X. Amatriain, in machine learning, is more data always better than better algorithms

A. Ashok, N. Rhinehart, F. Beainy, and K. M. Kitani, N2N learning: Network to network compression via policy gradient reinforcement learning, 2017.

K. Benzi, M. Defferrard, P. Vandergheynst, and X. Bresson, FMA: A dataset for music analysis, 2016.

A. Berenzweig, D. P. Ellis, and S. Lawrence, Using voice segments to improve artist classification of music, AES 22, 2002.

A. L. Berenzweig and D. P. Ellis, Locating singing voice segments within music signals, WASPAA, pp.119-122, 2001.

R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Cannam et al., Medleydb: A multitrack dataset for annotation-intensive mir research, ISMIR, 2014.

A. Cont, D. Schwarz, N. Schnell, and C. Raphael, Evaluation of Real-Time Audio-to-Score Alignment, ISMIR, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00839068

J. Cui, B. Kingsbury, B. Ramabhadran, G. Saon, T. Sercu et al., Knowledge distillation across ensembles of multilingual models for lowresource languages, ICASSP, 2017.

E. Fonseca, J. Pons, X. Favory, F. Font, D. Bogdanov et al., Freesound datasets: A platform for the creation of open audio datasets, ISMIR, 2017.

H. Fujihara and M. Goto, Lyrics-to-Audio Alignment and its Application, Multimodal Music Processing, vol.3, pp.23-36, 2012.

H. Fujihara, M. Goto, J. Ogata, and H. G. Okuno, Lyricsynchronizer: Automatic synchronization system between musical audio signals and lyrics, vol.5, pp.1252-1261, 2011.

M. Goto, Singing information processing, ICSP, pp.2431-2438, 2014.

E. J. Humphrey, N. Montecchio, R. Bittner, A. Jansson, and T. Jehan, Mining labeled data from web-scale collections for vocal activity detection in music, 2017.

S. Leglaive, R. Hennequin, and R. Badeau, Singing voice detection with deep recurrent neural networks, ICASSP, pp.121-125, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01110035

B. Lehner, G. Widmer, and S. Bock, A low-latency, real-time-capable singing voice detection method with lstm recurrent neural networks, 2015 23rd European Signal Processing Conference (EUSIPCO), 2015.

M. Mauch, H. Fujihara, K. Yoshii, and M. Goto, Timbre and melody features for the recognition of vocal activity and instrumental solos in polyphonic music, pp.233-238, 2011.

A. Mesaros, Singing voice identification and lyrics transcription for music information retrieval invited paper, 7th Conference on Speech Technology and Human-Computer Dialogue (SpeD), pp.1-10, 2013.

G. Meseguer-brocal, G. Peeters, G. Pellerin, M. Buffa, E. Cabrio et al., WASABI: a Two Million Song Database Project with Audio and Cultural Metadata plus WebAudio enhanced Client Applications, Web Audio Conf, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01589250

G. Peeters and K. Fort, Towards a (better) Definition of Annotated MIR Corpora, ISMIR, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00713074

M. Ramona, G. Richard, and B. David, Vocal detection in music with support vector machines, Proc. ICASSP '08, 2008.

L. Regnier and G. Peeters, Singing Voice Detection in Music Tracks using Direct Voice Vibrato Detection, ICASSP, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00662312

J. Salamon and E. Gómez, Melody extraction from polyphonic music signals using pitch contour characteristics, IEEE Transactions on Audio, Speech and Language Processing, vol.20, pp.1759-1770, 2012.

J. Schlüter, Learning to pinpoint singing voice from weakly labeled examples, ISMIR, 2016.

J. Schlüter and T. Grill, Exploring Data Augmentation for Improved Singing Voice Detection with Neural Networks, 2015.

A. J. Simpson, G. Roma, and M. D. Plumbley, Deep karaoke: Extracting vocals from musical mixtures using a convolutional deep neural network, 2015.

F. Soulez, X. Rodet, and D. Schwarz, Improving polyphonic and poly-instrumental music to score alignment, ISMIR, 2003.
URL : https://hal.archives-ouvertes.fr/ujm-00285599

S. Watanabe, T. Hori, J. Le-roux, and J. Hershey, Student-teacher network learning with enhanced features, ICASSP, pp.5275-5279, 2017.

C. Wu and A. Lerch, Automatic drum transcription using the student-teacher learning paradigm with unlabeled music data, 2017.