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ABSTRACT
Three-dimensional scatterplots suffer from well-known per-

ception and usability problems. In particular, overplotting

and occlusion, mainly due to density and noise, prevent users

from properly perceiving the data. Thanks to accurate head

and hand tracking, immersive Virtual Reality (VR) setups pro-

vide new ways to interact and navigate with 3D scatterplots.

VR also supports additional sensorymodalities such as haptic

feedback. Inspired by methods commonly used in Scientific

Visualisation to visually explore volumes, we propose two

techniques that leverage the immersive aspects of VR: first,

a density-based haptic vibration technique (Scaptics) which
provides feedback through the controller; and second, an

adaptation of a cutting plane for 3D scatterplots (Highlight-
Plane). We evaluated both techniques in a controlled study

with two tasks involving density (finding high- and low-

density areas). Overall, Scaptics was the most time-efficient

and accurate technique, however, in some conditions, it was

outperformed by Highlight-Plane.
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1 INTRODUCTION
This paper is concerned with techniques for the visualisa-

tion of quantitative attributes associated with discrete data

points, i.e. scatterplots. For data points with two quantitative

attributes, scatterplots offer a direct mapping from the at-

tribute to 2D position in a plane orthogonal to the viewer

(typically a screen or page). Such axis-aligned spatial posi-

tion is well accepted as the most effective channel for visual

representation of continuous quantities [40]. With the rising

popularity of immersive virtual reality (VR) and augmented

reality (AR) headsets, it is tempting to exploit three spa-

tial dimensions for representation of data points with three

quantitative attributes. The creation of such 3D scatterplots

is supported by a number of very widely available tools,

both free (e.g. R, PlotLy, ggplot) and commercial (e.g. Spotfire,
Mathematica, SPSS,MatLab, etc.). These occur widely in data

science to visualise quantitative attributes, projections of

higher-dimensional space [36], or spatial data [46].

However, position in the depth axis relative to eye posi-

tion is a much less effective channel for representation of

quantitative data attributes and issues like occlusion and

perspective distortion have also been shown to limit the ef-

fectiveness of 3D scatterplots [47]. Head-tracked navigation

and stereopsis may improve things, in particular for sparse

data where occlusion can be resolved through small head-

movements. Yet, seeing features inside dense 3D point clouds

remains a challenge.
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Figure 1: Scaptics pipeline: (a) 3D scatterplot with several dense clusters (C1,C2 and C3 are the largest ones). (b) overlay of the
volume data produced by our 3D Kernel Density Estimation technique (KDE volume is not visualised in the actual technique).
(c) sliced view of the KDE volume showing that C1 is more dense than C2 and C3. (d) controller vibration (red lines) according
to the value of intensity read into the 3D volume (arrows) - i.e. the controller vibrates more intensely in C1.

In 3D volume visualisation (especially in medical imag-

ing) there have been a number of interactive techniques to

help viewers uncover occluded features. Loosely, these can

be categorised as space-distorting techniques, which trans-

form space to reduce occlusions, or data-removal techniques,

which remove part of the data to give a clearer view. A past

survey [18] warns against using spatial distortion for scatter-

plot data, where the close correspondence of spatial position

to underlying data attributes is paramount. Our pilot studies

indicated that straightforward adoption of a cutting-plane,

a commonly used data-removal technique, is inappropriate

for scatterplot data. Therefore, our first contribution is a

redesigned cutting-plane technique called Highlight Plane.
Our second contribution explores supporting user under-

standing of occluded local scatterplot density using the vi-

brotactile feedback function now commonly available in VR

controllers. Again, we found that past solutions, which em-

ploy a simple mapping of density to vibration at each point in

the volume, do not adapt well to scatterplot data. Instead, we

employ Kernel Density Esimation (KDE) to create an inferred

density field that provides information about proximity to

discrete points. We call this technique Scaptics.
Since this is the first work to employ consumer-level

VR controllers for vibrotactile data representation, we also

perform a Just-Noticable-Difference (JND) study of users’

sensitivity to vibration intensity. The resulting six-level in-

tensity scale, is our third contribution.

We offer these techniques as an exploration of the use of

VR affordances to inspect density features in 3D scatterplots,

and do not claim either technique to be optimal. Nonethe-

less, our final and main contribution is an assessment of

these preliminary implementations. In comparison to a base-

line visualisation, we find that both interactive techniques,

Scaptics and Highlight-Plane, improve user performance on

most tested tasks. However, Scaptics affords better perfor-

mance for the assessment of the density of clusters, while

Highlight Plane is, in some cases, better for identifying void

regions. These encouraging results indicate that both tech-

niques deserve further exploration to improve the use of VR

for scatterplot exploration.

