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ABSTRACT

Three-dimensional scatterplots su�er from well-known per-
ception and usability problems. In particular, overplotting
and occlusion, mainly due to density and noise, prevent users
from properly perceiving the data. Thanks to accurate head
and hand tracking, immersive Virtual Reality (VR) setups pro-
vide new ways to interact and navigate with 3D scatterplots.
VR also supports additional sensory modalities such as haptic
feedback. Inspired by methods commonly used in Scienti�c
Visualisation to visually explore volumes, we propose two
techniques that leverage the immersive aspects of VR: �rst,
a density-based haptic vibration technique (Scaptics) which
provides feedback through the controller; and second, an
adaptation of a cutting plane for 3D scatterplots (Highlight-
Plane). We evaluated both techniques in a controlled study
with two tasks involving density (�nding high- and low-
density areas). Overall, Scaptics was the most time-e�cient
and accurate technique, however, in some conditions, it was
outperformed by Highlight-Plane.
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1 INTRODUCTION

This paper is concerned with techniques for the visualisa-
tion of quantitative attributes associated with discrete data
points, i.e.scatterplots. For data points with two quantitative
attributes, scatterplots o�er a direct mapping from the at-
tribute to 2D position in a plane orthogonal to the viewer
(typically a screen or page). Such axis-aligned spatial posi-
tion is well accepted as the most e�ective channel for visual
representation of continuous quantities [40]. With the rising
popularity of immersive virtual reality (VR) and augmented
reality (AR) headsets, it is tempting to exploit three spa-
tial dimensions for representation of data points with three
quantitative attributes. The creation of such 3D scatterplots
is supported by a number of very widely available tools,
both free (e.g.R, PlotLy, ggplot) and commercial (e.g.Spot�re,
Mathematica, SPSS, MatLab, etc.). These occur widely in data
science to visualise quantitative attributes, projections of
higher-dimensional space [36], or spatial data [46].

However, position in the depth axis relative to eye posi-
tion is a much less e�ective channel for representation of
quantitative data attributes and issues like occlusion and
perspective distortion have also been shown to limit the ef-
fectiveness of 3D scatterplots [47]. Head-tracked navigation
and stereopsis may improve things, in particular for sparse
data where occlusion can be resolved through small head-
movements. Yet, seeing features inside dense 3D point clouds
remains a challenge.

https://doi.org/10.1145/3290605.3300555
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Figure 1: Scaptics pipeline: (a) 3D scatterplot with several dense clusters (C1,C2 and C3 are the largest ones). (b) overlay of the
volume data produced by our 3D Kernel Density Estimation technique (KDE volume is not visualised in the actual technique).
(c) sliced view of the KDE volume showing that C1 is more dense than C2 and C3. (d) controller vibration (red lines) according
to the value of intensity read into the 3D volume (arrows) - i.e. the controller vibrates more intensely in C1.

In 3D volume visualisation (especially in medical imag-
ing) there have been a number of interactive techniques to
help viewers uncover occluded features. Loosely, these can
be categorised as space-distorting techniques, which trans-
form space to reduce occlusions, or data-removal techniques,
which remove part of the data to give a clearer view. A past
survey [18] warns against using spatial distortion for scatter-
plot data, where the close correspondence of spatial position
to underlying data attributes is paramount. Our pilot studies
indicated that straightforward adoption of a cutting-plane,
a commonly used data-removal technique, is inappropriate
for scatterplot data. Therefore, our �rst contribution is a
redesigned cutting-plane technique calledHighlight Plane.

Our second contribution explores supporting user under-
standing of occluded local scatterplot density using the vi-
brotactile feedback function now commonly available in VR
controllers. Again, we found that past solutions, which em-
ploy a simple mapping of density to vibration at each point in
the volume, do not adapt well to scatterplot data. Instead, we
employ Kernel Density Esimation (KDE) to create an inferred
density �eld that provides information about proximity to
discrete points. We call this techniqueScaptics.

Since this is the �rst work to employ consumer-level
VR controllers for vibrotactile data representation, we also
perform a Just-Noticable-Di�erence (JND) study of users'
sensitivity to vibration intensity. The resulting six-level in-
tensity scale, is our third contribution.

We o�er these techniques as an exploration of the use of
VR a�ordances to inspect density features in 3D scatterplots,
and do not claim either technique to be optimal. Nonethe-
less, our �nal and main contribution is an assessment of
these preliminary implementations. In comparison to a base-
line visualisation, we �nd that both interactive techniques,
Scaptics and Highlight-Plane, improve user performance on
most tested tasks. However, Scaptics a�ords better perfor-
mance for the assessment of the density of clusters, while

Highlight Plane is, in some cases, better for identifying void
regions. These encouraging results indicate that both tech-
niques deserve further exploration to improve the use of VR
for scatterplot exploration.

