the algorithm

As explained at the beginning of Section 6, a small NFA charac-
terizes an unexpected event, while common events have a large
NFA. The NFA as defined in the previous section is a positive real
number, upper bounded by NT . The longer the chain and the smal-
ler the angles xi, the smaller the NFA. Consequently, the algorithm
is built to detect chains with little direction change and Gabor
patches roughly locally tangent to their chain. The following
proposition justifies the interpretation of the NFA as a measure
of non-accidentalness.

Proposition 1. Let e > 0, and G ¼ fðXi;HiÞgi¼1...N an a contrario
array of N Gabor patches. Then the expected number of chains c
such that NFAðcÞ < e, is less than e.

The proof of Proposition 1 is standard (Desolneux et al., 2008).
One of its implications is that there is on average less than one
chain with NFA lower than 1 in an a contrario stimulus. The bottom
row of Fig. 6 shows that no such meaningful structure was found in
some stimuli containing only background elements. Since our
stimuli are close to the a contrario model, a target alignment with
NFA < 1 is likely to be detected by the algorithm because it is unli-
kely that other chains in the background be assigned a lower NFA.
Conversely, this is not guaranteed anymore for a target alignment
with NFA P 1.

7. Subjects compared to the algorithm

In this section we compare the subjects’ detection performance
to the algorithm described in Section 6.3. The question is whether a
rigorous mathematical model of non-accidental alignments could
match the average human detections, and there is no better way
to confront the theory to the subjects than by building an artificial
observer on that theory.
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(a) NFA = 3.10−9 (b) NFA = 5.10−4 (c) NFA = 9.10−6

(d) NFA = 11.4 (e) NFA = 4.9 (f) NFA = 42.8

Fig. 6. Detections by the algorithm in the arrays of Figs. 1 (first row) and 4 (second row). The detected chains in the second row do not look like ‘‘good” alignments, and are
actually difficult to see. This is consistent with the values of the NFA that are all larger than 1 and thus not considered as significant.
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Recall that each click made by a subject is associated to the
nearest Gabor element in the image, and counted as a valid detec-
tion when that element belongs to the target. The same is done for
the algorithm, by selecting the most central element among the
returned ones (that is to say, the closest to the barycenter of the
returned elements). This count permits to define the detection rate
for the algorithm as well.

In Fig. 7, each of the first three rows compares the subjects of
one experiment to the algorithm. The fourth row presents the same
data averaged over all three experiments. The plots of columns A
and B show the detection rate as a function of the jitter level and
the number of aligned elements respectively, whereas columns C
and D display respectively the detection rate and the reaction time
as functions of log10ðNFAÞ of the target alignment. In these two
latter sets of plots, we grouped the data into ten bins with equal
number of trials. We did not defined a reaction time for the
algorithm, thus only the subjects’ curves appear in column D.

Tables 4–6 show the results of a statistical analysis of the agree-
ment between the subjects and the algorithm’s behaviors, as well as
P K ¼ kjnc; ci; cj
� � ¼

ci
1
2 ðk� ðnc � rijÞÞ

 !
nc � ci

1
2 ðnc � dij � kÞ

 !,
nc

cj

� �
if 0 6 k� jnc � rijj ¼ 0 mod ð2Þandk 6 nc � jdijj

0 otherwise

8><
>: ð7Þ
among subjects. To compare the answers of two observers (whether
two subjects or a subject and the algorithm), we adapted an idea
exposed in Ernst et al. (2012). Suppose two observers i and j were
presented with the same set of nc stimuli, and achieved respectively
ci and cj correct detections in it. We want to measure the similarity
in the distributions of their correct answers, beyond their detection
rates. For example, imagine both observers detected ci ¼ cj ¼ 5
alignments out of nc ¼ 10 trial. They may have answered in exact
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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opposite ways, if each observer detected in the trials where the
other failed. In that case, we would like to point out how different
these behaviors are, despite the identical detection rates. Con-
versely, if ci ¼ 7, cj ¼ 4 with observer i having answered correctly
in the 4 trials where observer j succeeded as well, then observer i
did better than j in 3 out of the 10 trials, but both observers agreed
on the other 7 trials. Thus they show quite similar behaviors, no
matter the difference in their detection rates. Formally, let
si;1; . . . ; si;nc and sj;1; . . . ; sj;nc be the binaries answers (1 for a detec-
tion, 0 for a missed trial) given by observers i and j to the same nc

