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A vehicle’s in-flight behaviour can be represented by the Newton-Euler equations of motion:
usually, such amodel has a nonlinear and continuous description based on ordinary differential
equations. The model structure can be altered using analytic transformations and, when the
model is implemented, its numerical precisionmay depend on the selection of a numerical solver.
Hence, the selection of a model’s structure and an appropriate numerical solver can become
the key development issues, if the model’s numerical stability, convergence, and computational
complexity are to be improved. This paper assesses the influence of a model’s reference frame
and a numerical solver on the accuracy of calculating a projectile’s trajectory, for a case study of
free-flight long-range ballistic experiments. The analysis is based on two model structures: the
first is a six-degree-of-freedom nonlinear description of a spin-stabilized projectile, expressed
in a rolling reference frame; the second is a quasi-LPV reformulation of the same projectile
model, but expressed in a non-rolling reference frame. It is shown that inappropriate selection
of a numerical solver can hinder the accuracy of the nonlinear model. At the same time, the
model represented in a non-rolling reference frame offers a solution with higher accuracy,
better convergence properties, and significantly reduced computation time.

I. Nomenclature

M = Mach number
V = translational velocity, m/s
α, β, αt = angle of attack, angle of sideslip, total angle of attack, deg
CX,CNα,Cypα = axial force, normal force slope, and Magnus force slope coefficients
Clp,Cmα,Cmq,Cnpα = roll damping, pitch moment slope, pitch damping and Magnus moment slope coefficients
Ix, It = longitudinal and lateral moments of inertia, kg · m2

u, v,w = linear velocities in x, y, and z body axis, m/s
p, q, r = roll, pitch, and yaw rate, rad/s
xE, yE, zE = center of gravity position, expressed w.r.t. Earth reference frame, m
φ, θ, ψ = Euler angles: roll, pitch, and yaw, deg
ρ = air density, kg/m3

fi,aero,mi,aero = atmospheric force and moment, acting in i-th axis
x, x ′ = variable in variable-roll frame, non-rolling frame
x, y = state vector, output vector
S = reference surface, m2
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d = reference diameter, m
m = mass, kg

II. Introduction

Numerical simulations of in-flight behaviour are fundamental in the development of modern weaponry: they predict
a projectile’s trajectory—allowing to fulfill the safety requirements for free-flight experiments—and thus aid

the assessment of its stability. The flight dynamics model, implemented for the purpose of numerical simulations,
is nonlinear and depends on a set of aerodynamic coefficients that need to be quantified beforehand [1]. Multiple
methods provide the means of quantifying the aerodynamic coefficients: the necessary data is typically obtained through
numerical codes (Computational Fluid Dynamics), semi-empirical codes (e.g. PROjectile Design/Analysis System
- PRODAS), or wind-tunnel experiments. Their results can be treated as an initial estimation of the aerodynamic
coefficients, later to be used in a safety assessment of upcoming free-flight experiments, or in an identification procedure
based on collected and measurement data [2, 3]. However, complex nonlinear model are problematic: the model fidelity
is high, but so is the numerical complexity. Particularly, the simulation time is cumbersome. Moreover, the future utility
of the model might be reduced, since the nonlinear structure may not be appropriate for a controller design.

A solution to both problems may lay in modifying the model structure. For instance, autopilots for guided projectiles
are usually based on a (quasi) linear parameter-varying structure (LPV) [4] that encapsulates the nonlinearities in
a quasi-linear structure, allowing the use of linear autopilot design methods [5–8]. Similarly, tasks which require
multiple model runs, such as global sensitivity analysis, may benefit from an easier-to-compute representation. Recently,
the authors have suggested that such a model might be obtained using a function substitution method, combined
with a reference frame modification [9]. The approach exploits the established practices in quasi-LPV modelling:
the function substitution [10, 11] which allows to analyze the projectile’s behavior even for a non-equilibrium flight
[12]; and the reference frame transformation [13, 14], which reduces the computational complexity of the system for
the case of spin-stabilized ammunition. The resulting quasi-LPV model is computationally more efficient, has an
identification-oriented structure, and resembles the control-oriented quasi-LPV model presented by Sève et al. [15].

