P. M. Rudd, T. Elliott, P. Cresswell, I. A. Wilson, and R. A. Dwek, Glycosylation and the immune system, Science, vol.291, pp.2370-2376, 2001.

C. R. Bertozzi and L. L. Kiessling, Chemical glycobiology. Science, vol.291, pp.2357-2364, 2001.

R. C. Hughes, Galectins as modulators of cell adhesion, Biochimie, vol.83, pp.667-676, 2001.

T. K. Dam, R. Roy, S. K. Das, S. Oscarson, and C. F. Brewer, Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin. Thermodynamic analysis of the 'multivalency effect, J. Biol. Chem, vol.275, pp.14223-14230, 2000.

D. Gupta, H. Kaltner, X. Dong, H. J. Gabius, and C. F. Brewer, Comparative cross-linking activities of lactose-specific plant and animal lectins and a natural lactose-binding immunoglobulin G fraction from human serum with asialofetuin, Glycobiology, vol.6, pp.843-849, 1996.

B. E. Collins and J. C. Paulson, Cell surface biology mediated by low affinity multivalent protein-glycan interactions, Curr. Opin. Chem. Biol, vol.8, pp.617-625, 2004.
DOI : 10.1016/j.cbpa.2004.10.004

C. F. Brewer, M. C. Miceli, and L. G. Baum, Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions, Curr. Opin. Struct. Biol, vol.12, pp.616-623, 2002.
DOI : 10.1016/s0959-440x(02)00364-0

J. Hirabayashi, Oligosaccharide specificity of galectins: a search by frontal affinity chromatography, Biochim. Biophys. Acta, vol.1572, pp.232-254, 2002.

S. K. Patnaik, Complex N-glycans are the major ligands for galectin-1,-3, and-8 on Chinese hamster ovary cells, Glycobiology, vol.16, pp.305-317, 2006.

S. H. Barondes, D. N. Cooper, M. A. Gitt, H. Leffler, and . Galectins, Structure and function of a large family of animal lectins, J. Biol. Chem, vol.269, pp.20807-20810, 1994.

K. Scott and C. Weinberg, Galectin-1: a bifunctional regulator of cellular proliferation, Glycoconj. J, vol.19, pp.467-477, 2004.

J. W. Park, P. G. Voss, S. Grabski, J. L. Wang, and R. J. Patterson, Association of galectin-1 and galectin-3 with Gemin4 in complexes containing the SMN protein, Nucleic Acids Res, vol.29, pp.3595-3602, 2001.

N. L. Perillo, K. E. Pace, J. J. Seilhamer, and L. G. Baum, Apoptosis of T cells mediated by galectin-1, Nature, vol.378, pp.736-739, 1995.

F. T. Liu and G. A. Rabinovich, Galectins as modulators of tumour progression, Nat. Rev. Cancer, vol.5, pp.29-41, 2005.
DOI : 10.1038/nrc1527

I. Camby, L. Mercier, M. Lefranc, F. Kiss, and R. , Galectin-1: a small protein with major functions, Glycobiology, vol.16, pp.137-157, 2006.
DOI : 10.1093/glycob/cwl025

URL : https://academic.oup.com/glycob/article-pdf/16/11/137R/2774777/cwl025.pdf

H. Leffler, S. Carlsson, M. Hedlund, Y. Qian, and F. Poirier, Introduction to galectins, Glycoconj. J, vol.19, pp.433-440, 2004.
DOI : 10.1023/b:glyc.0000014072.34840.04

M. F. López-lucendo, Growth-regulatory human galectin-1: crystallographic characterisation of the structural changes induced by singlesite mutations and their impact on the thermodynamics of ligand binding, J. Mol. Biol, vol.343, pp.957-970, 2004.

L. Gauthier, B. Rossi, F. Roux, E. Termine, and C. Schiff, Galectin-1 is a stromal cell ligand of the pre-B cell receptor (BCR) implicated in synapse formation between pre-B and stromal cells and in pre-BCR triggering, Proc. Natl Acad. Sci. USA, vol.99, pp.13014-13019, 2002.

