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Review Article
Electrochemical double layer capacitors: What is next
beyond the corner?

Zifeng Lin 
1 , 2 , Pierre-Louis Taberna 

1 , 2 and Patrice Simon 
1 , 2 , 3 , ∗

This review summarizes some recent developments achieved 

in the fundamental understanding of ion con nement in 

microporous carbon supercapacitor electrodes. Combined with 

computational simulations, these advanced techniques 

provided new insights into the charge storage mechanism, 

providing guidelines for designing improved porous carbon 

structures with high-energy density. Also, innovative 

electrolytes have recently been proposed by introducing some 

redox-active moieties into electrolyte anions/cations, called 

biredox electrolytes, that combines redox contribution to 

double capacitance. This approach opens up new 

opportunities to develop high-energy supercapacitors and a 

new  eld of biredox electrolytes. 
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Introduction
In the past two decades, electrochemical capacitors, also
known as supercapacitors, have received special attention
since they are one of the most promising electrochemical
energy storage devices for high power delivery or energy
harvesting applications [1] . Originally developed for
power electronics applications, they are facing increas- 
ing demand mainly driven by automotive and power
electronics applications. Those include regenerative
braking, voltage stabilization boost or start-stop systems.
Numerous cities in Europe and around the world are de- 
veloping tramways or buses with on-board supercapacitor

modules for braking energy recovery and short-distance
electric drive (to pass crossings). Besides, they also can
sometimes replace batteries in electric buses where the
limited autonomy is balanced by the fast charging that
can be achieved during the passenger exchange [2] .

Today, most (not to say all) commercialized superca- 
pacitors use porous carbons as active materials. These
devices, called electrochemical double layer capacitors
(EDLCs), store the charge at the electrolyte/carbon inter- 
face through reversible adsorption of ions from an elec- 
trolyte onto the carbon surface, by charging the elec- 
trochemical double layer capacitance, which can be de- 
scribed in a crude approach by ( 1 ):

C =
ε r ε 0 A

d
or C / A =

ε r ε 0

d 
, (1)

where C is the double layer capacitance (in F), εr is the
electrolyte dielectric constant, ε0 the dielectric constant
of the vacuum (in F m 

−1 ), d the charge separation distance
(in m), and A the electrode surface area (in m 

2 ).

Increasing the capacitance of porous carbons is one way
to improve the energy density of supercapacitors. Be- 
yond this basic consideration, there are important scien- 
ti c challenges to tackle dealing with the understanding
of the ions "uxes and adsorption mechanisms inside the
porous carbon structure.

Ion confinement in carbon nanopores
Following pioneer work from Aurbach [3] , the discovery
in 2006 of a different, more ef cient storage mechanism
in nanosized pores (less than one nm) led to a drastic
change of view: not only the surface area but also the
pore size was important to increase the charge capacity
[4] , also showing a maximum in capacitance when the ion
size was similar to the carbon mean pore size [5] . Those
results have also pointed out the importance of the mea- 
surements of the speci c surface area and pore size dis- 
tribution of microporous carbons from gas sorption tech- 
nique [6] . As a result, the International Union of Pure
and Applied Chemistry has recently con rmed that the
Brunauer–Emmett–Teller (BET) analysis was not recom- 
mended for microporous carbons, as it over-estimates the
surface of large micropores ( > 0.7 nm) [6] . Similarly, the
use of N 2 gas for gas sorption measurement has to be
discarded because of the existence of a quadripole mo- 
ment, which does not give accurate porosity for ultrami- 



Figure 1 

A: speci c capacitance (in F cm −2 ) of porous carbons normalized to the accessible surface area for each ion in both solvents (acetonitrile AN and

propylene carbonate PC). The regular pattern average of 0.095 F m −2 adapted from Ref. [7] . B: change of the speci c capacitance normalized to the

DFT-speci c surface area versus the pore size of carbide-derived carbons (adapted from Ref. [4] ). The trend is similar to that of Figure 1A. 