2 RELATED WORK

Scatterplots are an e�cient way to display a small amount
of data. However, display limitations can produce cluttered
visualisations [31], leading to well-known perception issues
such as occlusion and overplotting. To manage overplot-
ting, Piringer et al. [44] proposed visual cues (e.g. halo, size,
color), interactive linked visualisations, and 3D histograms
on the 2D faces of a 3D scatterplot. However, the e�ciency
of such methods is not evaluated. Poco et al. [45] used den-
sity information to automatically detect clusters. To bring
out interesting patterns, Bachthaler and Weiskopf [8] used
density to transform discrete scatterplots into continuous
volumes. Yu et al. [58, 59] used density information to im-
prove selection in point-clouds. However, in each of these,
the density information itself is not transmitted to the user.
In this paper, instead of using this information to achieve a
higher-level goal, we make it available for user exploration.

Previous research in 3D dense- and cluttered-graph visu-
alisation has demonstrated the bene�ts of immersion [1, 53].
Raja et al. showed that immersion improves users' perfor-
mance in visualisation tasks (�nding outliers, determining
trends and �nding clusters). More recent studies have shown
bene�ts of immersive platforms for navigation [22] and inter-
action [7] for data analysis. Overall, immersive environments
show promise for visualisation of 3D scatterplots, but occlu-
sion and overplotting are still problematic when dealing
with large datasets. In this paper, we propose techniques to
overcome both problems in VR.



Figure 2: The Highlight Plane technique preserves the over-
all visualisation by increasing the size of data points that in-
tersect the plane attached to the controller (blue). The user
has found a void in the 3D point cloud at the center of the
cutting plane. Inset shows a �rst person view.

Interactions to overcome occlusion and overplo�ing

Elmqvist [18] identi�es target invariance criteria, properties
of visualisations which occlusion management techniques
should avoid perturbing. Key among these for scatterplots
is the location of points. Occlusion management techniques
which do not disrupt the location of points arespace preserv-
ing, as opposed tospace distorting.

Space-distorting techniques.To overcome occlusion, Cow-
perthwaite et al. proposed the use of a repulsive lens [17].
Hurter et al. [27] proposed a similar but attribute-driven
lens. However, such techniques are not recommended for
visualisation of quantitative data attributes, as they alter the
location of data points and impair understanding [18].

Space-preserving techniques.One space-preserving approach
for encoding density is the use of visual cues, however these
have been identi�ed as ine�cient [44]. Another approach
is the use of acutting plane[25], which avoids occlusion by
extracting a 2D cross-section of the data. This cross-section
can be either visualized in a separate view [13,16,32]�which
can lead to divided attention between the di�erent displays�
or directly within the 3D visualisation [28, 30, 37]. Such a
technique has previously been applied in AR, to compare the
suitability of di�erent platforms [6, 7].

A new opportunity for datavis: haptic feedback

Another direction which has been explored for conveying
density information in volume visualisation�but not discrete
scatterplots�is the use of haptic feedback. Haptics [9, 11, 50]
include both tactile and kinesthetic displays. Tactile displays
employ thecutaneoussense that allows users to understand

properties of a physical item via skin contact. Kinesthetic dis-
plays employ theproprioceptivesense, through which users
perceive their own body position and movement. Vibrotac-
tile displays employ vibrational feedback to induce tactile
sensations [15], e.g. to �ngers [49], hands [57], or arms [52].

Pfei�er and Stuerzlinger [43] showed that vibrotactile feed-
back was as e�cient as visual feedback for mid-air target ac-
quisition in a 3D stereoscopic environment. A similar study
in a VR environment showed that bimodal feedback (e.g.
visual + vibrotactile) leads to fewer errors. Vibrotactile feed-
back in VR has also been shown to allow exploration of basic
volumes [33] to increase awareness, and to provide users
with the ability to feel forces and textures [3, 10].

The use of haptic feedback has been studied in scienti�c
visualisation as a way to broaden the information bandwidth
between users and system (see [39] for a review). More specif-
ically, Iwata and Noma describedVolume Haptization[29], a
set of methods to map force to volume data. They found that
force-haptic feedback with a pantograph device was better
than visual only. Similar results have been found with a phan-
tom arm [5, 20]. Few studies focused on vibrotactile feedback.
Menelas et al. found that vibrotactile feedback, when coupled
with visualisation, was preferred by users and allowed them
to quickly identify an area of interest [38]. On a similar task,
Ammi and Katz [2] showed that such feedback, coupled with
audio, was more e�cient than vibrotactile feedback alone.

The use of haptics for quantitative data exploration has
mostly been studied for 2D visualisation (see [41] for a re-
view). Vibrotactile feedback has been mainly used to com-
municate high-level information (e.g. vibrotactile icons or
tactons) and not as a channel to encode data values. A few
examples that do encode values with vibrotactile feedback
include barcharts [51] and 2D scatterplots [23]. Most evalu-
ations did not focus on performance but showed that such
feedback was usable. A rare example of haptic feedback for
3D abstract visualisation demonstrates a simple force-based
haptic model in a 3D scatterplot that conveys an overview of
the density. As this model was not evaluated, this paper�to
the best of our knowledge�is the �rst to evaluate haptic
feedback for 3D scatterplot exploration.