2 RELATEDWORK
Scatterplots are an efficient way to display a small amount

of data. However, display limitations can produce cluttered

visualisations [31], leading to well-known perception issues

such as occlusion and overplotting. To manage overplot-

ting, Piringer et al. [44] proposed visual cues (e.g. halo, size,

color), interactive linked visualisations, and 3D histograms

on the 2D faces of a 3D scatterplot. However, the efficiency

of such methods is not evaluated. Poco et al. [45] used den-

sity information to automatically detect clusters. To bring

out interesting patterns, Bachthaler and Weiskopf [8] used

density to transform discrete scatterplots into continuous

volumes. Yu et al. [58, 59] used density information to im-

prove selection in point-clouds. However, in each of these,

the density information itself is not transmitted to the user.

In this paper, instead of using this information to achieve a

higher-level goal, we make it available for user exploration.

Previous research in 3D dense- and cluttered-graph visu-

alisation has demonstrated the benefits of immersion [1, 53].

Raja et al. showed that immersion improves users’ perfor-

mance in visualisation tasks (finding outliers, determining

trends and finding clusters). More recent studies have shown

benefits of immersive platforms for navigation [22] and inter-

action [7] for data analysis. Overall, immersive environments

show promise for visualisation of 3D scatterplots, but occlu-

sion and overplotting are still problematic when dealing

with large datasets. In this paper, we propose techniques to

overcome both problems in VR.



Figure 2: The Highlight Plane technique preserves the over-
all visualisation by increasing the size of data points that in-
tersect the plane attached to the controller (blue). The user
has found a void in the 3D point cloud at the center of the
cutting plane. Inset shows a first person view.

Interactions to overcome occlusion and overplotting
Elmqvist [18] identifies target invariance criteria, properties
of visualisations which occlusion management techniques

should avoid perturbing. Key among these for scatterplots

is the location of points. Occlusion management techniques

which do not disrupt the location of points are space preserv-
ing, as opposed to space distorting.

Space-distorting techniques. To overcome occlusion, Cow-

perthwaite et al. proposed the use of a repulsive lens [17].

Hurter et al. [27] proposed a similar but attribute-driven

lens. However, such techniques are not recommended for

visualisation of quantitative data attributes, as they alter the

location of data points and impair understanding [18].

Space-preserving techniques. One space-preserving approach
for encoding density is the use of visual cues, however these

have been identified as inefficient [44]. Another approach

is the use of a cutting plane [25], which avoids occlusion by

extracting a 2D cross-section of the data. This cross-section

can be either visualized in a separate view [13, 16, 32]—which

can lead to divided attention between the different displays—

or directly within the 3D visualisation [28, 30, 37]. Such a

technique has previously been applied in AR, to compare the

suitability of different platforms [6, 7].

A new opportunity for datavis: haptic feedback
Another direction which has been explored for conveying

density information in volume visualisation—but not discrete

scatterplots—is the use of haptic feedback. Haptics [9, 11, 50]

include both tactile and kinesthetic displays. Tactile displays

employ the cutaneous sense that allows users to understand

properties of a physical item via skin contact. Kinesthetic dis-

plays employ the proprioceptive sense, through which users

perceive their own body position and movement. Vibrotac-

tile displays employ vibrational feedback to induce tactile

sensations [15], e.g. to fingers [49], hands [57], or arms [52].

Pfeiffer and Stuerzlinger [43] showed that vibrotactile feed-

back was as efficient as visual feedback for mid-air target ac-

quisition in a 3D stereoscopic environment. A similar study

in a VR environment showed that bimodal feedback (e.g.

visual + vibrotactile) leads to fewer errors. Vibrotactile feed-

back in VR has also been shown to allow exploration of basic

volumes [33] to increase awareness, and to provide users

with the ability to feel forces and textures [3, 10].

The use of haptic feedback has been studied in scientific

visualisation as a way to broaden the information bandwidth

between users and system (see [39] for a review). More specif-

ically, Iwata and Noma described Volume Haptization [29], a

set of methods to map force to volume data. They found that

force-haptic feedback with a pantograph device was better

than visual only. Similar results have been found with a phan-

tom arm [5, 20]. Few studies focused on vibrotactile feedback.

Menelas et al. found that vibrotactile feedback, when coupled

with visualisation, was preferred by users and allowed them

to quickly identify an area of interest [38]. On a similar task,

Ammi and Katz [2] showed that such feedback, coupled with

audio, was more efficient than vibrotactile feedback alone.

The use of haptics for quantitative data exploration has

mostly been studied for 2D visualisation (see [41] for a re-

view). Vibrotactile feedback has been mainly used to com-

municate high-level information (e.g. vibrotactile icons or

tactons) and not as a channel to encode data values. A few

examples that do encode values with vibrotactile feedback

include barcharts [51] and 2D scatterplots [23]. Most evalu-

ations did not focus on performance but showed that such

feedback was usable. A rare example of haptic feedback for

3D abstract visualisation demonstrates a simple force-based

haptic model in a 3D scatterplot that conveys an overview of

the density. As this model was not evaluated, this paper—to

the best of our knowledge—is the first to evaluate haptic

feedback for 3D scatterplot exploration.

