A. Holmgren and M. Björnstedt, Thioredoxin and thioredoxin reductase, Methods Enzymol, vol.252, pp.199-208, 1995.

A. Rietsch and J. Beckwith, The genetics of disulfide bond metabolism, Annu. Rev. Genet, vol.32, pp.163-184, 1998.

J. L. Martin, Thioredoxin: a fold for all reasons, Structure, vol.3, pp.245-250, 1995.

E. Mössner, M. Huber-wunderlich, and R. Glockshuber, Characterization of Escherichia coli thioredoxin variants mimicking the activesites of other thiol/disulfide oxidoreductases, Protein Sci, vol.7, pp.1233-1244, 1998.

F. Aslund, K. D. Berndt, and A. Holmgren, Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria, J. Biol. Chem, vol.272, pp.30780-30786, 1997.

J. E. Chambers, T. J. Tavender, O. B. Oka, S. Warwood, D. Knight et al., The reduction potential of the active site disulfides of human protein disulfide isomerase limits oxidation of the enzyme by Ero1, J. Biol. Chem, vol.285, pp.29200-29207, 2010.

E. A. Kersteen and R. T. Raines, Catalysis of protein folding by protein disulfide isomerase and small-molecule mimics, Antioxid. Redox Signal, vol.5, pp.413-424, 2003.

S. Quan, I. Schneider, J. Pan, A. Von-hacht, and J. C. Bardwell, The CXXC motif is more than a redox rheostat, J. Biol. Chem, vol.282, pp.28823-28833, 2007.

G. Capitani, R. Rossmann, D. F. Sargent, M. G. Grütter, T. J. Richmond et al., Structure of the soluble domain of a membraneanchored thioredoxin-like protein from Bradyrhizobium japonicum reveals unusual properties, J. Mol. Biol, vol.311, pp.1037-1048, 2001.

A. Holmgren, Annu. Rev. Biochem, vol.54, pp.237-271, 1985.

M. F. Jeng, A. Holmgren, D. , and H. J. , Proton sharing between cysteine thiols in Escherichia coli thioredoxin: implications for the mechanism of protein disulfide reduction, Biochemistry, vol.34, pp.10101-10105, 1995.

A. T. Carvalho, M. Swart, J. N. Van-stralen, P. A. Fernandes, M. J. Ramos et al., Mechanism of thioredoxin-catalyzed disulfide reduction: activation of the buried thiol and role of the variable activesite residues, J. Phys. Chem. B, vol.112, pp.2511-2523, 2008.

G. Roos, N. Foloppe, K. Van-laer, L. Wyns, L. Nilsson et al., How thioredoxin dissociates its mixed disulfide, PLoS Comput. Biol, vol.5, p.1000461, 2009.

L. Pieulle, P. Stocker, M. Vinay, M. Nouailler, N. Vita et al., Study of the thiol/ disulfide redox systems of the anaerobe Desulfovibrio vulgaris points out pyruvate:ferredoxin oxidoreductase as a new target for thioredoxin 1, J. Biol. Chem, vol.286, pp.7812-7821, 2011.
URL : https://hal.archives-ouvertes.fr/hal-01460337

E. B. Garcin, O. Bornet, L. Pieulle, F. Guerlesquin, and C. Sebban-kreuzer, 2010) 1 H, 13 C and 15 N backbone and side-chain chemical shift assignments for oxidized and reduced desulfothioredoxin, Biomol. NMR Assign, vol.4, pp.135-137

A. Holmgren, Thioredoxin catalyzes the reduction of insulin disulfides by dithiothreitol and dihydrolipoamide, J. Biol. Chem, vol.254, pp.9627-9632, 1979.

D. A. Hillson, N. Lambert, and R. B. Freedman, Formation and isomerization of disulfide bonds in proteins: protein disulfide-isomerase, Methods Enzymol, vol.107, pp.281-294, 1984.

I. Bertini, I. C. Felli, L. Gonnelli, R. Pierattelli, Z. Spyranti et al., Mapping protein-protein interaction by 13 C-detected heteronuclear NMR spectroscopy, J. Biomol. NMR, vol.36, pp.111-122, 2006.