However, a comparison of simulations [9] of the two models has shown non-negligible differences in their obtained
state trajectories. Such differences are especially problematic in the case of long-range simulations, since the simulated
results could diverge from the real trajectory over time. It is predicted that the differences between the models stem from
an inappropriate selection of a numerical solver of the ordinary differential equations (ODE). Indeed, while analytic
derivations of the model equations in various reference frames are known for decades [13, 16, 17], the influence of ODE
solver selection on the accuracy of the non-rolling model’s state trajectory has not been thoroughly studied.

The merit of the work lies in the evaluation of how much do the reference frame transformation and the numerical
solver selection influence the accuracy of a trajectory simulation. The evaluation is performed on two models: the
nonlinear one in a variable-roll reference frame, similar to these usually used in simulations for the purpose of free-flight
experiments [2]; and a quasi-LPV one in a non-rolling frame, resembling these used in control [15]. In order to assess
the accuracy of a numerical solution, first a trajectory considered as a reference has been found using a high order
fixed-step numerical solver with high sampling frequency. Afterwards, solutions of several variable-step solvers [18]
have been compared with the ’exact’ solution.

The outline of the paper is as follows. In section III, the nonlinear and quasi-LPV models are described. A numerical
solution, considered to be exact, is obtained in section IV through convergence and stability analysis. A comparative
analysis of the models accuracy is described in section V. Finally, the paper is summarized in section VI.

III. Mathematical model of a vehicle in flight
The nonlinear model, based on the 6-degrees–of–freedom Newton-Euler laws of motion [19], and its representation

in a quasi-LPV form [9], are shortly presented hereafter.

A. Nonlinear model
The model of the in-flight dynamics is a nonlinear state-space continuous-time structureM:

M :

{
x(t) = f (x(t),C(x(t), pa)), x(0) = x0

y(t) = g(x(t))
(1)
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where the state vector x ∈ R12 has 12 components corresponding to the translational velocities (u, v, w), rotational
velocities (p, q, r), position of the center of gravity of the vehicle w.r.t. Earth (xE , yE , zE ), and the roll, pitch and yaw
angles (φ, θ and ψ, respectively) [1]. The aerodynamic coefficients C are described by polynomial functions whose
parameters are pa. These polynomial descriptions depend on the linear and angular velocities, as well as on the Mach
number M and the total angle of attack αt , which are defined by:

M =
V
a

αt = arccos
( u
V

)
(2)

where a is the speed of sound, andV is the total velocity, i.e. V =
√

u2 + v2 + w2 [19]. The output vector y represents the
measurements obtained by available sensors and observers: embedded magnetometers, accelerometers and gyroscopes,
and an on-ground trajectory radar.

The full form of the nonlinear model equations in the variable-roll reference frame is described by the following set
of equations, based on the Newton–Euler laws of dynamics (refer to [19]):
Translational dynamics 

Ûu
Ûv

Ûw

 =


0 −r q
r 0 −p
−q p 0



u
v

w

 + g

−sθ
sφcθ
cφcθ

 + 1/m


fx,aero
fy,aero
fz,aero

 (3)

Attitude dynamics 
Ûp
Ûq
Ûr

 =


0
p · r It−Ix

It

p · q Ix−Iz
It

 +


1
Ix

mx,aero

1
Iy

my,aero

1
Iz

mz,aero

 (4)

Translational kinematics 
ÛxE
ÛyE

ÛzE



cθcψ sφsθcψ − sψcφ cφsθcψ + sφsψ
cθsψ sφsθsψ + cψcφ cφsθsψ − sφcψ
−sθ sφcθ cφcθ



u
v

w

 (5)

Attitude kinematics 
Ûφ

Ûθ

Ûψ

 =

1 sφtθ cφtθ
0 cφ −sφ
0 sφ 1

cθ cφ 1
cθ



p
q
r

 (6)

where the forces and moments are given by:
fx,aero
fy,aero
fz,aero

 = q̄S


CX0 + CXa s2αt

−Cypα
d

2V
w
V p − CNα

v
V

−Cypα
d

2V
v
V p − CNα

w
V

 (7)


mx,aero

my,aero

mz,aero

 = q̄Sd


Clpp

Cmα
w
V − Cpα

d
2V

v
V p + Cmq

d
2V q

−Cmα
v
V − Cnpα

d
2V

w
V p + Cmq

d
2V r

 . (8)

The state equations depend on various physical properties, measured and considered as known for each projectile, such
as the mass m, longitudinal and lateral moments of inertia Ix, It , reference surface S, and diameter d. The dynamic
pressure is denoted by q̄ = 1

2 ρV2, where ρ is the air density, also assumed to be known. Symbols s, c, t correspond to
trigonometric sine, cosine, and tangent, respectively.