Summary and Definitions. In Table 1 we classify tech-

niques by data type, sensory channel and spatial interaction.

Data types. Following Munzner [40] we make a distinction

between field and discrete data. Field data has values at all

points of a given space. Typically, scientific and medical data,

e.g. 3D MRI/CT scans, photogrametry or fluid simulations

are continuous field data. Discrete data corresponds to values
in multidimensional tables.



Data Type
Field Discrete (scatterplots)

Visual volume points/glyphs
Channels Vibrotactile density→ intensity [2, 38] inferred intensity, Scaptics [Sec. 3]

Force-feedback inferred vector [5, 20, 29, 39] inferred vector [42]
Spatial Space-preserving cutting plane [13, 16, 25, 28, 30, 32, 37] cutting plane[6, 7], Highlight-Plane [Sec. 3]
interaction Space-distorting fisheye[17], ColorTunneling[26] MoleView [27] not recommended [18]

Table 1: high-level framework for 3D data representation using haptic and visual channels, by data type.

Sensory Channels. In this paper we consider two sensory
channels for conveying density information: visual and hap-
tic, with the latter further divided into vibrotactile and force-
feedback. The visualisation of 3D field data usually involves

rendering a grid of voxels. A transfer function maps density

at each grid cell to colour. Transparency can be controlled

to isolate density layers (e.g. filtering skin density to show

organs in an MRI scan). In the case of 3D scatterplots of dis-

crete data, coloured glyphs (dots or spheres) are mapped to

discrete positions in space. A perception of density emerges

from the separation between glyphs and can be controlled

by adjusting transparency, size and style of the glyphs. In

the case of haptic feedback, density can be mapped to vibro-

tactile or force feedback, using for instance a Phantom Arm

or Pantograph device. For field data, where a density value is

present in the data at every point in space, the mapping from

density to vibrotactile intensity is direct and trivial. Mapping

density fields or discrete points to force feedback requires

inference of a direction of force, which has been examined in

a number of papers, as listed in Table 1. The table reveals the

first gap in this framework in the application of vibrotactile

feedback to discrete scatterplot data. We require a function

to map the proximity of points relative to controller position

to vibration intensity. This gives rise to our design of the

Scaptics technique, described in Section 3.

Spatial Interaction. The use of space-distorting techniques

with discrete data is not recommended [18]. Of the Space-
preserving techniques, cutting planes are most widely used

for volume visualisation but we know of only one effort to

use cutting plane interaction with discrete scatterplots [7],

and this did not evaluate the cutting plane against other

interaction techniques. Therefore, the second technique de-

veloped in this study is an adaptation of cutting planes for

scatterplots: Highlight-Plane, see Section 3.

Summary. To sum-up, our framework showed that the use

of vibrotactile and force feedback have not been extensively

studied for abstract visualisation, but it showed promising

result with field data (i.e. scientific visualisation). Force feed-

back cannot be provided by classic VR equipment we want

to use. We, thus, focus on the use of vibortactile feedback

with our technique Scaptics. Regarding the spatial interaction
techniques, again, both space preserving and distorting tech-

niques have been extensively studied for field data, but their

use for abstract data is limited, and not evaluated. Because

literature does not recommend the use of space-distorting

techniques with abstract data [18], we choose to focus on

the study of space-preserving techniques with our Highlight-
Plane.

3 INTERACTION TECHNIQUES
In this section we give the design rationale for our Scaptics
and Highlight-Plane techniques, which aims to support users’

perception of obscured density features in a 3D scatterplot

and support inspection of very dense clusters.

Scaptics: Scatterplot Haptics
Rationale. Haptic devices such as the Phantom Arm have

been used to explore 3D data (Section 2), but these devices

have distinct disadvantages for data visualisation: first, they

can operate in only a limited volume of space (tens of cen-

timetres per side); second, they are extremely expensive

(tens of thousands of USD). By contrast, the current gen-

eration of commercial VR controllers come equipped with

programmable vibrating motors that can provide adjustable

vibrotactile feedback over a large interaction volume and

their cost is in the hundreds of dollars. Thus, for the fore-

seeable future immersive data visualisation is accessible to

a much greater audience using the latter setup. But the use

of vibrotactile feedback for 3D scatterplots is not explored.

A first option consists of triggering the vibration of the VR

controller when it collides with a 3D data point. With such a

design, getting a sense of the local density requires the user

to browse in space to collide with each datapoint.

A more promising alternative is to derive volume infor-

mation from the 3D scatterplot in order to create a field of

density information and map the intensity of the field to the

intensity of vibration of the controller. In the following, we

detail how we create such a volume and how we carefully

mapped resulting spatial density to the vibrating motors of

a VR controller.