Summary and Definitions . In Table 1 we classify tech-
niques by data type, sensory channel and spatial interaction.

Data types.Following Munzner [40] we make a distinction
between�eld anddiscretedata.Fielddata has values at all
points of a given space. Typically, scienti�c and medical data,
e.g. 3D MRI/CT scans, photogrametry or �uid simulations
are continuous �eld data.Discretedata corresponds to values
in multidimensional tables.



Data Type
Field Discrete (sca�erplots)

Visual volume points/glyphs
Channels Vibrotactile density ! intensity [2, 38] inferred intensity,Scaptics [Sec. 3]

Force-feedback inferred vector [5, 20, 29, 39] inferred vector [42]
Spatial Space-preserving cu�ing plane [13, 16, 25, 28, 30, 32, 37]cu�ing plane[6, 7], Highlight-Plane [Sec. 3]
interaction Space-distorting fisheye[17], ColorTunneling[26] MoleView [27]not recommended [18]

Table 1: high-level framework for 3D data representation using haptic and visual channels, by data type.

Sensory Channels.In this paper we consider twosensory
channelsfor conveying density information:visualandhap-
tic, with the latter further divided intovibrotactileandforce-
feedback. The visualisation of 3D �eld data usually involves
rendering a grid of voxels. A transfer function maps density
at each grid cell to colour. Transparency can be controlled
to isolate density layers (e.g. �ltering skin density to show
organs in an MRI scan). In the case of 3D scatterplots of dis-
crete data, coloured glyphs (dots or spheres) are mapped to
discrete positions in space. A perception of density emerges
from the separation between glyphs and can be controlled
by adjusting transparency, size and style of the glyphs. In
the case of haptic feedback, density can be mapped to vibro-
tactile or force feedback, using for instance a Phantom Arm
or Pantograph device. For �eld data, where a density value is
present in the data at every point in space, the mapping from
density to vibrotactile intensity is direct and trivial. Mapping
density �elds or discrete points to force feedback requires
inference of a direction of force, which has been examined in
a number of papers, as listed in Table 1. The table reveals the
�rst gap in this framework in the application of vibrotactile
feedback to discrete scatterplot data. We require a function
to map the proximity of points relative to controller position
to vibration intensity. This gives rise to our design of the
Scapticstechnique, described in Section 3.

Spatial Interaction.The use ofspace-distortingtechniques
with discrete data is not recommended [18]. Of the Space-
preservingtechniques, cutting planes are most widely used
for volume visualisation but we know of only one e�ort to
use cutting plane interaction with discrete scatterplots [7],
and this did not evaluate the cutting plane against other
interaction techniques. Therefore, the second technique de-
veloped in this study is an adaptation of cutting planes for
scatterplots:Highlight-Plane, see Section 3.

Summary.To sum-up, our framework showed that the use
of vibrotactile and force feedback have not been extensively
studied for abstract visualisation, but it showed promising
result with �eld data (i.e. scienti�c visualisation). Force feed-
back cannot be provided by classic VR equipment we want
to use. We, thus, focus on the use of vibortactile feedback
with our techniqueScaptics. Regarding the spatial interaction
techniques, again, both space preserving and distorting tech-
niques have been extensively studied for �eld data, but their

use for abstract data is limited, and not evaluated. Because
literature does not recommend the use of space-distorting
techniques with abstract data [18], we choose to focus on
the study of space-preserving techniques with ourHighlight-
Plane.

3 INTERACTION TECHNIQUES

In this section we give the design rationale for ourScaptics
andHighlight-Planetechniques, which aims to support users'
perception of obscured density features in a 3D scatterplot
and support inspection of very dense clusters.

Scaptics: Sca�erplot Haptics

Rationale.Haptic devices such as the Phantom Arm have
been used to explore 3D data (Section 2), but these devices
have distinct disadvantages for data visualisation: �rst, they
can operate in only a limited volume of space (tens of cen-
timetres per side); second, they are extremely expensive
(tens of thousands of USD). By contrast, the current gen-
eration of commercial VR controllers come equipped with
programmable vibrating motors that can provide adjustable
vibrotactile feedback over a large interaction volume and
their cost is in the hundreds of dollars. Thus, for the fore-
seeable future immersive data visualisation is accessible to
a much greater audience using the latter setup. But the use
of vibrotactile feedback for 3D scatterplots is not explored.
A �rst option consists of triggering the vibration of the VR
controller when it collides with a 3D data point. With such a
design, getting a sense of the local density requires the user
to browse in space to collide with each datapoint.

A more promising alternative is to derive volume infor-
mation from the 3D scatterplot in order to create a �eld of
density information and map the intensity of the �eld to the
intensity of vibration of the controller. In the following, we
detail how we create such a volume and how we carefully
mapped resulting spatial density to the vibrating motors of
a VR controller.