The aerodynamic coefficients can be divided into the force and moment coefficients. The force is described via
the axial force CX , the normal force slope CNα and Magnus force slope Cypα coefficients. Similarly, the moments are
expressed through the roll damping Clp , pitch moment coefficient slope Cmα, pitch damping Cmq , and Magnus moment
coefficient slope Cnpα coefficients [19].
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B. Quasi-LPV model
In aerospace modelling, the usual choice for a coordinate system location is to rigidly fix it on the vehicle’s center of

mass and to subject it to all the projectile’s motions [1, 14]. Alternatively, the model can be developed w.r.t. a frame
that is fixed to the projectile’s center of mass, but does not experience the rolling motion [14]. Such descriptions are
called "variable-roll" and "non-rolling" reference frames, respectively. The latter formulation is always possible, but has
an interesting property if the projectile is axis-symmetric (in y and z axes) and spin-stabilized: the nonlinear model
equations become decoupled from its fastest changing variable, the roll angle φ [14, 20]. In result, the computational
complexity diminishes; the non-rolling frame has been applied for this purpose in as early as in 1960s [13].

Transformation of dynamics state variables in variable-roll reference frame (3)-(4) into their non-rolling equivalents
can be described using the following transformation equations [21] as:

u′

v′

w′

 =

1 0 0
0 cφ −sφ
0 sφ cφ



u
v

w



p′

q′

r ′

 =

1 0 0
0 cφ −sφ
0 sφ cφ



p
q
r

 (9)

where the superscript ·′ indicates a variable expressed w.r.t. the non-rolling frame. The kinematic state variables, i.e.
Euler angles and positions are equivalent, in both frames.

A quasi-LPV model can be obtained in a non-rolling frame through a set of algebraic transformations, in accordance
with the function substitution approach [10–12]. The full derivation of the model has been presented in [9], and results
in the following set of equations:

Ûx′ = A(x′) · x′ (10)

where the non-rolling state vector x′ =
[
u′ v′ w′ p′ q′ r ′ θ ′ ψ ′ x ′E y′E z′E

]T
∈ R11, and the parameter-

dependent state matrix can be defined as follows:

A(x) =



0 −r ′ q′
X1(u

′,V,z′E )−g(z
′
E )sθ

′

p′ 0 0 0 0 0
r ′ X3(V, z′E ) r ′tθ ′ + X2(V, z′E )p

′ 0 0 0 0 0 0
−q′ −r ′tθ ′ − X2(V, z′E )p

′ X3(V, z′E )
g(z′E )cθ

p′ 0 0 0 0 0
0 0 0 X4(V, z′E ) 0 0 0 0 0
0 X7(V, z′E )p

′ X5(V, z′E ) −
Ix
Is

r ′ − r′r′tθ
p X6(V, z′E ) 0 0 0 0

0 −X5(V, z′E ) X7(V, z′E )p
′ Ix

Is
q′ + q′r′tθ

p 0 X6(V, z′E ) 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 c−1θ 0 0 0

cθcψ −sψ sθcψ 0 0 0 0 0 0
cθsψ cψ sθsψ 0 0 0 0 0 0
−sθ 0 cθ 0 0 0 0 0 0



,

(11)
where:

X1(u,V, zE ) = −0.5m−1ρ(zE )V2SCX (u,V)

X2(V, zE ) = 0.25m−1ρ(zE )SdCypα(V)

X3(V, zE ) = −0.5m−1ρ(zE )VSCNα(V)

X4(V, zE ) = 0.25ρ(zE )VSd2Clp(V)

X5(V, zE ) = 0.5ρ(zE )VSdCmα(V)

X6(V, zE ) = 0.25ρ(zE )VSd2Cmq(V)

X7(V, zE ) = 0.25ρ(zE )Sd2Cnpa(V).