cropores < 0.7 nm. The determination of the speci c sur- 
face area for microporous carbons should then be done us- 
ing Ar gas at 87 K and density functional theory (DFT) or
non-linear DFT (NLDFT) mathematical models should
be used to calculate the pore size distribution and the
mean pore size diameter. Also, the surface area accessi- 
ble to the ions of the electrolyte (de ned by considering
the pore size larger than the neat ion size [7] ) should be
considered to calculate the speci c capacity (in F m 

−2 )
of the porous carbons. The speci c surface area and
pores size distributions of a series of porous carbons have
been measured following the above recommendation [7] .
Figure 1 A shows the plot of the speci c capacitance ver- 
sus the carbon pore size measured in 1 M (C 2 H 5 ) 4 N 

+ ,
BF 4 

− in acetonitrile or propylene carbonate electrolytes.
The speci c capacitance was obtained by dividing the
gravimetric capacitance by the DFT accessible surface
area measured using Ar gas that is the total surface of
the pores larger than the neat ion size. The plot shows
an increase of the capacitance in the small pore size re- 
gion (less than 1 nm), such as originally proposed in 2006
( Figure 1 B). For larger pore sizes (mesopores), the capaci- 
tance converges toward an average value below 0.1 F m 

−2 ,
which aligns well with the “regular pattern” value re- 
ported by Centeno et al. [8] and with the calculated value
limiting the double-layer capacitance at the planar carbon
interface (or larger than the few-nm pores [9] ).

However, the “real” structure of porous carbons being
dif cult to obtain from gas sorption measurements only,
advanced experimental techniques have been recently
proposed as tools to help in understanding the ion con-
 nement and environment in carbon nanopores. In a re- 
cent paper, Prehal et al. [10 

•

] studied the con nement
and desolvation in nanometer sized carbon pores of 1 M
CsCl in water electrolyte, by combining in situ small an- 

gle X-ray scattering experiments (SAXS) together with
Monte Carlo simulations. By modelling back the experi- 
mental SAXS data, they found that the average number of
stripped-off water molecules increased for decreasing av- 
erage pore size. Interestingly, the partial desolvation also
occurred in carbon larger mesopores, although limited to
about 1% water molecules removed from the solvation
shell. These data thus show that ion desolvation seems
to be a universal phenomenon for virtually all nanoporous
carbons, because of the pore size dispersion and presence
of ultranarrow (subnanometre) pores [10 

•

] .

Other in situ techniques have been recently developed
the past years such as electrochemical quartz crystal mi- 
crobalance (EQCM). EQCM in gravimetric mode, that
tracks the weight change of an electrode during electro- 
chemical polarization, has been successfully used to ex- 
perimentally measure the extent of desolvation in carbon
nanopores in non-aqueous electrolytes [11 

•

–13] . EQCM
results showed that EMI + cations lose half of their sol- 
vation shell in acetonitrile-based electrolyte while enter- 
ing 1 nm pores in carbon electrodes [12] . Additionally,
two different ion transfer mechanisms could be identi ed:
counter ion (cation) adsorption at negative electrode and
ion exchange mechanism at positive electrode. Recently,
Levi et al. proposed the use of the EQCM-D technique
(electrochemical QCM with dissipation monitoring), to
perform a multiharmonic frequency analysis to assess the
viscoelastic and hydrodynamic properties in porous active
 lms [14] . Fitting the EQCM-D data with suitable hydro- 
dynamic models allows tracking the change of the geo- 
metric parameters of porous electrodes in contact with an
electrolyte. Such technique offers interesting opportuni- 
ties to identify the impact of several parameters (nature
of the electrolytes, ions, binder...) on the structure change
of the electrodes.