Design and implementation.We created a 3D Kernel Density
Estimation (KDE) map of the data to create volume density
information from a 3D scatterplot. KDE techniques [35] �nd
spatial density of a data distribution and provide an overview
of the density by displaying isocontours or surfaces around
the dense areas of a visualisation. Technically, KDE maps



are produced by applying aKernelfunction to all data points
that produce surface and volume information.

Our approach consists of using a solid Gaussian sphere
as a kernel, centred on each point of the 3D scatterplot. A
Gaussian functionG is used to de�ne the intensity of each
voxel of the sphere kernel, according to their distance to the
centre (i.e. a given point of the 3D scatterplot).

The KDE function is de�ned as follows: for a pointx 2 R3,
the density estimation is given by the sum of the Gaussian
sphere kernels:

KDE¹xº =
1

n � h

nÕ

i =1

G¹
x � xi

h
º

Technically, we initialised a 3D grid with white transpar-
ent voxels. Then the kernel spheres were drawn in �additive
mode�, i.e. the colour intensity of each grid cell is a multi-
ple of the number of spheres that cover it. The sum of the
Gaussian kernelsG yield high intensity volume information
in the dense areas of the scatterplot (Figure 1 (b,c)).

For illustration purposes, Figure 1 (b,c) shows a volume
rendering of the density KDE overlaid on a 3D scatterplot.
The resulting colour of the voxels is a gradient of the density
information (yellow for low density to red for high density).
The thumbnail (c) is a slice of this volume that shows the
intensity di�erence inside the three clusters and C1 is the
the most red indicating that it is the densest region.

The aim of theScapticstechnique is to transform the color
of the voxels into a vibrotactile feedback. As the 3D KDE
technique provides a grid of voxels that encode continuous
volume density information of the 3D scatterplot, the last
step to create theScapticstechnique consists of mapping the
density at a given point to a vibration strength.

To realise the Scaptics technique, we employ the HTC Vive
Pro VR system and SDK1. It provides the location of a tracked
controller in 3D space and aTriggerHaptics(int strength)
function that triggers a vibration in the controller. Hence,
by continuously reading the position of the controller in the
grid of voxels, vibrations are triggered indicating the level of
density. Thisscapticsinteraction makes it possible to reach
directly into the 3D scatterplot and by using continuous
movements, to inspect volumes and surfaces. The perceived
vibrations provide high-level information of the features (e.g.
voids and density) that may not be visible directly in the
scatterplot. Figure 1 (d) illustrates the interaction. The red
lines on the HTC Vive controller indicate the intensity of
the vibration on the controller. The controller at C1 vibrates
more intensely than at C2 and C3, and the controller at
C3 vibrates more intensely than at C2. In order to �nd a
proper scale mapping of perceived vibrations and make sure
one can discriminate di�erent levels of vibration intensity,

1www.vive.com/us/product/vive-pro/ (Accessed on the 01/10/2019)

we performed a Just Noticeable Di�erence (JND) study (see
Section 4). The JND study provided the smallest di�erence
necessary to di�erentiate two vibrations. This di�erence
follows Weber's Law [21] by increasing with intensity of the
vibration. We selected 6 levels of vibration (strength values
to the TriggerHaptics function), with a di�erence between
them more than 2 times JND: 0, 200, 400, 700, 1100, 1600.

Highlight-Plane

Rationale.Our framework showed another opportunity for
the design of a cutting plane to explore density in a 3D
scatterplot, plotted directly from discrete data. The challenge
was to design a cutting plane that shows 2D slices of data
points to enable a user to see inside the 3D scatterplot to
assess density and spatial arrangements. Our �rst approach
was to generate a cutting plane from the orientation and
position of the VR controller. We tried two typical cutting
plane designs:
Design 1: display only the data points within a small dis-
tance of the cutting plane surface and completely remove
the rest. This was the technique demonstrated by [7].
Design 2: remove the data points that are between the
viewer and the cutting plane.

In piloting the tasks for our studies both designs proved
problematic for discrete scatterplot data. Design 1 works
for volume visualisation because the cutting plane cross
section presents a complete 2D image. However, for discrete
scatterplot data our pilot participants found this technique
di�cult to use, as the context of the remaining points was
lost. They struggled to navigate and complete the tasks.

Thus, we modi�ed the technique to Design 2, which is
again common in volume visualisation applications, where
it has the advantage that much more of the surrounding
model remains visible. It works well in this case because the
cutting plane cross-section is an opaque surface. There is no
visual interference from voxels behind the cutting plane. For
discrete point data in scatterplots, however, the points behind
the cutting plane are visible through the gaps between the
points intersecting the cutting plane surface and they make it
very di�cult to tell precisely which points are actually on the
cutting plane. Thus, again, our pilot participants struggled
to complete the tasks with this technique.

