Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Energy & Fuels Année : 2010

Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb

Résumé

1-Hexanol is among the promising renewable long-chain alcohols usable as an alternative to petrol-derived gasoline and diesel fuels. To better understand the combustion characteristics of 1-hexanol, new experimental data for the oxidation and combustion of 1-hexanol were obtained. Stable species concentration profiles were measured in a jet stirred reactor (JSR) at 10 atm over a range of equivalence ratios and temperatures. Burning velocities of 1-hexanol/air mixtures were measured at 1−10 bar and 423 K, over a range of equivalence ratios. The effect of total pressure on flame speed was determined. The oxidation of 1-hexanol in these experimental conditions was modeled using an extended detailed chemical kinetic reaction mechanism (2977 reactions involving 600 species). The proposed mechanism shows good agreement with the present experimental data. Reaction path analyses and sensitivity analyses were performed to interpret the results.
Fichier non déposé

Dates et versions

hal-02020278 , version 1 (15-02-2019)

Identifiants

Citer

C. Togbé, P. Dagaut, A. Mzé-Ahmed, P. Diévart, F. Halter, et al.. Experimental and Detailed Kinetic Modeling Study of 1-Hexanol Oxidation in a Pressurized Jet-Stirred Reactor and a Combustion Bomb. Energy & Fuels, 2010, 24 (11), pp.5859-5875. ⟨10.1021/ef101255w⟩. ⟨hal-02020278⟩
92 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More