Design and implementation. We created a 3D Kernel Density

Estimation (KDE) map of the data to create volume density

information from a 3D scatterplot. KDE techniques [35] find

spatial density of a data distribution and provide an overview

of the density by displaying isocontours or surfaces around

the dense areas of a visualisation. Technically, KDE maps



are produced by applying a Kernel function to all data points

that produce surface and volume information.

Our approach consists of using a solid Gaussian sphere

as a kernel, centred on each point of the 3D scatterplot. A

Gaussian function G is used to define the intensity of each

voxel of the sphere kernel, according to their distance to the

centre (i.e. a given point of the 3D scatterplot).

The KDE function is defined as follows: for a point x ∈ R3,
the density estimation is given by the sum of the Gaussian

sphere kernels:

KDE(x) = 1

n ∗ h

n∑
i=1

G(x − xi
h

)

Technically, we initialised a 3D grid with white transpar-

ent voxels. Then the kernel spheres were drawn in “additive

mode”, i.e. the colour intensity of each grid cell is a multi-

ple of the number of spheres that cover it. The sum of the

Gaussian kernels G yield high intensity volume information

in the dense areas of the scatterplot (Figure 1 (b,c)).

For illustration purposes, Figure 1 (b,c) shows a volume

rendering of the density KDE overlaid on a 3D scatterplot.

The resulting colour of the voxels is a gradient of the density

information (yellow for low density to red for high density).

The thumbnail (c) is a slice of this volume that shows the

intensity difference inside the three clusters and C1 is the

the most red indicating that it is the densest region.

The aim of the Scaptics technique is to transform the color

of the voxels into a vibrotactile feedback. As the 3D KDE

technique provides a grid of voxels that encode continuous

volume density information of the 3D scatterplot, the last

step to create the Scaptics technique consists of mapping the

density at a given point to a vibration strength.

To realise the Scaptics technique, we employ the HTCVive

Pro VR system and SDK
1
. It provides the location of a tracked

controller in 3D space and a TriggerHaptics(int strength)
function that triggers a vibration in the controller. Hence,

by continuously reading the position of the controller in the

grid of voxels, vibrations are triggered indicating the level of

density. This scaptics interaction makes it possible to reach

directly into the 3D scatterplot and by using continuous

movements, to inspect volumes and surfaces. The perceived

vibrations provide high-level information of the features (e.g.

voids and density) that may not be visible directly in the

scatterplot. Figure 1 (d) illustrates the interaction. The red

lines on the HTC Vive controller indicate the intensity of

the vibration on the controller. The controller at C1 vibrates

more intensely than at C2 and C3, and the controller at

C3 vibrates more intensely than at C2. In order to find a

proper scale mapping of perceived vibrations and make sure

one can discriminate different levels of vibration intensity,

1
www.vive.com/us/product/vive-pro/ (Accessed on the 01/10/2019)

we performed a Just Noticeable Difference (JND) study (see

Section 4). The JND study provided the smallest difference

necessary to differentiate two vibrations. This difference

follows Weber’s Law [21] by increasing with intensity of the

vibration. We selected 6 levels of vibration (strength values

to the TriggerHaptics function), with a difference between

them more than 2 times JND: 0, 200, 400, 700, 1100, 1600.

Highlight-Plane
Rationale. Our framework showed another opportunity for

the design of a cutting plane to explore density in a 3D

scatterplot, plotted directly from discrete data. The challenge

was to design a cutting plane that shows 2D slices of data

points to enable a user to see inside the 3D scatterplot to

assess density and spatial arrangements. Our first approach

was to generate a cutting plane from the orientation and

position of the VR controller. We tried two typical cutting

plane designs:

Design 1: display only the data points within a small dis-

tance of the cutting plane surface and completely remove

the rest. This was the technique demonstrated by [7].

Design 2: remove the data points that are between the

viewer and the cutting plane.

In piloting the tasks for our studies both designs proved

problematic for discrete scatterplot data. Design 1 works

for volume visualisation because the cutting plane cross

section presents a complete 2D image. However, for discrete

scatterplot data our pilot participants found this technique

difficult to use, as the context of the remaining points was

lost. They struggled to navigate and complete the tasks.

Thus, we modified the technique to Design 2, which is

again common in volume visualisation applications, where

it has the advantage that much more of the surrounding

model remains visible. It works well in this case because the

cutting plane cross-section is an opaque surface. There is no

visual interference from voxels behind the cutting plane. For

discrete point data in scatterplots, however, the points behind

the cutting plane are visible through the gaps between the

points intersecting the cutting plane surface and they make it

very difficult to tell precisely which points are actually on the

cutting plane. Thus, again, our pilot participants struggled

to complete the tasks with this technique.