We therefore adopted an approach of highlighting points
near the cutting plane, while reducing the visual saliency
of the remaining points in order to achieve a pre-attentive
pop-out(or Gestalt Grouping) e�ect [24] without harming
the overall 3D abstract visualisation. A �rst approach was to
use two colours to discriminate the data points selected on
the cutting planes. This approach did not prove to be very
e�cient. Similarly, adjusting transparency did not achieve a
strong pop-out e�ect. Our�nal design involved increasing
the size of the data points intersected by the plane. Further



Figure 3: The 6 di�erent JND (top of the �gure) found for
the 3 di�erent vibrations (200, 800, 1200) and the two ap-
proaches (A: Above and B: Below).

piloting indicated a stronger pop-out e�ect than the use of
colour. We name this �nal design:Highlight-Plane.

Design and implementation.The size of the dots in the Highlight-
Plane is multiplied by a scale factor of 3 (Figure 2). We imple-
mented the Highlight-Plane by calculating at each frame the
distance of each scatterplot point to the plane de�ned by the
orientation of the VR controller. The interaction results in a
continuous highlighting e�ect that enhances the perception
of the spatial arrangement and the density of data points
inside dense regions of the plot.

4 VIBRATION JND

Before assesing the e�ects of vibrotactile feedback for visu-
alisation, it is necessary to understand people's ability to dis-
criminate between di�erent levels of vibration from the HTC
Vive handheld controller. To accomplish this, we conducted
a Just Noticeable Di�erence(JND) study, a widely-accepted
measure of such discriminatory abilities. JND is de�ned as
minimum perceivable property di�erence between two stim-
uli [ 21]. JND studies have been applied to di�erent types
of perceptual stimuli such as color and sound. While pre-
vious work has focused on vibration perception, it has not
yet been applied, to our knowledge, to vibrotactile stimulus
from handheld controllers such as the HTC Vive controllers.

Method.We applied astaircase procedure[54], which consists
of a series of comparisons between varying pairs of stimulus
levels, onebase leveland one higher or lower level2.

Our implementation uses the HTC Vive SDK function
"TriggerHapticPulse", which controls the level of vibration
with values ranging from 0 (for no vibration) to 4000 (for the
highest level of vibration). However, pilots showed that it
was almost impossible to discriminate vibration over 1600.
We chose 3base valuesevenly distributed in the remaining
usable range : 400, 800, and 1200. Eachbase valuewas then
compared with both higher (Aboveapproach) and lower
(Belowapproach) values. In total, each participant did the
staircase procedure 6 times (3base values� 2 approaches).

Participants and Procedure.We recruited 9 participants (1
female) for this JND study. Participants held the controller
in their dominant hand. To begin each trial, participants

2See [48] and [14] for a detailed description and example of the procedure.

Figure 4: Example stimuli used to test Scaptics and Highlight
Plane: (a) background noise; (b) TaskClusters task with Scap-
tics; (c) TaskVoid task with the Highlight-Plane .

were required to place their thumb on the pad of the con-
troller. Then they were presented with two levels of vibration
(the base value and the comparative value) in a random or-
der. These were presented consecutively, without a pause
between them. Participants were asked to indicate which vi-
bration was the strongest by pressing the left or right button
of the controller's pad.

Once all data were collected, we calculated the average
JND across all participants for each of the 6 procedure vari-
ants showed in Figure 3.

5 CONTROLLED USER STUDY

Our study focuses on the use of Scaptics(S)and Highlight-
Plane(H) to reveal obscured features in a 3D scatterplot in
VR. At a high level, we investigated questions relative to data
density such as:

� It seems that there is a hole there, or that the density is low
inside that volume. Is there really a hole?

� I can see that those two clusters seem very dense from the
outside, but which one is the most dense?

We designed two tasks that simulate these two questions
and allow us to control such issues. We compare the per-
formance of our two new techniques against avisualisation
only (V) baseline condition. In this condition participants
only relied on the depth cues provided by the immersive VR
environment (i.e. parallax motion and stereoscopic vision).

Tasks and stimuli.We designed two tasks that required partic-
ipants to search for low and high densities in a 3D scatterplot.
The low density task (TaskVoid) can be seen as avoid �nding
task, e.g. �nd zones of the 3D scatterplot that contain no or
very few data points. The high density task (TaskClusters)
can be seen as adensest cluster�nding task, e.g. given sev-
eral dense zones, �nd the densest one. Both patterns used in
the tasks (clusters and voids) have been identi�ed as typical
scatter patterns which can be found in real-world dataset in
2D [55] and 3D [58].

Stimuli used in tasks followed the same basic pattern. Ini-
tially, �ve ovoid regions (balls) roughly 25cm in diameter
were �lled with 1,000 randomly distributed points (noise),
see Fig. 4(c). These balls were placed and oriented randomly



Density
Low High

TV TC TV TC

Density
Di�erence
Diff. Den.

Low
T: 0%
D: � 50%

T: 400%
D: � 300%

T: 20%
D: � 50%

T: 800%
D: � 600%

High
T: 0%
D: � 100%

T: 400%
D: � 200%

T: 20%
D: � 100%

T: 800%
D: � 400%

Table 2: Summary of the density of the target (T) and
distractors (D) for each condition ( Density and Diff.
Den.) for the TaskVoid (TV) and TaskClusters (TC).
Each density is expressed in percentage of the noise
density of the surrounding ball.

within a cube, one meter to a side. This basic pattern was
adjusted di�erently in each task.