B. Rossi, M. Espeli, C. Schiff, and L. Gauthier, Clustering of pre-B cell integrins induces galectin-1-dependent pre-B cell receptor relocalization and activation, J. Immunol, vol.177, pp.796-803, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00085653

M. Espeli, S. Mancini, C. Breton, F. Poirier, and C. Schiff, Impaired B-cell development at the pre-BII-cell stage in galectin-1-deficient mice due to inefficient pre-BII/stromal cell interactions, Blood, vol.113, pp.5878-5886, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00385032

F. Mourcin, Galectin-1-expressing stromal cells constitute a specific niche for pre-BII cell development in mouse bone marrow, Blood, vol.117, pp.6552-6561, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00611505

C. C. Goodnow, J. Sprent, . Fazekas-de-st, B. Groth, and C. G. Vinuesa, Cellular and genetic mechanisms of self tolerance and autoimmunity, Nature, vol.435, pp.590-597, 2005.

D. Kitamura, J. Roes, R. Kühn, and K. Rajewsky, A B cell-deficient mouse by targeted disruption of the membrane exon of the immunoglobulin mu chain gene, Nature, vol.350, pp.423-426, 1991.

K. Ohnishi and F. Melchers, The nonimmunoglobulin portion of lambda5 mediates cell-autonomous pre-B cell receptor signaling, Nat. Immunol, vol.4, pp.849-856, 2003.

M. Knoll, The non-Ig parts of the VpreB and l5 proteins of the surrogate light chain play opposite roles in the surface representation of the precursor B cell receptor, J. Immunol, vol.188, pp.6010-6017, 2012.

L. Elantak, Structural basis for galectin-1-dependent pre-B cell receptor (Pre-BCR) activation, J. Biol. Chem, vol.287, pp.44703-44713, 2012.
URL : https://hal.archives-ouvertes.fr/hal-02018151

E. Salomonsson, V. L. Thijssen, A. W. Griffioen, U. J. Nilsson, and H. Leffler, The anti-angiogenic peptide anginex greatly enhances galectin-1 binding affinity for glycoproteins, J. Biol. Chem, vol.286, pp.13801-13804, 2011.

A. W. Griffioen, Anginex, a designed peptide that inhibits angiogenesis, Biochem. J, vol.354, pp.233-242, 2001.

D. W. Van-der-schaft, The designer anti-angiogenic peptide anginex targets tumor endothelial cells and inhibits tumor growth in animal models, FASEB J, vol.16, 1991.

S. R. Stowell, Galectin-1,-2, and-3 exhibit differential recognition of sialylated glycans and blood group antigens, J. Biol. Chem, vol.283, pp.10109-10123, 2008.

S. R. Stowell, Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides, Glycobiology, vol.14, pp.157-167, 2004.

N. Ahmad, H. J. Gabius, S. Sabesan, S. Oscarson, and C. F. Brewer, Thermodynamic binding studies of bivalent oligosaccharides to galectin-1, galectin-3, and the carbohydrate recognition domain of galectin-3, Glycobiology, vol.14, pp.817-825, 2004.

G. Gupta, A. Surolia, and S. G. Sampathkumar, Lectin microarrays for glycomic analysis, OMICS, vol.14, pp.419-436, 2010.

L. Krishnamoorthy and L. K. Mahal, Glycomic analysis: an array of technologies, ACS Chem. Biol, vol.4, pp.715-732, 2009.

L. Krishnamoorthy, J. J. Bess, A. Preston, K. Nagashima, and L. Mahal, HIV-1 and microvesicles from T cells share a common glycome, arguing for a common origin, Nat. Chem. Biol, vol.5, pp.244-250, 2009.

K. L. Hsu, K. T. Pilobello, and L. K. Mahal, Analyzing the dynamic bacterial glycome with a lectin microarray approach, Nat. Chem. Biol, vol.2, pp.153-157, 2006.