We therefore adopted an approach of highlighting points

near the cutting plane, while reducing the visual saliency

of the remaining points in order to achieve a pre-attentive

pop-out (or Gestalt Grouping) effect [24] without harming

the overall 3D abstract visualisation. A first approach was to

use two colours to discriminate the data points selected on

the cutting planes. This approach did not prove to be very

efficient. Similarly, adjusting transparency did not achieve a

strong pop-out effect. Our final design involved increasing

the size of the data points intersected by the plane. Further



0 400 800 1200 1600
Vibration

55 61 127 164 167 209

A A AB B B

Figure 3: The 6 different JND (top of the figure) found for
the 3 different vibrations (200, 800, 1200) and the two ap-
proaches (A: Above and B: Below).

piloting indicated a stronger pop-out effect than the use of

colour. We name this final design: Highlight-Plane.

Design and implementation. The size of the dots in theHighlight-
Plane is multiplied by a scale factor of 3 (Figure 2). We imple-

mented the Highlight-Plane by calculating at each frame the

distance of each scatterplot point to the plane defined by the

orientation of the VR controller. The interaction results in a

continuous highlighting effect that enhances the perception

of the spatial arrangement and the density of data points

inside dense regions of the plot.

4 VIBRATION JND
Before assesing the effects of vibrotactile feedback for visu-

alisation, it is necessary to understand people’s ability to dis-

criminate between different levels of vibration from the HTC

Vive handheld controller. To accomplish this, we conducted

a Just Noticeable Difference (JND) study, a widely-accepted
measure of such discriminatory abilities. JND is defined as

minimum perceivable property difference between two stim-

uli [21]. JND studies have been applied to different types

of perceptual stimuli such as color and sound. While pre-

vious work has focused on vibration perception, it has not

yet been applied, to our knowledge, to vibrotactile stimulus

from handheld controllers such as the HTC Vive controllers.

Method. We applied a staircase procedure [54], which consists
of a series of comparisons between varying pairs of stimulus

levels, one base level and one higher or lower level
2
.

Our implementation uses the HTC Vive SDK function

"TriggerHapticPulse", which controls the level of vibration

with values ranging from 0 (for no vibration) to 4000 (for the

highest level of vibration). However, pilots showed that it

was almost impossible to discriminate vibration over 1600.

We chose 3 base values evenly distributed in the remaining

usable range : 400, 800, and 1200. Each base value was then
compared with both higher (Above approach) and lower

(Below approach) values. In total, each participant did the

staircase procedure 6 times (3 base values × 2 approaches).

Participants and Procedure. We recruited 9 participants (1

female) for this JND study. Participants held the controller

in their dominant hand. To begin each trial, participants

2
See [48] and [14] for a detailed description and example of the procedure.

Figure 4: Example stimuli used to test Scaptics andHighlight
Plane: (a) background noise; (b) TaskClusters task with Scap-
tics; (c) TaskVoid task with the Highlight-Plane.

were required to place their thumb on the pad of the con-

troller. Then they were presented with two levels of vibration

(the base value and the comparative value) in a random or-

der. These were presented consecutively, without a pause

between them. Participants were asked to indicate which vi-

bration was the strongest by pressing the left or right button

of the controller’s pad.

Once all data were collected, we calculated the average

JND across all participants for each of the 6 procedure vari-

ants showed in Figure 3.

5 CONTROLLED USER STUDY
Our study focuses on the use of Scaptics (S) and Highlight-

Plane (H) to reveal obscured features in a 3D scatterplot in

VR. At a high level, we investigated questions relative to data

density such as:

–It seems that there is a hole there, or that the density is low
inside that volume. Is there really a hole?

–I can see that those two clusters seem very dense from the
outside, but which one is the most dense?

We designed two tasks that simulate these two questions

and allow us to control such issues. We compare the per-

formance of our two new techniques against a visualisation
only (V) baseline condition. In this condition participants

only relied on the depth cues provided by the immersive VR

environment (i.e. parallax motion and stereoscopic vision).

Tasks and stimuli. We designed two tasks that required partic-

ipants to search for low and high densities in a 3D scatterplot.

The low density task (TaskVoid) can be seen as a void finding

task, e.g. find zones of the 3D scatterplot that contain no or

very few data points. The high density task (TaskClusters)
can be seen as a densest cluster finding task, e.g. given sev-

eral dense zones, find the densest one. Both patterns used in

the tasks (clusters and voids) have been identified as typical

scatter patterns which can be found in real-world dataset in

2D [55] and 3D [58].

Stimuli used in tasks followed the same basic pattern. Ini-

tially, five ovoid regions (balls) roughly 25cm in diameter

were filled with 1,000 randomly distributed points (noise),

see Fig. 4(c). These balls were placed and oriented randomly



Density

Low High

TV TC TV TC

Density

Difference

Diff. Den.

Low

T: 0%

D: ≈50%
T: 400%

D: ≈300%
T: 20%

D: ≈50%
T: 800%

D: ≈600%

High

T: 0%

D: ≈100%
T: 400%

D: ≈200%
T: 20%

D: ≈100%
T: 800%

D: ≈400%
Table 2: Summary of the density of the target(T) and
distractors(D) for each condition (Density and Diff.