The scheduling signals of the quasi-LPV model consist of eight variables, which means that the model could
be considered as a rather complex in control sense—especially that the complexity of an LPV controller increases
exponentially with the number of variables [22]. However, such a structure can be deemed to be a good compromise
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between control and identification requirements: Firstly, should the complexity be reduced, fixing some of the scheduling
signals will result in a control-oriented structure presented in [15]. Secondly, should the model behavior be accurate for
a wide variation of flight conditions, which is necessary for the identification step [19], the model can be left ’as-is’. Out
of the eight scheduling signals, five of them can be measured by available measurement techniques: the angular rates by
gyroscopes, the altitude by a trajectory tracker, and the total velocity by a Doppler radar. The remaining scheduling
signals, i.e. u′, θ, ψ, can be simulated or estimated, as in [23].

IV. Finding a reference solution
Accuracy of a numerical solution to a system of ODE-s can be evaluated through a comparison with an analytic

solution, if the latter is known. It is not usually the case for six–degrees–of–freedom Newton–Euler models of flight
dynamics: for them an analytic solution can be found only by imposing additional constraints, e.g. restricting the
analysis to a grid of equilibrium points, as it is done for airplane models [18, 24]. However, imposing such a restriction
would be impractical since the end goal of the project is to develop an identification-oriented model.

An alternative approach, used in the present work, consists of applying a numerical solver with—impractically
strict—accuracy constraints; considering its solution as a reference; and using the reference in order to evaluate if
numerical solvers with less strict constraints provide a comparable accuracy.

Numerical solvers consist of fixed- and variable-step categories. The latter is applicable to stiff problems, has a
shorter computation time and better convergence properties [25], for which reasons it is embedded in Matlab [18]. The
fixed-step category, on the other hand, can be slower in solving an ODE due to inability to modify the time-step, albeit
offer a direct control over the solver’s order and sampling time, allowing to easily observe convergence of a solution.
Hence, in order to find a reference solution, it is decided to apply a fixed-step ODE solver with a high order and high
sampling frequency. Such a solution can be then used in assessment of much faster variable-step solvers, so that the
most accurate solver can be selected. The approach is visualized in the ideogram in Fig. 1.

Fig. 1 Comparison of exact and numerical solutions

It is important to assess if solutions converge and are stable, prior to declaring one of them as a reference solution.
They can be evaluated by varying the solver’s order and sampling time. Herein, it is proposed to find an ’exact’ (as in
Fig. 1) solution using the following approach:

1) Obtain a number of numerical solutions using fixed-step solver for a range of solver’s orders and sampling
times, in such a way, that the solutions are expected to be stable and accurate, e.g. by arbitrarily specifying the
maximum step size [26, 27].

2) Test if the solutions converge with an increasing solver order.
3) Test if the solutions converge with an increasing sampling.
4) If the solutions are stable and converging, select the solution obtained with the highest order and highest sampling

time, as the ’exact’ one.
Such a procedure allows to find a solution that can be considered as a reference, albeit is heavily computationally
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expensive. This computational cost motivates the search for a much faster variable-step solver that produces the most
similar results.

Using the procedure, both the nonlinear and quasi-LPV models have been analyzed. The test scenario applied in the
analysis corresponds to a parabolic flight trajectory. The set of initial values is as follows: u0 = 700 m/s, p0 = 1420
rad/s, θ0 = 15 deg, ψ0 = 0 deg. The remainder initial state variables are set to zero. Such an initial elevation angle
and velocity would result in a flight lasting approximately 30 s in real life.

A. Solution of the nonlinear model
Firstly, the influence of the solver’s order is investigated. The sampling time has been fixed to 20 µs: the selection is

motivated by the highest frequency of the model i.e. the roll angle evolution, which has a period of approximately 5
ms—it is of two orders of magnitude larger than the sampling time, allowing to obtain an accurate solution. Fixed-step
solvers with orders ranging from one to five have been applied.