stimuli. Then k ¼Pnc
l¼1si;lsj;l þ ð1� si;lÞð1� sj;lÞ denotes the number

of trials in which the observers agreed, i.e. both detected or both
failed. We compare the observed number k to its random counter-
part K ¼Pnc

l¼1Si;lSj;l þ ð1� Si;lÞð1� Sj;lÞ, assuming that the ci and cj
detections are distributed randomly and independently (formally,
the random vectors ðSi;1; . . . ; Si;nc Þ and ðSj;1; . . . ; Sj;nc Þ are independent
and uniformly distributed over v 2 0;1f gnc ;Pnc

l¼1v l ¼ ci
	 


and
v 2 0;1f gnc ;Pnc

l¼1v l ¼ cj
	 


, respectively). Under this basic assump-
tion, we get the following law for K:
where rij ¼ ci þ cj and dij ¼ ci � cj. We denote by pk ¼
P KP kjnc;ci;cj
� �¼Pnc

l¼kP K ¼ ljnc;ci;cj
� �

the probability of observing
at least k identical answers in the responses of the two observers.
The number pk is a p-value measuring if the observed k is
significantly greater than expected under the basic assumption
and, consequently, if there is significant agreement. In Tables 4–6
we report, for each subject, the values ðk; pkÞ resulting from the
comparison with the algorithm on the 126 trials seen by the
e of alignments by their non-accidentalness. Vision Research (2015), http://
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Fig. 7. Comparison of the subjects of Experiments I–III to the a contrario detection algorithm. The solid black lines represent the subjects, whereas the gray solid lines
represent the algorithm’s results. The first, second and third row display the results of experiments I, II and III respectively, whereas the fourth row shows the same data
averaged over all three experiments. The detection rates are plotted as functions of the jitter intensity a (column A), the number n of aligned elements (B) and the log10 of the
target’s NFA (C). The latter is also the x variable in column D’s plots, the y axis representing the reaction time, in seconds.
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subject. The same figures are given for each pair of subjects who
saw the same sequence of images.
8. Discussion

The first three columns of Fig. 7 exhibit a strong similarity of
shape and values between the subjects’ detection curves and the
algorithm’s ones. The match is obviously not perfect, especially
in the comparison with the subjects of Experiment I, in which
the algorithm performs generally better than the average of the
subjects. The four plots of column A show that the algorithm tends
to be more accurate than the average of the subjects on moderately
jittered stimuli, whereas subjects are generally better than the
algorithm at detecting more jittered alignments, especially in the
maximal jitter condition. Column C provides an additional inter-
pretation of the differences between the subjects and the algo-
rithm. In these graphics all the stimuli are ordered by the
log10ðNFAÞ of their target alignment. They show that the algorithm
achieves better detection rates in stimuli with lower NFA (non-
accidental alignments), and gets worse than the average of the sub-
jects beyond a certain threshold, always larger than 1 (in the plot,
log10ðNFAÞ ¼ 0).
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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A possible explanation of the discrepancies between the aver-
age of the subjects and the algorithm is the following. On the
one hand, the algorithmmay never miss the alignment that is most
distinguishable from noise in a stimulus, because of the exhaustive
search it carries out. This is what we expect from an ideal observer
under the specified constraints. Subjects are less exhaustive and
may lack attention sometimes (recall that they had only a minimal
training). Besides, the algorithm takes as input the exact coordi-
nates and orientations of the patches, whereas the subjects may
have a lower visual accuracy. On the other hand, although we built
the stimuli so as to avoid the detection of the alignments in
absence of the orientation cue (see Section 2.1), it seems that in
some cases the background elements could not completely mask
the perfect rectilinearity and the regular spacing of the target ele-
ments. For example, with a little effort, one can find the hidden
alignment by looking only at Fig. 1(e). According to the observed
performance in the maximal jitter condition (Sections 3–5), and
the impressions that some of the subjects reported, we may infer
that the regularity information was exploited by the subjects in
some cases. On the contrary, the a contrario model described in
Section 6.2 does not take into account this information. When
the subjects are using information not available to the ideal obser-
ver, it is not surprising that they get better detection rates.
e of alignments by their non-accidentalness. Vision Research (2015), http://
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Table 4
The values ðk; pkÞ are reported for Experiment I. The variable k is the number of identical responses given by two observers in a set of 126 trials, and the p-value pk measures how significant it is to observe at least k identical responses.
Recall that in Experiment I not all the subjects saw the same sequences of stimuli. Therefore, the cells are filled only for pairs of observers presented with the same stimuli.