Alternatively, not only the gravimetric or dissipation mode
of EQCM offers opportunities to studying the ion "uxes
in supercapacitor or energy storage electrodes. Perrot’s
group has developed the so-called AC-electrogravimetry
technique [15] . It consists in running EQCM measure- 
ment in the gravimetric mode at a steady state (for
instance constant potential) and, simultaneously, over- 
imposing a sinusoidal perturbation to the steady-state and
records the mass change 1m or the charge change 1Q
vs. the potential change 1E [15] . These plots give ac- 
cess to the type of ions as well as the number of sol- 
vent molecules involved in the charge storage process de- 
pending on the potential range, as well as the ion dy- 
namics inside the electrode depending on the frequency
range explored [16 

•

] . This technique seems promising for
tracking the ion "uxes and could potentially push further
our knowledge of ion transfer/adsorption in porous car- 
bon electrodes, thus helping to designing the best porous
carbon electrodes for the next generation of high-energy
density supercapacitor electrodes.

Electrolytes for EDLCs
The energy density of supercapacitors changing with
the voltage square (1/2.C.V ²), there is a great interest in
designing new electrolytes with improved voltage win- 
dow stability, to go beyond 3 V. Today, conventional elec- 
trolytes for supercapacitors contain a salt dissolved in a
solvent. Acetonitrile (CH 3 CN, AN) is the solvent that
leads to the highest conductivity when used in combina- 
tion with an ammonium cation mixed with a "uorinated
anion (such as (C 2 H 5 ) 4 N 

+ , BF 4 
−). Although high cell volt- 

age of 3 V can be obtained [17] , AN-based electrolytes suf- 
fer from low "ash point (5 °C) and high volatility. Alter- 
natively, propylene carbonate-based electrolytes can be
used but in that case, the power capability of the device is
greatly affected (divided by three) as well as the low tem- 
perature applications. There is then an important need for
alternative high voltage electrolytes [18] .

However, it is well known that not only the electrochem- 
ical voltage window but also the conductivity, the viscos- 
ity, the boiling/melting points, the dielectric constant and
salt chemistry deeply affects the electrochemical proper- 
ties of the electrolyte [19] . As a result, it is really chal- 
lenging to  nd a solvent/salt mixture that matches all the
criteria at the same time. Also, research work developed
in the Li-ion batteries  eld highlighted that the stabil- 
ity of the active materials at the positive electrode is an
issue when operating at high potential ( > 4.5 V vs. Li,
that is approximately > 3.5 V cell voltage for a symmet- 
ric carbon/carbon device) [20,21] . However, Balducci and
co-workers [22 

••

] have proposed an interesting combina- 
tory approach to select new solvent/salt couples and such
efforts should be de nitely pursued. Also, ionic liquids,
which are solvent free electrolyte, are of particular inter- 
est to increase the cell voltage up to 3.5 V but the high
viscosity and limited conductivity at room temperature

limits their interest. The use of eutectic ionic liquid mix- 
tures can expand the temperature range, but the carbon
structure must be speci cally designed to ensure easy ion
accessibility to the carbon surface [12,23] .

Another alternative approach has been recently proposed,
which consists in using redox-active electrolyte [24 

•

] .
The idea is to modify ionic liquids electrolytes by graft- 
ing a redox-active groups onto the anions and/or cations,
in the aim of playing with both the double layer charg- 
ing process through basic ion adsorption and, at the same
time, achieving an electron transfer through a redox reac- 
tion of the redox group at the operating potential of the
carbon electrode.

This innovative concept has been reported in recent pa- 
pers from two groups in France [24 

•

] and Canada [25] .
Fontaine and co-workers [24 

•

] , for instance, used a per-
"uorosulfonate anion (PFS −) and a methyl imidazolium
cation (MIm 

+ ) ionic liquid, where anion and cation
are functionalized with anthraquinone (AQ) and 2,2,6,6-
tetramethylpiperidinyl-1-oxyl (TEMPO) moieties, lead- 
ing to the (AQ–PFS −) (MIm 

+ –TEMPO) biredox elec- 
trolyte. These biredox were used as salt and dissolved
at 0.5 M in BMIm 

+ , TFSI − neat ionic liquid. The re- 
sulting solution (ionic liquid plus the biredox salts) was
used as electrolyte in supercapacitor cells in combina- 
tion with activated porous carbon electrodes. As expected,
these ionic liquids were able to increase the charge storage
via both electrostatic—in the double layer—and redox re- 
action mechanisms. The obtained capacitance was twice
larger in the biredox electrolyte compared to biredox-free
solution ( Figure 2 a).