An exemplary trajectory of a pitch rate q evolution over time has been visualized in Fig. 2. It can be observed that
for each increase in solver’s order (trajectories noted as ode2–ode5, ode1 is not shown, since the solution was unstable)
the difference between the solutions obtained for the given order and the highest tested order is decreasing. The solution
calculated for the fifth order solver (i.e. Runge-Kutta method) differ only by approximately 2e − 8 from the fourth order
solution, i.e. the magnitude of the difference is 108 smaller than the magnitude of the pitch rate signal. The convergence
of solutions is even more visible when analyzing the root mean square (RMS) differences, as presented in Fig. 3.a) for
three exemplary state variables: y, θ, and ψ. For the analyzed flight scenario, these variables reach values from the range
of y ∈ 0–120 m, θ ∈ 0–22 deg, and ψ ∈ ±30 deg. The magnitude of RMS differences between the reference solution
and the lower order solutions is decreasing ten- to thousandfold with each increase in solver’s order. Therefore, with an
increase in order, the solution gets more stable and converges more easily. Moreover, the solution for the fifth order
differs only negligibly from the fourth order solution, hence the fifth order can be considered as a sufficiently accurate.
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Fig. 2 The first 0.2s of the pitch rate q evolution (left): convergence with increasing solver’s order (right)

(a) Increase in accuracy w.r.t. increasing ODE order (b) Increase in accuracy w.r.t. decreasing time step

Fig. 3 Root mean square difference w.r.t. solution of the fifth order solver with 20 µs: convergence with
increasing solver’s order and sampling time
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Secondly, the influence of the sampling time has been investigated. A solver’s order equal to five, considered in
the prequel as sufficiently accurate, has been used for all the tests. The sampling time ranged from 20 to 100 µs. The
simulation results are summarized in Fig. 3.b). The RMS difference between simulations decreases ten- to hundredfold
for a twofold increase in sampling frequency, hence the solutions are considered to be converging for a decreasing
sampling time.

Therefore, the solutions converge and become more stable w.r.t. the solver’s order and sampling time, while the
differences between solutions become negligibly small. Hence, the solution obtained for the highest order and the most
dense sampling, i.e. the fifth order solution for 20 µs sampling is considered as a reference for the future analysis.

B. Solution of the quasi-LPV model
Numerical analysis of the quasi-LPV model in the non-rolling frame has been performed using the same procedure

as for the nonlinear model in the variable-roll reference frame. Due to slower system’s dynamics (the equations are
decoupled from the fast-varying roll angle [14]), the sampling time of 300 µs has been sufficient to obtain a stable
solution, even for the first-order solver.

The exemplary results showing the influence of the solver’s order are presented in Fig. 4. The RMS of the
difference decreases thousandfold with each increase in solver’s order, and the differences are smaller than for the case
of variable-roll model. Such effect stems from slower system dynamics. It can also be observed for the example of the
pitch rate q in Fig. 5, whose variations are slower than in Fig. 2.

Fig. 4 Root mean square difference w.r.t. solution of the fifth order solver with 300 µs: the solutions converge
with increasing solver’s order
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Fig. 5 Convergence of a numerical solution - pitch rate q w.r.t. increasing solver’s order

C. Summary
Using fixed-step solvers, stability and convergence of solutions of the two models has been assessed and their

reference solutions have been obtained. Additionally, it can be observed that for the same initial conditions and solver’s
order, the non-rolling frame results are of higher accuracy than the variable-roll ones.
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The duration of a simulation is significantly reduced by the change of model’s structure, as can be seen in Table 1.
The fixed-step simulation lasts approximately 50 minutes for the nonlinear model, and approximately 3 minutes for the
quasi-LPV model. The difference in time stems from different sampling used in each ODE settings.

Model structure Computation time
Nonlinear 50 minutes
Quasi-LPV 3 minutes

Table 1 Duration of a simulation: model structure influences the computation time

V. Assessment of the variable-step solvers
In the previous section, a numerical solution considered as a reference has been found for both models. However,

the reference solutions are computationally expensive to obtain due to strict order and sampling time constraints. In
order to reduce the computational complexity, the variable-step solvers are analyzed in this section: their solutions are
easier to compute due to varying time step. Their accuracy is assessed w.r.t. the reference solutions, as shown in Fig. 1.