Subject 1 2 3 4 5 6 7 8 10 11 12 Algorithm

1 – – – – – – – – – (105, 1.2e�12) – (95, 3.5e�06)
2 – – – – (99, 2.3e�08) (97, 1.3e�09) (94, 6.8e�06) – – – (102, 4.9e�10) (101, 1.8e�08)
3 – – – – – – – (105, 6.3e�12) , 3.9e�08) (101, 9.4e�10) – – (93, 4.9e�05)
4 – – – – – – – – – – – (82, 0.0014)
5 – – – – – (98, 4.3e�10) (93, 1.3e�05) – – – (99, 1.5e�08) (98, 3.7e�07)
6 – – – – – – (89, 5.6e�06) – – – (97, 1.8e�09) (90, 2.7e�07)
7 – – – – – – – – – – (88, 0.00053) (95, 3e�05)
8 – – – – – – – – , 4.7e�09) (100, 7.5e�09) – – (108, 1.2e�07)
9 – – – – – – – – (100, 1.1e�09) – – (100, 7.1e�11)
10 – – – – – – – – – – – (96, 1.1e�06)
11 – – – – – – – – – – – (104, 1.5e�05)
12 – – – – – – – – – – – (99, 6.7e�08)

Table 5
The values ðk; pkÞ for Experiment II. The variable k is the nu r of identical responses given by two observers in a se trials, and the p-value pk measures how significant it is to observe at least k identical responses.

Subject 1 2 3 4 5 6 8 9 10 Algorithm

1 – (110, 2.3e�11) (96, 0.00043) (100, 5.3e�06) (98, 0.0013) (106, 5.9e�09) , 2.4e�05) (108, 9.2e�10) (102, 1e�05) (99, 1.1e�05) (100, 2.9e�05)
2 – – (100, 0.00063) (104, 3.3e�06) (104, 0.003) (102, 9.2e�05) , 5.5e�05) (112, 5.9e�09) (106, 0.00016) (95, 0.009) (104, 8.6e�05)
3 – – – (104, 7.3e�07) (98, 0.04) (102, 1.8e�05) , 0.00026) (102, 0.0002) (106, 8.7e�06) (95, 0.0029) (104, 1.1e�05)
4 – – – – (98, 0.015) (106, 5.7e�08) , 5.2e�06) (104, 6.6e�06) (106, 1.6e�06) (103, 6.8e�07) (98, 0.0014)
5 – – – – – (104, 0.00019) , 0.00042) (104, 0.01) (112, 2.1e�05) (101, 0.00052) (104, 0.003)
6 – – – – – – , 0.00026) (108, 1.4e�07) (112, 6.8e�10) (107, 8.4e�09) (102, 9.2e�05)
7 – – – – – – (91, 0.00041) (95, 3.9e�06) (92, 8.3e�05) (89, 0.0019)
8 – – – – – – – (112, 2.5e�07) (97, 0.0036) (102, 0.0015)
9 – – – – – – – – (101, 0.00031) (110, 9.5e�07)
10 – – – – – – – – – (99, 0.00037)

Table 6
The values ðk; pkÞ for Experiment III. The variable k is the nu er of identical responses given by two observers in a s trials, and the p-value pk measures how significant it is to observe at least k identical responses.

