, Papers of particular interest, published within the period of review, have been highlighted as: ? Paper of special interest

, ?? Paper of outstanding interest

P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

M. Howe, World's fastest charging electric bus debuts in China, 2015.

L. Eliad, G. Salitra, A. Soffer, and D. Aurbach, On the mechanism of selective electroadsorption of protons in the pores of carbon molecular sieves, Langmuir, vol.21, pp.3198-3202, 2005.

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer, Science, vol.313, pp.1760-1763, 2006.

C. Largeot, C. Portet, J. Chmiola, P. Taberna, Y. Gogotsi et al., Relation between the ion size and pore size for an electric double-layer capacitor, J Am Chem Soc, vol.130, pp.2730-2731, 2008.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. L. Taberna et al., Efficient storage mechanisms for building better supercapacitors, Nat Energy, vol.1, p.16070, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01480941

N. Jäckel, P. Simon, Y. Gogotsi, and V. Presser, Increase in capacitance by subnanometer pores in carbon, ACS Energy Lett, vol.1, pp.1262-1265, 2016.

T. A. Centeno, O. Sereda, and F. Stoeckli, Capacitance in carbon pores of 0.7 to 15 nm: a regular pattern, Phys Chem Chem Phys, vol.13, pp.12403-12406, 2011.

J. Huang, B. G. Sumpter, V. Meunier, G. Yushin, C. Portet et al., Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors, J Mater Res, vol.25, pp.1525-1531, 2010.

M. D. Levi, N. Levy, S. Sigalov, G. Salitra, D. Aurbach et al., Electrochemical quartz crystal microbalance (EQCM) studies of ions and solvents insertion into highly porous activated carbons, J Am Chem Soc, vol.132, pp.13220-13222, 2010.

M. D. Levi, N. Shpigel, S. Sigalov, V. Dargel, L. Daikhin et al., In situ porous structure characterization of electrodes for energy storage and conversion by EQCM-D: a review, Electrochim Acta, vol.232, pp.271-284, 2017.

C. Gabrielli, J. J. García-jareño, M. Keddam, H. Perrot, and F. Vicente, Ac-electrogravimetry study of electroactive thin films. I. Application to prussian blue, J Phys Chem B, vol.106, pp.3182-3191, 2002.

?. Escobar-teran, F. Arnau, A. Garcia, J. V. Jiménez, Y. Perrot et al., Gravimetric and dynamic deconvolution of global EQCM response of carbon nanotube based electrodes by Ac-electrogravimetry, Electrochem Commun, vol.70, pp.73-77, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01398611

. Maxwell, The New K2 3.0 V/3000F Cell

F. Béguin, V. Presser, A. Balducci, and E. Frackowiak, Supercapacitors: carbons and electrolytes for advanced supercapacitors, Adv Mater, vol.26, pp.2283-2283

A. Balducci, Electrolytes for high voltage electrochemical double layer capacitors: a perspective article, J Power Sources, vol.326, pp.534-540, 2016.

K. Naoi, Nanohybrid Capacitor': the next generation electrochemical capacitors, Fuel Cells, vol.10, pp.825-833, 2010.

A. Grimaud, W. T. Hong, Y. Shao-horn, and J. M. Tarascon, Anionic redox processes for electrochemical devices, Nat Mater, vol.15, pp.121-126, 2016.

?. Schütter, C. Husch, T. Viswanathan, V. Passerini, S. Balducci et al., Rational design of new electrolyte materials for electrochemical double layer capacitors, J Power Sources, vol.326, pp.541-548, 2016.

, By identifying Cyano esters as promising EDLC sovents, authors demonstrate a new approach of designing new electrolte materials by applying a computational screening-based rational method

R. Y. Lin, P. L. Taberna, S. Fantini, V. Presser, C. R. Perez et al., Capacitive energy storage from-50 to 100 degrees C using an ionic liquid electrolyte, J Phys Chem Lett, vol.2, pp.2396-2401, 2011.

E. Mourad, L. Coustan, P. Lannelongue, D. Zigah, A. Mehdi et al., Biredox ionic liquids with solid-like redox density in the liquid state for high-energy supercapacitors, Nat Mater, vol.16, pp.446-453, 2017.

, where the cation and anion of these biredox ionic liquids bear redox moieties, to achieve bulk-like redox density at liquid-like fast kinetics. These ionic liquids are able to combine the double layer capacitance contribution together with a redox faradic Faradic contribution from the redox activity of the modiied ions, This innovative concept opens new routes to designing high-energy density supercapacitors

H. J. Xie, B. Gélinas, and D. Rochefort, Electrochemical and physicochemical properties of redox ionic liquids using electroactive anions: influence of alkylimidazolium chain length, Electrochim Acta, vol.200, pp.283-289, 2016.

Y. He, J. Huang, B. G. Sumpter, A. A. Kornyshev, and R. Qiao, Dynamic charge storage in ionic liquids-filled nanopores: insight from a computational cyclic voltammetry study, J Phys Chem Lett, vol.6, pp.22-30, 2015.