Figure 2 b shows the schematic representation of a gal- 
vanostatic charge discharge cycle, with the respective po- 
tential stability domains of the reduced and oxidized
forms of the biredox species. The  gure shows that a
Faradic contribution is added to the double layer contri- 
bution during charge by oxidation of the TEMPO moi- 
eties beyond 1 V vs. ref. In the same time, the reduction of
the AQ groups on the anion at the negative electrode be- 
low −0.5 V vs. Ref. reduction reaction adds to the double
layer contribution to increase the total capacitance. This
example shows that the careful selection of the grafted
moieties has the potential to greatly improve the capaci- 
tive performance of porous carbon electrodes. Moreover,
the working voltage of the cell was kept as high as 2.7 V,
which is typically the voltage AN-based electrolytes can
achieve.

Capacitances up to 370 F g −1 were measured, depend- 
ing on biredox ionic liquid concentrations and tempera- 
tures, stable for at least 2000 cycles with limited—if any—
degradation. Another striking result was the evidence of
the retention of the redox species into the porous elec- 
trode, as can be seen from both the low self-discharge



Figure 2 

A: cyclic voltammetry at 5 mV s −1 with 0.5 M biredox IL in BMImTFSI (solid line) and pure BMImTFSI (dashed line), respectively. B: schematic

representation of the galvanostatic voltage response of the electrostatic and Faradaic processes with the biredox IL and the stability regions for its 

oxidized/reduced species. The dashed lines illustrate the behavior if only electrostatic processes were to prevail. Adapted from Ref. [24 
•

] .

and leakage currents measured. Although surprising, this
still needs to be understood, but speci c electrostatic in- 
teractions between ions and carbon pores (by creation of
image charges for instance) could be possible [26] . This
new electrolyte concept opens up new opportunities to
develop high-energy supercapacitors and a wide new  eld
in redox materials.

In this review, we summarized 1) recent development
of fundamental understanding of porous carbon super- 
capacitors by using advanced experimental techniques
and 2) electrolyte design strategy toward high-energy
performance. Although the capacitance increase in
sub-nanometer pores (less than 1 nm) in porous carbon
electrode has been evidenced for a decade, the ion
con nement effect in nanopores is still not completely
understood. Theoretically and experimentally studies are
needed to further unveil the charge storage mechanism.
In that aim, advanced experimental techniques such
as in situ NMR, in situ small angle X-Ray or neutrons
scattering experiments (SAXS, SANS), in situ EQCM (in
gravimetric or dissipation modes) techniques combined
with computer modeling have been developed to probe
deeply into the ion con nement in nanopores, thus guid- 
ing the design of better porous carbon electrodes with
high-energy density. These efforts should be pursued
during the next years and other tools such as electronic
microscopy ( in situ transmission electronic microscopy) or
scanning electrochemical microscopy (SECM) could be
of great help. Besides the strategy of electrode material
design, developing advanced electrolytes with improved
voltage window is as well important to enhance the energy
density. Although interesting progresses have been made
using a combinatory approach, the  nding of high voltage
electrolyte remains challenging. Alternatively, a recent
approach has been developed by using active electrolyte
ions functionalized together with redox moieties, offering
real opportunities to increase the capacitance and voltage

window by introducing redox reaction in double layer
capacitors. The abounding research works highlights
the real interest for developing supercapacitor devices
with improved performance for complementing—and
sometimes replacing—conventional batteries in appli- 
cations where high power, high cyclability and high
charge/discharge rates are needed.
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