R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets, Complexity of Computation, SIAM-AMS Proceedings, pp.43-73, 1974.

L. Libkin, Elements of Finite Model Theory, ser. Texts in Theoretical Computer Science, An EATCS Series, 2004.

N. Immerman, Descriptive complexity, 1999.

E. Grädel, Capturing complexity classes by fragments of secondorder logic, Theoretical Computer Science, vol.101, issue.1, pp.35-57, 1992.

E. Grädel, P. G. Kolaitis, L. Libkin, M. Marx, J. Spencer et al., Finite Model Theory and Its Applications, 2007.

P. C. Fischer, Generation of primes by one-dimensional real-time iterative array, Journal of the ACM, vol.12, pp.388-394, 1965.

M. Delorme and J. Mazoyer, Signals on cellular automata, Collision-based Computing, A. Adamatzky, pp.231-275, 2002.
DOI : 10.1007/978-1-4471-0129-1_9

N. Bacquey, E. Grandjean, and F. Olive, Definability by Horn Formulas and Linear Time on Cellular Automata, ICALP 2017, vol.80, p.14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01494246

E. Grandjean and F. Olive, A logical approach to locality in pictures languages, Journal of Computer and System Science, vol.82, issue.6, pp.959-1006, 2016.
URL : https://hal.archives-ouvertes.fr/hal-00786148

S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases, 1995.

S. N. Cole, Real-time computation by n-dimensional iterative arrays of finite-state machine, IEEE Transactions on Computing, vol.18, pp.349-365, 1969.

A. R. Smith, Real-time language recognition by one-dimensional cellular automata, Journal of Computer and System Science, vol.6, pp.233-253, 1972.
DOI : 10.1016/s0022-0000(72)80004-7

URL : https://doi.org/10.1016/s0022-0000(72)80004-7

C. R. Dyer, One-way bounded cellular automata, Information and Control, vol.44, issue.3, pp.261-281, 1980.
DOI : 10.1016/s0019-9958(80)90164-3

URL : https://doi.org/10.1016/s0019-9958(80)90164-3

V. Terrier, Two-dimensional cellular automata recognizer, Theoretical Computer Science, vol.218, issue.2, pp.325-346, 1999.
DOI : 10.1016/s0304-3975(98)00329-6

URL : https://hal.archives-ouvertes.fr/hal-00273998

A. Grandjean, Differences between 2d neighborhoods according to real time computation, Developments in Language Theory, pp.198-209, 2017.
DOI : 10.1007/978-3-319-62809-7_14

URL : https://hal.archives-ouvertes.fr/lirmm-01693188

C. Choffrut, K. Culík, and I. I. , On real-time cellular automata and trellis automata, Acta Informatica, vol.21, issue.4, pp.393-407, 1984.
DOI : 10.1007/bf00264617

O. H. Ibarra and T. Jiang, On one-way cellular arrays, SIAM Journal on Computing, vol.16, issue.6, pp.1135-1154, 1987.
DOI : 10.1137/0216072

V. Poupet, Cellular automata: Real-time equivalence between onedimensional neighborhoods, STACS 2005, pp.133-144, 2005.
DOI : 10.1007/s00224-006-1315-x

K. Culík, I. I. , J. Gruska, and A. Salomaa,

, International Journal Computer Mathematics, vol.15, issue.3-4, pp.195-212, 1984.

V. Terrier, Language not recognizable in real time by one-way cellular automata, Theoretical Computer Science, vol.156, issue.12, pp.281-287, 1996.

A. Okhotin, On the equivalence of linear conjunctive grammars and trellis automata, Theoretical Informatics and Applications, vol.38, issue.1, pp.69-88, 2004.

, Conjunctive and boolean grammars: The true general case of the context-free grammars, Computer Science Review, vol.9, pp.27-59, 2013.

V. Terrier, Characterization of real time iterative array by alternating device, Theoretical Computer Science, vol.290, issue.3, pp.2075-2084, 2003.

, ?Q s (x)?Q s (y) ? Border(x, y) 2) ¬min(x)?¬min(y)?Border(x?1, y?1)?Q s (x)? Q s (y) ? Border(x, y), for all s ? ?, min(x)?¬min(y)

, Processing the contradiction clauses

, min(x)?¬min(y)?Q s (x)?Q s (y) ?

, ¬min(x)?¬min(y)?Border(x?1, y?1)?Q s (x)? Q s (y) ? Border(x, y), for all s ? ?

, R ? (x, y) is never used and therefore can be withdraw for more clarity. 2) Processing the input

, Q s (x) ? min(y) ? W x s

, Q s (y) ? min(x) ? W y s

, ¬min(y) ? W x s (x, y ? 1) ? W x s

?. W-y-s,

, min(x) ? ¬min(y) ? W x s

, Restriction of computation atoms to R(x ? 1, y)

, Q s (x) ? min(y) ? W x s

, Q s (y) ? min(x) ? W y s

, ¬min(y) ? W x s (x, y ? 1) ? W x s

?. W-y-s,

, min(x) ? ¬min(y) ? W x s

, Q s (x) ? min(y) ? W x s

, Q s (y) ? min(x) ? W y s

, min(x) ? min(y) ? R min(x)

, ¬min(y) ? W x s (x, y ? 1) ? W x s

?. W-y-s,

, ¬min(y) ? R min(x) (x, y ? 1) ? R min(x

, R min(x) (x, y) ? ¬min(y) ? W x s

, ¬min(x) ? ¬min(y) ? Border y?1 (x ? 1, y) ? W x s

R. Max,