M. F. Jeng, D. , and H. J. , Direct measurement of the aspartic acid 26 pKa for reduced Escherichia coli thioredoxin by 13C NMR, Biochemistry, vol.35, pp.1-6, 1996.

R. L. Keller, Computer aided resonance assignment tutorial. Cantina, 2004.

G. Cornilescu, F. Delaglio, and A. Bax, Protein backbone angle restraints from searching a database for chemical shift and sequence homology, J. Biomol. NMR, vol.13, pp.289-302, 1999.

S. R. Shouldice, S. H. Cho, D. Boyd, B. Heras, M. Eser et al., In vivo oxidative protein folding can be facilitated by oxidation-reduction cycling, Mol. Microbiol, vol.75, pp.13-28, 2010.

Y. Xu, A. Yasin, R. Tang, J. M. Scharer, M. Moo-young et al., Heterologous expression of lipase in Escherichia coli is limited by folding and disulfide bond formation, Appl. Microbiol. Biotechnol, vol.81, pp.79-87, 2008.

F. C. Rinaldi, A. N. Meza, and B. G. Guimarães, Structural and biochemical characterization of Xylella fastidiosa DsbA family members: new insights into the enzyme-substrate interaction, Biochemistry, vol.48, pp.3508-3518, 2009.

G. Krause, J. Lundström, J. L. Barea, C. Pueyo-de-la-cuesta, and A. Holmgren, Mimicking the active site of protein disulfide-isomerase by substitution of proline 34 in Escherichia coli thioredoxin, J. Biol. Chem, vol.266, pp.9494-9500, 1991.

M. Wunderlich and R. Glockshuber, Redox properties of protein disulfide isomerase (DsbA) from Escherichia coli, Protein Sci, vol.2, pp.717-726, 1993.

J. Lundström and A. Holmgren, Determination of the reductionoxidation potential of the thioredoxin-like domains of protein disulfideisomerase from the equilibrium with glutathione and thioredoxin, Biochemistry, vol.32, pp.6649-6655, 1993.

U. Grauschopf, J. R. Winther, P. Korber, T. Zander, P. Dallinger et al., Why is DsbA such an oxidizing disulfide catalyst?, Cell, vol.83, pp.947-955, 1995.

R. Ladenstein, R. , and B. , Protein disulfides and protein disulfide oxidoreductases in hyperthermophiles, FEBS J, vol.273, pp.4170-4185, 2006.

A. P. Fernandes and A. Holmgren, Glutaredoxins: glutathione-dependent redox enzymes with functions far beyond a simple thioredoxin backup system, Antioxid. Redox. Signal, vol.6, pp.63-74, 2004.

D. Huber, M. I. Cha, L. Debarbieux, A. G. Planson, N. Cruz et al., A selection for mutants that interfere with folding of Escherichia coli thioredoxin-1 in vivo, Proc. Natl. Acad. Sci. U.S.A, vol.102, pp.18872-18877, 2005.
URL : https://hal.archives-ouvertes.fr/pasteur-00553620

P. T. Chivers and R. T. Raines, General acid/base catalysis in the active site of Escherichia coli thioredoxin, Biochemistry, vol.36, pp.15810-15816, 1997.

A. T. Carvalho, P. A. Fernandes, and M. J. Ramos, Determination of the DeltapKa between the active site cysteines of thioredoxin and DsbA, J. Comput. Chem, vol.27, pp.966-975, 2006.

H. Kadokura and J. Beckwith, Mechanisms of oxidative protein folding in the bacterial cell envelope, Antioxid. Redox Signal, vol.13, pp.1231-1246, 2010.

L. W. Guddat, J. C. Bardwell, R. Glockshuber, M. Huber-wunderlich, T. Zander et al., Structural analysis of three His32 mutants of DsbA: support for an electrostatic role of His32 in DsbA stability, Protein Sci, vol.6, pp.1893-1900, 1997.

F. Guerlesquin and C. Sebban-kreuzer,

B. Edwige, O. Garcin, L. Bornet, N. Elantak, L. Vita et al., Structural and Mechanistic Insights into Unusual Thiol Disulfide Oxidoreductase, vol.287, pp.1688-1697, 2011.

, J. Biol. Chem

, Access the most updated version of this article at doi: Alerts