K. T. Pilobello, D. E. Slawek, and L. K. Mahal, A ratiometric lectin microarray approach to analysis of the dynamic mammalian glycome, Proc. Natl Acad. Sci. USA, vol.104, pp.11534-11539, 2007.

A. Kuno, A. Matsuda, Y. Ikehara, H. Narimatsu, and J. Hirabayashi, Differential glycan profiling by lectin microarray targeting tissue specimens, Methods Enzymol, vol.478, pp.165-179, 2010.

P. Agrawal, D. Smith, W. Eng, R. Cummings, and L. Mahal, Large scale glycan array analysis of commercial lectins and antibodies: 86 lectins and 15 antibodies, Glycobiology, vol.22, pp.1646-1646, 2012.

I. Nesmelova, Lactose binding to galectin-1 modulates structural dynamics, increases conformational entropy, and occurs with apparent negative cooperativity, J. Mol. Biol, vol.397, pp.1209-1230, 2010.

M. Mayer and B. Meyer, Characterization of ligand binding by saturation transfer difference NMR spectroscopy, Angew. Chem. Int. Ed, vol.38, pp.1784-1788, 1999.

G. A. Rabinovich, M. A. Toscano, S. S. Jackson, and G. R. Vasta, Functions of cell surface galectin-glycoprotein lattices, Curr. Opin. Struct. Biol, vol.17, pp.513-520, 2007.

R. P. Dings, Antitumor agent calixarene 0118 targets human galectin-1 as an allosteric inhibitor of carbohydrate binding, J. Med. Chem, vol.55, pp.5121-5129, 2012.

R. P. Dings, Design of nonpeptidic topomimetics of antiangiogenic proteins with antitumor activities, J. Natl Cancer Inst, vol.98, pp.932-936, 2006.

T. Nagasawa, Microenvironmental niches in the bone marrow required for B-cell development, Nat. Rev. Immunol, vol.6, pp.107-116, 2006.

G. A. Rabinovich and M. Vidal, Galectins and microenvironmental niches during hematopoiesis, Curr. Opin. Hematol, vol.18, pp.443-451, 2011.

J. C. Paulson, O. Blixt, and B. E. Collins, Sweet spots in functional glycomics, Nat. Chem. Biol, vol.2, pp.238-248, 2006.

L. Ingrassia, Anti-galectin compounds as potential anti-cancer drugs, Curr. Med. Chem, vol.13, pp.3513-3527, 2006.

G. A. Rabinovich, Synthetic lactulose amines: novel class of anticancer agents that induce tumor-cell apoptosis and inhibit galectin-mediated homotypic cell aggregation and endothelial cell morphogenesis, Glycobiology, vol.16, pp.210-220, 2006.

K. Ito and S. J. Ralph, Inhibiting galectin-1 reduces murine lung metastasis with increased CD4( þ ) and CD8 ( þ ) T cells and reduced cancer cell adherence, Clin. Exp. Metastasis, vol.29, pp.561-572, 2012.

S. Grzesiek, The solution structure of HIV-1 Nef reveals an unexpected fold and permits delineation of the binding surface for the SH3 domain of Hck tyrosine protein kinase, Nat. Struct. Biol, vol.3, pp.340-345, 1996.

H. Kodama, M. Nose, S. Niida, and S. Nishikawa, Involvement of the c-kit receptor in the adhesion of hematopoietic stem cells to stromal cells, Exp. Hematol, vol.22, pp.979-984, 1994.

R. Hurwitz, Characterization of a leukemic cell line of the pre-B phenotype, Int. J. Cancer, vol.23, pp.174-180, 1979.

K. T. Pilobello, P. Agrawal, R. Rouse, and L. K. Mahal, Advances in lectin microarray technology: optimized protocols for piezoelectric print conditions, Curr. Protoc. Chem. Biol, vol.5, pp.1-23, 2013.