Den.) for the TaskVoid (TV) and TaskClusters (TC).
Each density is expressed in percentage of the noise
density of the surrounding ball.

within a cube, one meter to a side. This basic pattern was

adjusted differently in each task.

For TaskClusters, a 15cm diameter region within each ball

was augmented with additional points to make embedded

clusters, see Figure 4(b). Again the number of points added

varied to control for cluster Density, relative to the density

of noise in the surrounding ball, from 200% to 800%. The task

was to find the densest cluster (target) against the distractors.
In real-world dataset, such as an HSV-space distribution of

pixels from an image, clusters represent the main coloured

features.

For TaskVoid, a hole (void) of 15cm diameter was created

within each ball by removing a random number of points,

the number chosen to control forDensity, such that the void

regions had density of points varying between completely

empty (0%Density) and the same density as the surrounding

ball of noise (100% Density), see Fig. 4 (c). The task was to

find the least dense void (target) against the distractors. In
real-world dataset, voids can be indicative of missing data.

We controlled the difficulty of both tasks by varying the

Density levels of the target and the difference of density

(Diff. Den.) between the target and the distractors (see Ta-
ble 2 for details). The results of the JND study were used

to ensure a noticeable vibration difference between similar

density levels, especially between the target’s Density and
the distractors. Overall, each generated dataset contains be-

tween 10k and 20k points (in function of the conditions). It is

representative of datasets commonly used in visual analytics.

Apparatus and participants. We used a virtual-reality desktop

(GeForce GTX1080, intel i7, 32GB of RAM)with anHTCVive-

pro headset to ensure a high-frame rate for a comfortable VR

experience. The visualisation was developed using Unity
3
.

We recruited 15 participants (12 males, 3 females, mean age=

28.8 and SD=5) using word of mouth and direct communica-

tion. Participants were postgraduate students and faculty. 12

participants reported being familiar with data visualisation

(2 experts) and 9 were familiar with VR and 12 with gaming.

3
https://unity3d.com/ (Accessed on the 01/10/2019)

Design. We used a within-subjects design which consisted of:

2 Tasks (TaskClusters and TaskVoid) × 3 Techniqes (Visual
Only, Scaptics and Highlight-Plane) × 2 Density (Low and

High) × 2 Diff. Den. (Low and High). We did 3 repetitions

which yielded 72 trials per participant. We collected a total

of 72 x 15 participants = 1080 trials. A Latin Square was used

to counterbalance the order of techniques. The order of trials

for each Techniqe and each tasks have been randomised,

but fixed between Techniqes and participants. Since the

aim of this study was not to compare task performance, the

tasks were not counter balanced, and all participants started

with the TaskVoid, and then did the TaskClusters. As this is an
exploratory study, we don’t have strong hypotheses regard-

ing performance of each technique. Our goal is to observe

the nuances of each techniques and how they compare to

each other. However, the metric and the analysis methods

were determined before the study.

Procedure. The session started with a short training session

on the 3 Techniqes for all participants. Then participants

performed all trials of TaskVoid and followed by TaskClusters.
Participants were asked to start each trial from a precise po-

sition indicated on the ground by a blue arrow in the virtual

environment. Participants answered each task by placing a

blue 3D virtual cross in the chosen sphere (Figure 4 (b,c)) by

pressing the controller trigger. For each Techniqes, partic-

ipants started with 4 training trials of increasing difficulty,

which they had to redo until they found the correct answer.

Participants completed a demographic questionnaire be-

fore the study and a post study questionnaire after. The study

was approximately 1 hour, and participants were able to take

a break at any time if they felt uncomfortable.

Measures. We recorded completion time (i.e. time to pull the

controller trigger and hence place the cross). Correctness

was based on whether the cross was placed within the tar-
get. At the end of the experiment, confidence, physical and

cognitive demand were measured using Likert scales and

preference using a ranking. Finally, participant’s reported

their strategies in solving the task.

6 RESULTS
Statistical Method. Following APA recommendations [4], we

report our analysis using estimation techniques with effect

sizes and confidence intervals (i.e., not using p-values) fol-

lowing recent precedents in HCI [12, 56]. Our confidence

intervals were computed using BCa bootstrapping, and the

term effect size here refers to the measured difference of

means. Error bars in our images reporting means are com-

puted using all data for a given condition. When comparing

means, we average the data by participants/groups and com-

pare the three conditions globally by computing the CI of
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(d) TaskClusters: Error rate

Figure 5: In each figure, the top charts show Means and CIs for all measures for Techniqes (Highlight-Plane (H), Scaptics
(S) and Visual Only (V)) across conditions. The bottom charts show Corresponding 95% CIs for the mean difference between
Techniqes. Arrows indicate significant difference between two conditions.

the set of differences. A difference is considered as signif-

icant when the CI of the difference do not cross 0. In our

images we display the computed CI of the differences. While

we make use of estimation techniques, a p-value-approach

reading of our results can be done by comparing our CIs spac-

ing with common p-value spacing as shown by Krzywinski

and Altman [34]. All the results reported in the analysis are

significant, unless explicitly stated otherwise.