Subject 1 2 3 5 6 8 9 10 Algorithm

1 – (108, 1.9e�13) (110, 6.1e�17) 109, 2.3e�14) (103, 1.5e�09) (105, 3.9e�10 8, 1.9e�13) (106, 1.7e�11) (104, 4e�11) (103, 1.1e�10) (98, 1.6e�07)
2 – – (100, 6.9e�10) 111, 4e�16) (105, 3.9e�11) (99, 3.5e�07) 8, 1.1e�13) (102, 2.1e�09) (102, 4.2e�10) (103, 7.9e�11) (96, 8.3e�07)
3 – – – 107, 2e�14) (101, 1.8e�10) (99, 1.1e�09) 0, 6.9e�10) (100, 7.6e�10) (96, 6.9e�08) (105, 4.7e�13) (92, 4.8e�06)
4 – – – (112, 1.4e�16) (104, 1.8e�10 9, 1.4e�14) (109, 3.3e�14) (109, 7.9e�15) (106, 7.8e�13) (103, 1.5e�10)
5 – – – – (102, 1.6e�07 1, 1.8e�15) (103, 3.3e�09) (99, 4.5e�08) (100, 8.8e�09) (101, 9.1e�09)
6 – – – – – 3, 1.8e�09) (105, 1.6e�09) (97, 1.1e�06) (96, 1.9e�06) (101, 2.8e�08)
7 – – – – – (106, 7.2e�12) (98, 5.7e�08) (97, 1.3e�07) (102, 7.6e�10)
8 – – – – – – (106, 2.8e�12) (103, 1.5e�10) (96, 2e�06)
9 – – – – – – – (101, 7.5e�10) (98, 5.7e�08)
10 – – – – – – – – (89, 0.0002)
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Fig. 8. Some examples of contour detection by a slightly modified version of our algorithm. In the left hand are images extracted from Field et al. (1993) (from top to bottom
row: Figs. 3, 6, 10 and 8). The coordinates and orientations of the patches were computed by smoothing the image, selecting the pixels darker than 0:6 times its mean value,
and by calculating the center and main direction of each resulting connected component. As described in Field et al. (1993), in this kind of arrays, the Gabor patches are
approximately set on a square grid. This is why we changed the number of visited neighbors by the algorithm from 6 to 4, and changed the number of tests NT accordingly.
The middle column displays the chain with smallest NFA, found by our algorithm. In the right hand column we report the corresponding target path, extracted from Field
et al. (1993) as well.
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Nevertheless, the algorithm does perform quite similarly to the
subjects. As Tables 4–6 show, its responses agree significantly with
those of the subjects (p 6 0:003). This agreement is actually
comparable to the inter-subjects one. We have thus a statistical
confirmation of the good match observed in Fig. 7.

Furthermore, this similarity is not the result of the optimization
of a set of parameters to get the best possible fit. It is the direct out-
put of one unique non-parametric algorithm, that was compared to
human subjects on every single trial. In short, while a model fit to
the subjects results would be easily obtained by tuning the param-
eters of a parametric algorithm, here the fit between algorithm and
subjects is absolute.