ForTaskClusters, a 15cm diameter region within each ball
was augmented with additional points to make embedded
clusters, see Figure 4(b). Again the number of points added
varied to control for clusterDensity , relative to the density
of noise in the surrounding ball, from 200% to 800%. The task
was to �nd the densest cluster (target) against thedistractors.
In real-world dataset, such as an HSV-space distribution of
pixels from an image, clusters represent the main coloured
features.

ForTaskVoid, a hole (void) of 15cm diameter was created
within each ball by removing a random number of points,
the number chosen to control forDensity , such that the void
regions had density of points varying between completely
empty (0%Density ) and the same density as the surrounding
ball of noise (100%Density ), see Fig. 4 (c). The task was to
�nd the least dense void (target) against thedistractors. In
real-world dataset, voids can be indicative of missing data.

We controlled the di�culty of both tasks by varying the
Density levels of thetargetand the di�erence of density
(Diff. Den. ) between thetargetand thedistractors(see Ta-
ble 2 for details). The results of the JND study were used
to ensure a noticeable vibration di�erence between similar
density levels, especially between thetarget's Density and
the distractors. Overall, each generated dataset contains be-
tween 10k and 20k points (in function of the conditions). It is
representative of datasets commonly used in visual analytics.

Apparatus and participants.We used a virtual-reality desktop
(GeForce GTX1080, intel i7, 32GB of RAM) with an HTC Vive-
pro headset to ensure a high-frame rate for a comfortable VR
experience. The visualisation was developed using Unity3.
We recruited 15 participants (12 males, 3 females, mean age=
28.8 and SD=5) using word of mouth and direct communica-
tion. Participants were postgraduate students and faculty. 12
participants reported being familiar with data visualisation
(2 experts) and 9 were familiar with VR and 12 with gaming.

3https://unity3d.com/ (Accessed on the 01/10/2019)

Design.We used a within-subjects design which consisted of:
2 Tasks(TaskClustersandTaskVoid) � 3 Techni�es (Visual
Only, ScapticsandHighlight-Plane) � 2 Density (Low and
High) � 2 Diff. Den. (LowandHigh). We did 3 repetitions
which yielded 72 trials per participant. We collected a total
of 72 x 15 participants = 1080 trials. A Latin Square was used
to counterbalance the order of techniques. The order of trials
for eachTechni�e and each tasks have been randomised,
but �xed betweenTechni�es and participants. Since the
aim of this study was not to compare task performance, the
tasks were not counter balanced, and all participants started
with the TaskVoid, and then did theTaskClusters. As this is an
exploratory study, we don't have strong hypotheses regard-
ing performance of each technique. Our goal is to observe
the nuances of each techniques and how they compare to
each other. However, the metric and the analysis methods
were determined before the study.

Procedure.The session started with a short training session
on the 3Techni�es for all participants. Then participants
performed all trials ofTaskVoidand followed byTaskClusters.
Participants were asked to start each trial from a precise po-
sition indicated on the ground by a blue arrow in the virtual
environment. Participants answered each task by placing a
blue 3D virtual cross in the chosen sphere (Figure 4 (b,c)) by
pressing the controller trigger. For eachTechni�es , partic-
ipants started with 4 training trials of increasing di�culty,
which they had to redo until they found the correct answer.

Participants completed a demographic questionnaire be-
fore the study and a post study questionnaire after. The study
was approximately 1 hour, and participants were able to take
a break at any time if they felt uncomfortable.

Measures.We recorded completion time (i.e. time to pull the
controller trigger and hence place the cross). Correctness
was based on whether the cross was placed within thetar-
get. At the end of the experiment, con�dence, physical and
cognitive demand were measured using Likert scales and
preference using a ranking. Finally, participant's reported
their strategies in solving the task.

6 RESULTS

Statistical Method.Following APA recommendations [4], we
report our analysis using estimation techniques with e�ect
sizes and con�dence intervals (i.e., not using p-values) fol-
lowing recent precedents in HCI [12, 56]. Our con�dence
intervals were computed using BCa bootstrapping, and the
term e�ect size here refers to the measured di�erence of
means. Error bars in our images reporting means are com-
puted using all data for a given condition. When comparing
means, we average the data by participants/groups and com-
pare the three conditions globally by computing the CI of



(a) TaskVoid: Time (b) TaskVoid: Error rate

(c) TaskClusters: Time (d) TaskClusters: Error rate

Figure 5: In each �gure, the top charts show Means and CIs for all measures for Techni�es (Highlight-Plane (H), Scaptics
(S) andVisual Only (V)) across conditions. The bottom charts show Corresponding 95% CIs for the mean di�erence between
Techni�es . Arrows indicate signi�cant di�erence between two conditions.

the set of di�erences. A di�erence is considered as signif-
icant when the CI of the di�erence do not cross 0. In our
images we display the computed CI of the di�erences. While
we make use of estimation techniques, a p-value-approach
reading of our results can be done by comparing our CIs spac-
ing with common p-value spacing as shown by Krzywinski
and Altman [34]. All the results reported in the analysis are
signi�cant, unless explicitly stated otherwise.