TaskVoid Results
Time. Overall, participants took more time to finish the task

in the Visual Only condition (Figure 5a-left – 5 seconds

slower).Whenwe look separately at eachDensity (Figure 5a-

center), we can see that Scaptics is fastest (10 seconds faster

than Visual Only, 5 faster than Highlight-Plane) for Low den-

sity. For High density, Highlight-Plane is fastest (by around 5

seconds). Looking at Diff. Den. (Fig. 5a-right), both Scaptics
and Highlight-Plane are faster than Visual Only with high

density difference (between 5 and 10 seconds faster). When

Density decreases, performance decreases for Highlight-
Plane and Visual Only, but not for Scaptics, which is faster

than the two others (around 5 seconds faster).

Error. Most above results are reflected in the error rate (Fig. 5b).

Participants made around 20% more errors in the Visual Only
condition (Figure 5b - left). They made fewer errors in the

Low Density condition (Figure 5b-center) with Scaptics than
with Visual Only (20% fewer). In the High Density condition,
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the only difference is between the Highlight-Plane and the

Visual Only (around 15% fewer with the Highlight-Plane).
When we look at each Diff. Den. (Figure 5b-right), we can

see that there are no any differences between the three condi-

tions, participants did not make many errors, however, their

performance decreases with decreasing Diff. Den., however,

it is again almost stable for Scaptics, with which participants

did 20% fewer errors than with Visual Only.

TaskClusters Results
Time. Overall, participants took more time to finish the task

in the Highlight-Plane condition (Figure 5c-left – 5 seconds

slower). We found the same result in all the conditions (Fig-

ure 5c-center and right).

Error. Overall, there is no effect on the error rate (Figure 5d-

left). If we look at each Density, analysis showed that par-

ticipants made more error in High density in the Visual Only
condition (20-25% more errors), while they made more errors

with the Highlight-Plane in the Low condition (>20% more

errors). It is interesting to note that when looking at the dif-

ference of error rate between the Low and the High density

(Fig. 6), participants made fewer errors in High density with

the Highlight-Plane than in the Low (>25% more), but it is

the opposite with in the Visual Only condition (>20% more

errors in the High density). However, with Scaptics, accuracy
across both Density is stable and high. Regarding the Diff.

Den. (Figure 5d-right), there is no effect for High Diff. Den.

and for Low Diff. Den. Scaptics is >15% more accurate than

either Highlight-Plane or Visual Only.

User Feedback
Questionnaire responses are summarised in Figure 7. More

than 50% of the participants rated their confidence at 4 or

5 with Highlight-Plane and Scaptics (>75% with Highlight-
Plane). On the other hand, 50% rated it at 1 or 2, and <25%

rated it at 4 or 5 with Visual Only. Physical and mental de-

mand results are similar, <25% rated a high demand (4 or

5) with Highlight-Plane and Scaptics, while >50% reported

high-demand with Visual Only. No participant rated their

mental demand higher than 3 with Scaptics. Finally, >50%
of participants ranked Highlight-Plane first, Scaptics second
and Visual Only third.
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Figure 7: Summary of participants’ answer to the post-study
questionnaire about the three Techniqes.

LD HD LDD HDD

VT - Time S H S H

VT - Accuracy S>V H>V S>V H>V

CT - Time S,V S,V S,V S

CT - Accuracy S,V S,H S -

Table 3: Summary of the result for the TaskVoid (VT)
andTaskClusters (CT), for the different condition: Low
andHigh Density (LD andHD), and Low andHigh Diff.

Den. (LDD and HDD). Cells contain either the best
Techniqes(s) or, if no best, the significant difference.

Strategies. With theVisual Only, participantsmostly reported

putting directly their head inside the cluster (7/15), especially
for the TaskVoid. For the Scaptics, most users reported trying

to identify first the best candidates visually and then compare

them using the controller (7/15), others reported trying di-

rectly all the candidates (5/15). Interestingly, one participant
actually reported using the sound of the vibration instead

of the tactile feeling. Finally, with the Highlight-Plane, par-
ticipants reported also trying to identify candidates visually

and then comparing using the plane (3/15). However, others
used the plane with different angle to optimise the number

of clusters intersected, to optimise the comparison (6/15).

Participants’ Subjective Comments. When asked to explain

their ranking, participants explained that Highlight-Plane
allowed side-by-side comparison (5/15) and in 2D (2/15),
which were condidered as easier. Some complained about

the fact that Scaptics required more movement (3/15), and
wondered if the resolution was high enough for low differ-

ence of density (4/15). Finally, Visual Only was considered

as efficient only in obvious case (4/15).