Another observation that must be pointed out is that the NFA of
the target alignments is an accurate one-dimension measure of the
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
dx.doi.org/10.1016/j.visres.2015.08.014
stimuli’s difficulty. Indeed, in Fig. 7, columns C and D show
decreasing detection rates and increasing reaction times with
respect to the NFA. According to Proposition 1, points with
log10ðNFAÞ lower than �2 in these plots represent stimuli in which
the target alignment is expected to occur less than once every hun-
dred a contrario array of Gabor patches. At the other end of the NFA
axis, on the right of log10ðNFAÞ ¼ 2 for example, stand the images
whose hidden alignment is an event that could occur, on average,
more than a hundred times in a single a contrario Gabor array, and
is thus indistinguishable from noise. Consequently, what columns
C and D show in Fig. 7, is a strong correlation between detectability
and non-accidentalness.

Moreover, these results raise the hope that the a contrario
framework might become a useful tool for other psychophysical
e of alignments by their non-accidentalness. Vision Research (2015), http://
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studies of the non-accidentalness principle in perceptual grouping.
It allows the translation of many parameters used to build stimuli,
into one interpretable measure that permits comparing all the
stimuli with each other. In Fig. 7, columns C and D are an example
of such flexibility, since they present the detection rates and
reaction times as a function of the NFA, over a wide range of stim-
uli ruled by three parameters. In the present study we focused on
the detection of straight contours in order to start with a model
easy to define and to explain. But the same technique could be
adapted to the study of symmetry, motion, or more general
contour integration.

To illustrate this, we made a minor modification in our
algorithm permitting to measure the non-accidentalness of stimuli
proposed in Field et al. (1993) (Fig. 8). In this experiment, for each
image extracted from Field et al. (1993), the coordinates and
orientations of the patches were computed by smoothing the
image, selecting the pixels darker than 0:6 times its mean value,
and by calculating the center and main direction of each resulting
connected component. As described in Field et al. (1993), in this
kind of arrays, the Gabor patches are approximately set on a square
grid. This is why we changed the number of visited neighbors by
the algorithm from 6 to 4. We changed the number of tests NT

accordingly. The detection results again show a good fit between
NFA and detectability of curves.

The limitations of the present work also require a discussion.
First, in the experimental protocol most aspects of the viewing
conditions were not normalized. What is more, the difference in
the Gabor patches’ spatial frequency between Experiment I on
one side, and Experiments II and III on the other side, may have
induced effects that we did not expect and that were not the scope
of our study. Also, the fact that the subjects were only minimally
trained may add variability among their response criteria and
overall reduce the detection rate in comparison to the algorithm.
However, our intention was not to uncover new psychophysical
phenomena, but to present a new interpretation of well known
effects. In fact, despite the just mentioned limitations, the
behavior observed in our experiments is consistent with previous
studies on contour integration and the association field (Field
et al., 1993; Ledgeway et al., 2005; Ernst et al., 2012; Nygård
et al., 2009).

Comparing our results to those of the latter studies may also be
questionable, though, beyond the fact that we focused on straight
contours. Indeed, contrary to the referred experiments, in ours,
attention played an important part in the perceptual process, since
the subjects were presented with the stimuli without time
limitation. Thus, the good fit between the ideal observer’s and
the subjects’ performance is explainable, as the subjects had all
time to find the good continuations. Reproducing our experiments
according to a preattentive paradigm could be the object of a
future work.

9. Conclusion

This paper has presented an attempt to interpret and quantify a
specific class of perceptual grouping, thanks to a mathematical
model of the non-accidentalness principle. We exposed a way to
apply the a contrario theory to implement a parameterless algo-
rithm, adapted to the detection of a fixed Gestalt in a masking
background. The strong correlation between the subjects’ detec-
tion performance and the NFA, as well as the match between the
algorithm and the subjects’ curves, seem to argue in favor of the
non-accidentalness principle as a way to interpret and predict
the perceptual grouping of jittered alignments. We believe that
the presented method could be adapted to address other questions
of quantitative Gestalt, with the NFA as independent variable in
psychophysical experiments.
Please cite this article in press as: Blusseau, S., et al. Measuring the visual salienc
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