TaskVoid Results

Time.Overall, participants took more time to �nish the task
in the Visual Onlycondition (Figure 5a-left � 5 seconds
slower). When we look separately at eachDensity (Figure 5a-
center), we can see thatScapticsis fastest (10 seconds faster

than Visual Only, 5 faster thanHighlight-Plane) for Lowden-
sity. ForHigh density,Highlight-Planeis fastest (by around 5
seconds). Looking atDiff. Den. (Fig. 5a-right), bothScaptics
andHighlight-Planeare faster thanVisual Onlywith high
density di�erence (between 5 and 10 seconds faster). When
Density decreases, performance decreases forHighlight-
PlaneandVisual Only, but not forScaptics, which is faster
than the two others (around 5 seconds faster).

Error.Most above results are re�ected in the error rate (Fig. 5b).
Participants made around 20% more errors in theVisual Only
condition (Figure 5b - left). They made fewer errors in the
LowDensity condition (Figure 5b-center) withScapticsthan
with Visual Only(20% fewer). In theHighDensity condition,



Figure 6: 95% CIs for the mean di�erence between the error
rate in TaskClusters for each Techni�es between the Low
and the High Density .

the only di�erence is between theHighlight-Planeand the
Visual Only(around 15% fewer with theHighlight-Plane).
When we look at eachDiff. Den. (Figure 5b-right), we can
see that there are no any di�erences between the three condi-
tions, participants did not make many errors, however, their
performance decreases with decreasingDiff. Den. , however,
it is again almost stable forScaptics, with which participants
did 20% fewer errors than withVisual Only.

TaskClusters Results

Time.Overall, participants took more time to �nish the task
in the Highlight-Planecondition (Figure 5c-left � 5 seconds
slower). We found the same result in all the conditions (Fig-
ure 5c-center and right).

Error.Overall, there is no e�ect on the error rate (Figure 5d-
left). If we look at eachDensity , analysis showed that par-
ticipants made more error inHigh density in theVisual Only
condition (20-25% more errors), while they made more errors
with the Highlight-Planein the Lowcondition (>20% more
errors). It is interesting to note that when looking at the dif-
ference of error rate between theLowand theHigh density
(Fig. 6), participants made fewer errors inHigh density with
the Highlight-Planethan in theLow (>25% more), but it is
the opposite with in theVisual Onlycondition (>20% more
errors in theHighdensity). However, withScaptics, accuracy
across bothDensity is stable and high. Regarding theDiff.
Den. (Figure 5d-right), there is no e�ect forHigh Diff. Den.
and forLowDiff. Den. Scapticsis >15% more accurate than
either Highlight-Planeor Visual Only.

User Feedback

Questionnaire responses are summarised in Figure 7. More
than 50% of the participants rated their con�dence at 4 or
5 with Highlight-PlaneandScaptics(>75% withHighlight-
Plane). On the other hand, 50% rated it at 1 or 2, and <25%
rated it at 4 or 5 withVisual Only. Physical and mental de-
mand results are similar, <25% rated a high demand (4 or
5) with Highlight-PlaneandScaptics, while >50% reported
high-demand withVisual Only. No participant rated their
mental demand higher than 3 withScaptics. Finally, >50%
of participants rankedHighlight-Plane�rst, Scapticssecond
andVisual Onlythird.

Figure 7: Summary of participants' answer to the post-study
questionnaire about the three Techni�es .

LD HD LDD HDD
VT - Time S H S H
VT - Accuracy S>V H>V S>V H>V
CT - Time S,V S,V S,V S
CT - Accuracy S,V S,H S -

Table 3: Summary of the result for the TaskVoid (VT)
and TaskClusters (CT), for the di�erent condition: Low
and High Density (LD and HD), and Low and High Diff.
Den. (LDD and HDD). Cells contain either the best
Techni�es (s) or, if no best, the signi�cant di�erence.

Strategies.With the Visual Only, participants mostly reported
putting directly their head inside the cluster (7•15), especially
for the TaskVoid. For theScaptics, most users reported trying
to identify �rst the best candidates visually and then compare
them using the controller (7•15), others reported trying di-
rectly all the candidates (5•15). Interestingly, one participant
actually reported using the sound of the vibration instead
of the tactile feeling. Finally, with theHighlight-Plane, par-
ticipants reported also trying to identify candidates visually
and then comparing using the plane (3•15). However, others
used the plane with di�erent angle to optimise the number
of clusters intersected, to optimise the comparison (6•15).

Participants' Subjective Comments.When asked to explain
their ranking, participants explained thatHighlight-Plane
allowed side-by-side comparison (5•15) and in 2D (2•15),
which were condidered as easier. Some complained about
the fact thatScapticsrequired more movement (3•15), and
wondered if the resolution was high enough for low di�er-
ence of density (4•15). Finally,Visual Onlywas considered
as e�cient only in obvious case (4•15).