Discussion
Our observations combined with participants’ feedback in

the questionnaire show that they took advantage of VR to

solve the tasks (e.g. some participants put their head in the



spheres, walked around and moved their head to use parallax

motion to solve the task). In the following we discuss the

results for each task, summarised by Table 3.

TaskVoid. The purpose of this task was to see if the tech-

niques support participants in finding and comparing void-

like (non-existent or low density) features in a scatterplot.

Overall, we can see that both interaction techniques im-

proved participants’ performance compared to the baseline.

If we look at different conditions we can see that both tech-

niques are actually complementary, especially in conditions

that were considered as more difficult: High Density (When

the density of the target is not equal to 0) and Low Diff. Den.

(when the difference between the target and the distractors
is low). In the first one, the difficulty was due to a lower

difference of density between the noise and the target. The

Highlight-Plane, by increasing the size of the points, actu-

ally increases this difference and makes the task easier. A

challenge with the Highlight-Plane technique occurs when
trying to compare more than three features that do not lie

on a plane, i.e. when it is not possible to intersect the plane

with all features at once. By contrast, the Scaptics technique
allows only one feature to be inspected at a time.

TaskClusters. The purpose of this task was to see how the

techniques help participants in finding and comparing dense

clusters in a scatterplot. The only general result for this task

is that the Highlight-Plane is slower than Scaptics and Visual

only. If we look at accuracy, we can see that the performance

of Scaptics is consistently good across conditions (except for

the High Diff. Den. where accuracy was high for all tech-

niques). A possible explanation is that this task was easier

visually. As reported, participants used the visual density

in the easy cases (which is faster) and used Scaptics when
it was not enough (like in the Low Diff. Den. condition).

As Scaptics is designed to differentiate close densities, it led

to high accuracy. This strategy was less popular with the

Highlight-Plane, maybe because participants preferred using

directly 2D visual comparison. This led to a better accuracy

than Visual only for very dense clusters. This could be due

to the fact that contrary to the previous task, the Highlight-
Plane, by highlighting only a subset of points of the cluster,

reduces the visual density which facilitates comparison in

accordance with Weber’s law [21]). On the contrary, with

low density clusters, a condition which was considered as

easy with the Visual only, the performance of the Highlight-
Plane worsens significantly. Such effects should be studied

in the future.

To conclude, for finding and comparing void-like spatial

features, the use of interaction techniques is beneficial, and

Scaptics and Highlight-Plane each have their own benefits,

which could be complementary. Regarding clusters, Scaptics
is in general faster and more accurate than Highlight-Plane.

This confirms previous work about vibro-tactile feedback

from studies with similar setup but different tasks like ex-

ploring basic volumes [33] or identify areas of interest [38].

It is worth saying that the good performance of Scaptics
is partially due to the stepped vibration-density mapping

which ensured that the difference in vibration intensity be-

tween target and distractors was always noticable. However,

participants reported that their confidence was negatively

affected when they visually perceived different densities in

nearby regions, but could not feel the difference if the density

mapping fell within the same vibration intensity band. The

design and use of such mappings should be investigated.

7 CONCLUSION AND FUTUREWORK
In this paper we contributed two novel techniques to ex-

plore obscured features in 3D scatterplots in VR: Scaptics,
that uses vibrotactile feedback on a tracked controller; and

Highlight-Plane, a redesign of cutting planes for 3D scatter-

plots. Our study assessed the performance of each technique

against a non interactive baseline. We find that both interac-

tive techniques, Scaptics and Highlight-Plane, improve user

performance for identifying void regions. Scaptics afforded

better performance for the identification of clusters.

The designs of our techniques would need to be refined,

but we believe that this first study showed the promising

potential in the use of VR controllers and additional sen-

sory channel for the exploration of 3D abstract information.

Furthermore, while further study is required, our results po-

tentially have application in other immersive environments,

for example in mixed reality—to support situated analytics

scenarios [19]—or touch screens with vibrotactile feedback.

Our designs and preliminary results are encouraging for

further investigation of interactive techniques and techniques

that employ additional sensory channels to support explo-

ration of 3D scatterplots in immersive VR environments. In

futurework, wewant to further explore interactions based on

vibrotactile feedback on controllers (e.g. explore particular

vibrating patterns to encode spatial information). Moreover,

we plan to explore other 3D volume generation techniques

that can be employed to find more relevant spatial features

in 3D scatterplots (e.g. convolutions on the KDE volume to

encode cluster edges). Cutting planes for 3D scatterplots

also need more attention as they can be a great means to

explore dense 3D scatterplots. In particular we hope to ex-

plore the combination of Scaptics and the Highlight-Plane to
take benefits of both. Finally, other sensory channels could

be investigated, such as sonification [2].
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