The variable-step ODE solvers available in Matlab, including the ones adapted for non-stiff problems like the
Runge-Kutta based ode23 and ode45 or the Adams-Bashforth-Moulton based ode113, and the ones adapted for stiff
problems, such as the variable-step-variable-order ode15s [18] are used in the following tests.

A. Nonlinear model analysis
The reference solution to the nonlinear model obtained in the previous section allows to assess accuracy of the

variable-step solvers. The same set of initial state values is used.
As can be seen based on the results summary presented in Table 2, the selection of a solver influences the accuracy

and computation time significantly. The solver adapted to stiff problems, ode15s, achieves the lowest accuracy of all the
solvers in the case of kinematic variables, such as position y and attitude θ, ψ. Over a long-distance simulation, such
discrepancy can have a significant effect on the accuracy of predicted trajectory. On the other hand, the ode45 solver
has allowed to obtain the highest accuracy for all the state variables, while requiring less than 6 minutes (as compared to
50 minutes of calculating the reference solution) to compute the trajectory.

Solver
Computation Root mean square error w.r.t. the reference solution

time u[m/s] q[rad/s] θ[deg] ψ[deg] y[m]
ode45 5min 34s e-04 e-04 e-05 e-05 e-03
ode23 20min 37s e-04 e-04 e-04 e-04 e-02

ode113 1min 35s e-04 e-04 e-04 e-04 e-03
ode15s 1min 49s e-03 e-04 e-03 e-03 e-01

Table 2 Variable-roll reference frame: order ofmagnitude of theRMSdifference between the reference solution
and variable-step simulations’ results of the nonlinear model

B. Quasi-LPV model analysis
The reference solution to the quasi-LPV model in the non-rolling frame obtained in the previous section allows to

assess accuracy of the variable-step solutions.
Similarly as in the previous case, the variable-step solvers available in Matlab have been tested with the results

summarized in Table 3. Since the roll angle is decoupled, the problem is less stiff and less computationally expensive.
It can be observed that all the variable-step solvers have similar accuracy, and all the solvers offer higher accuracy
and shorter computation time than in the case of the nonlinear model. Consequently, it can be argued that the model
represented in a non-rolling reference frame is numerically more stable. Among the tested solvers, ode45 and ode15s
have the lowest computation time. Therefore, it is recommended to use them in the non-rolling frame simulations. The
simulation lasts 4 to 5 seconds, which is shorter than the duration of the flight in real world.
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Solver
Computation Root mean square error w.r.t. the reference solution

time u[m/s] q[rad/s] θ[deg] ψ[deg] y[m]
ode45 5s e-04 e-06 e-05 e-05 e-05
ode23 9s e-04 e-06 e-05 e-05 e-05

ode113 8s e-04 e-06 e-05 e-05 e-05
ode15s 4s e-04 e-06 e-05 e-05 e-05

Table 3 Non-rolling reference frame: order of magnitude of the RMS difference between the reference solution
and variable-step simulations’ results of the quasi-LPV model

C. Summary
Using variable-step solvers embedded in Matlab the numerical solutions have been obtained for both the nonlinear

and quasi-LPV models. As predicted, the approach is less computationally expensive than using fixed-step solver, albeit
for the price of being more errors-prone. Based on the results presented in Tables 2 and 3, it is concluded that the most
accurate ODE solver is ode45, which for both models allows to obtain a solution similar to the reference one.

VI. Comparative analysis of the models’ trajectories
The previous section shows how to obtain accurate solutions using the fixed-step and variable-step solvers for both

reference frames. The analytic derivation presented in [13, 16] suggests that the variable-roll and non-rolling reference
frame can be considered as equivalent to each other: the results obtained in either of the frames can be converted to the
other one using the transformation matrices (9) or their inverse. In order to test these premises on numerical grounds, an
additional long-range simulation has been performed.

The non-zero initial conditions correspond to u0 = 798.4 m/s, p0 = 1619 rad/s, θ0 = 63 deg, and ψ0 = −0.046
deg. Resulting parabolic flight lasts approximately 100 seconds: numerical discrepancies should become visible over
such a long trajectory.