Discussion

Our observations combined with participants' feedback in
the questionnaire show that they took advantage of VR to
solve the tasks (e.g. some participants put their head in the



spheres, walked around and moved their head to use parallax
motion to solve the task). In the following we discuss the
results for each task, summarised by Table 3.

TaskVoid. The purpose of this task was to see if the tech-
niques support participants in �nding and comparing void-
like (non-existent or low density) features in a scatterplot.
Overall, we can see that both interaction techniques im-
proved participants' performance compared to the baseline.
If we look at di�erent conditions we can see that both tech-
niques are actually complementary, especially in conditions
that were considered as more di�cult:High Density (When
the density of thetargetis not equal to 0) andLowDiff. Den.
(when the di�erence between thetargetand thedistractors
is low). In the �rst one, the di�culty was due to a lower
di�erence of density between the noise and the target. The
Highlight-Plane, by increasing the size of the points, actu-
ally increases this di�erence and makes the task easier. A
challenge with theHighlight-Planetechnique occurs when
trying to compare more than three features that do not lie
on a plane, i.e. when it is not possible to intersect the plane
with all features at once. By contrast, theScapticstechnique
allows only one feature to be inspected at a time.

TaskClusters. The purpose of this task was to see how the
techniques help participants in �nding and comparing dense
clusters in a scatterplot. The only general result for this task
is that theHighlight-Planeis slower thanScapticsand Visual
only. If we look at accuracy, we can see that the performance
of Scapticsis consistently good across conditions (except for
the High Diff. Den. where accuracy was high for all tech-
niques). A possible explanation is that this task was easier
visually. As reported, participants used the visual density
in the easy cases (which is faster) and usedScapticswhen
it was not enough (like in theLow Diff. Den. condition).
As Scapticsis designed to di�erentiate close densities, it led
to high accuracy. This strategy was less popular with the
Highlight-Plane, maybe because participants preferred using
directly 2D visual comparison. This led to a better accuracy
than Visual only for very dense clusters. This could be due
to the fact that contrary to the previous task, theHighlight-
Plane, by highlighting only a subset of points of the cluster,
reduces the visual density which facilitates comparison in
accordance with Weber's law [21]). On the contrary, with
low density clusters, a condition which was considered as
easy with the Visual only, the performance of theHighlight-
Planeworsens signi�cantly. Such e�ects should be studied
in the future.

To conclude, for �nding and comparing void-like spatial
features, the use of interaction techniques is bene�cial, and
ScapticsandHighlight-Planeeach have their own bene�ts,
which could be complementary. Regarding clusters,Scaptics
is in general faster and more accurate thanHighlight-Plane.

This con�rms previous work about vibro-tactile feedback
from studies with similar setup but di�erent tasks like ex-
ploring basic volumes [33] or identify areas of interest [38].
It is worth saying that the good performance ofScaptics
is partially due to the stepped vibration-density mapping
which ensured that the di�erence in vibration intensity be-
tween target and distractors was always noticable. However,
participants reported that their con�dence was negatively
a�ected when they visually perceived di�erent densities in
nearby regions, but could not feel the di�erence if the density
mapping fell within the same vibration intensity band. The
design and use of such mappings should be investigated.

7 CONCLUSION AND FUTURE WORK

In this paper we contributed two novel techniques to ex-
plore obscured features in 3D scatterplots in VR:Scaptics,
that uses vibrotactile feedback on a tracked controller; and
Highlight-Plane, a redesign of cutting planes for 3D scatter-
plots. Our study assessed the performance of each technique
against a non interactive baseline. We �nd that both interac-
tive techniques, Scaptics and Highlight-Plane, improve user
performance for identifying void regions. Scaptics a�orded
better performance for the identi�cation of clusters.

The designs of our techniques would need to be re�ned,
but we believe that this �rst study showed the promising
potential in the use of VR controllers and additional sen-
sory channel for the exploration of 3D abstract information.
Furthermore, while further study is required, our results po-
tentially have application in other immersive environments,
for example in mixed reality�to support situated analytics
scenarios [19]�or touch screens with vibrotactile feedback.

Our designs and preliminary results are encouraging for
further investigation of interactive techniques and techniques
that employ additional sensory channels to support explo-
ration of 3D scatterplots in immersive VR environments. In
future work, we want to further explore interactions based on
vibrotactile feedback on controllers (e.g. explore particular
vibrating patterns to encode spatial information). Moreover,
we plan to explore other 3D volume generation techniques
that can be employed to �nd more relevant spatial features
in 3D scatterplots (e.g. convolutions on the KDE volume to
encode cluster edges). Cutting planes for 3D scatterplots
also need more attention as they can be a great means to
explore dense 3D scatterplots. In particular we hope to ex-
plore the combination ofScapticsand theHighlight-Planeto
take bene�ts of both. Finally, other sensory channels could
be investigated, such as soni�cation [2].
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