Firstly, to emphasize the importance of the selection of an appropriate ODE solver, a variable-step solution has been
calculated for both models using ode15s: such a selection could be made based on the suspected stiff nature of the
nonlinear model. However, as seen in Table 2, it is the least accurate solver in practice. The results of such a simulation
are presented on an example of the total angle of attack evolution in Fig. 6. Indeed, the difference between reference
frames reaches up to one degree at the end of the flight, which is unacceptably high.
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Fig. 6 Consequences of poor selection of the ODE solvers: inaccurate long-range αt trajectory

However, the difference can be reduced, using the procedure described in the two previous sections. A reference
solution for each frame is found using the fifth-order fixed-step ODE solver, with the sampling time equal to 20 µs. Two
exemplary variables, the total angle of attack and the total velocity, are plotted in Fig. 7 for comparison, as they should
be equal in both frames. Indeed, the maximum difference between the reference solutions for both frames is lower than
2 µdeg and 1 µm/s, respectively, which is more accurate than available measurement techniques. Hence, the reference
solutions are equivalent, as predicted by analytic developments.
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Fig. 7 Comparison of fixed-step solutions in both frames
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Fig. 8 Comparison of variable-step solutions in both frames

In the next step, the variable-step solvers have been applied. Accordingly with the results presented in Table 2 and 3,
solver ode45 has been used. The resulting trajectories of the total angle of attack and the total velocity are presented
in Fig. 8. The maximum difference between the variable-step solvers remains smaller than 0.01deg and 0.01m/s,
respectively. Such a difference, albeit higher than in the case of fixed-step simulations, can still be considered acceptable
compared to magnitude of the signals.

Finally, the final-step error for selected state variables, calculated w.r.t. the reference solution for each solver, is
presented in Table 4. If compared, the state variables obtained using fixed-step solver differ in the range of orders of
magnitude between e − 04 and e − 07; which corresponds to the accuracy presented in Fig. 3. Should a higher accuracy
be required, simulation with ODE of orders six or above would have to be used.

Additionally, it can be seen that accuracy of the simulation obtained with variable-step solvers is significantly higher
for the case of the non-rolling reference frame: when compared to the variable-roll frame simulation, the state variables
are at least 100 times more accurate. It can be concluded that simulating the trajectory in the non-rolling frame first, and
transforming the results to the variable-roll frame afterwards, is in fact both faster and more accurate than simulating
them only in the rolling frame.

Consequently, the non-rolling frame can be considered as an accurate alternative for the rolling-frame simulations.
The benefits are the higher robustness to numerical solver errors and faster computation.
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State Unit Range
Final step difference w.r.t. the reference solution:

fixed-step non-rolling variable-step variable-roll variable-step non-rolling
u m/s 400–800 e-07 e-03 e-06
p rad/s 1100–1700 e-07 e-03 e-06
φ deg 0–360 e-04 e-01 e-04
θ deg ±70 e-07 e-04 e-08
ψ deg 0–16 e-06 e-04 e-07
xE m 0–20000 e-05 1.02 e-05
yE m 0–1000 e-04 -3.75 e-06
zE m 0–12000 e-05 -0.61 e-05

Table 4 Range of variation of state variables and the order of magnitude of the final-step difference w.r.t. the
reference solution

VII. Conclusion
In the paper, twomodels of vehicle’s in-flight behavior have been presented: the nonlinear, developed in a variable-roll

reference frame, and a proposed identification-oriented quasi-LPV, developed in a non-rolling reference frame. Their
numerical accuracy has been studied, principally w.r.t. the selection of an ordinary differential equations solver.

Both models were tested through simulations, with initial conditions corresponding to these of real-world long-range
ballistic experiments. A numerical solution close to the exact one has been obtained by applying a fixed-step numerical
solver with a high order and high sampling frequency. Such a method is computationally expensive but allows to obtain
accurate results. Afterwards, the much faster variable step solvers have been applied. Their accuracy has been analyzed
w.r.t. the fixed-step solver’s solution, considered as a reference.

It is shown that while it is possible to obtain a numerical solution for both representations, the quasi-LPV model
in the non-rolling reference frames offers a solution with higher accuracy, better convergence properties, and shorter
computation time. As such, it will be used in the future analyses, aiming to perform a global sensitivity of the system.
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