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Résumé — Régimes chaotiques dans la dispersion de solutés sous contrôle gravitaire, en réseaux
poreux modèles — Le souci d’examiner les effets gravitaires sur la dispersion de solutés à l’échelle d’un
réseau poreux conduit à réaliser des expériences de transport de soluté à partir d’une source unique, au
sein de réseaux confectionnés dans du verre. Ces réseaux ont des morphologies et des degrés
d’hétérogénéité, à l’échelle du pore, qui sont variés. Leur conception permet une visualisation des
expériences de transport. Une solution aqueuse faiblement concentrée s’écoule en régime permanent à
travers le réseau, et une solution plus concentrée en soluté (et donc relativement plus dense) est injectée à
débit constant et très faible, au moyen d’une buse disposée à l’intérieur du système. L’évolution en
régime transitoire des concentrations, en diverses zones du milieu poreux, est enregistrée à diverses
échelles par un dispositif vidéo et un analyseur qui transforme des intensités lumineuses en
concentrations. En l’absence d’effet gravitaire, le régime permanent de dispersion varie avec le nombre
de Péclet (Pe). Les dispersivités longitudinale et transversale sont estimées en calant des solutions
analytiques approchées de l’équation d’advection-dispersion sur les points expérimentaux. Sous l’effet de
la gravité, de multiples régimes permanents de dispersion peuvent s’établir pour chaque valeur de Pe, et
des lobes instables de concentration en soluté sont observés à mesure que le flux descendant de solution
plus dense est contrebalancé par le flux ascendant de liquide plus léger. Les régimes en question peuvent
être périodiques, quasi périodiques, ou chaotiques, selon la valeur des paramètres caractéristiques du
sytème. La nature des fluctuations transitoires autour de la concentration moyenne en soluté est analysée
en mesurant comment leur période est distribuée, et en identifiant les fréquences fondamentales du
spectre de puissance après transformation de Fourier. On s’aperçoit que les zones de mélange tendent à se
stabiliser lorsque Pe augmente, et que les régimes périodiques ou quasi périodiques sont favorisés aux
fortes valeurs de Pe et aux faibles niveaux d’hétérogénéité à l’échelle du pore, tandis que l’inverse est
observé pour les régimes chaotiques.

Abstract — Buoyancy-Driven Chaotic Regimes During Solute Dispersion in Pore Networks — In an
attempt to investigate gravity effects on solute dispersion at the scale of a pore network, single source-
solute transport visualization experiments are performed on glass-etched pore networks of varying
morphology and degree of pore-scale heterogeneities. The (lighter) low solute concentration aqueous
solution flows steadily through the porous medium and the (heavier) high solute concentration solution is
injected at a very low and constant flow rate through an inner port. The transient evolution of the solute
concentration distribution over various regions of the pore network is determined at different scales by
capturing and video-recording snapshots of the dispersion on PC, measuring automatically the spatial
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NOTATION

aL longitudinal dispersivity
aT transverse dispersivity
b diameter of solute source
C solute concentration
C0 solute concentration in feed solution
Ci solute concentration in source solution
D dispersion tensor
Deff solute/solvent effective diffusion coefficient in the

porous medium
Dij component of dispersion tensor
Dm solute/solvent molecular diffusion coefficient
DL longitudinal dispersion coefficient
DT transverse dispersion coefficient
dp pore depth
ds distance of solute source from the upper lateral

boundary
F flatness of the signal probability distribution
f scalar function of the spatial variation of permeability
Ff formation factor
Fm solute flux
g gravity acceleration vector
k porous medium permeability
lp pore length
P fluid pressure
Pe Peclet number
Ra Rayleigh number
Ra1 Rayleigh number for β(Ci – C0) = 1.0
Ram modified Rayleigh number
S skewness of the signal probability distribution
t time
u pore (intrinsic) flow velocity vector
ui component of flow velocity along i direction

u0 asymptotic constant pore velocity
W width of porous medium
wp pore width
x horizontal coordinate
y vertical coordinate
z transient signal
〈z〉 time averaged value of the signal.

Greek Letters

β coefficient of (mass) volumetric expansion
∆τ dimensionless time difference
ζ dimensionless vertical coordinate
µ solution viscosity
ξ dimensionless horizontal coordinate
ρ solution density
ρ0 solution density at concentration C0
σd standard deviation of the pore depth distribution
σw standard deviation of the pore width distribution
στd standard deviation of the distribution of the periods of

solute concentration fluctuations
τ dimensionless time
τd dimensionless period of solute concentration fluc-

tuations
φ volumetric porosity
φa areal porosity
ψ stream function.

Symbols

∇ gradient vector
∇⋅ divergence
* dimensionless variable
〈〉 mean value.
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variation of the color intensity of the solution, and transforming the color intensities to solute
concentrations. Without the action of gravity, the steady-state dispersion regime changes with Peclet (Pe)
number, and the longitudinal and transverse dispersivities are estimated by fitting the experimental
datasets to approximate analytic solutions of the advection-dispersion equation. Under the action of
gravity, multiple of steady-state solute dispersion regimes is developed at each Pe value, and lobe-shaped
instabilities of the solute concentration are observed across the pore network, as the downward flow of
the denser (higher solute concentration) fluid is counterbalanced by the upward flow of the less dense
(lower solute concentration) fluid. The steady-state dispersion regimes may be periodic, quasi-periodic
or chaotic depending on the system parameters. The nature of the transient fluctuations of the average
solute concentration is analyzed by identifying the periodicity of the fluctuations, determining the
autocorrelation function and the statistical moments of the time series, and inspecting the FFT (fast
Fourier transform) power spectra. It is found that the mixing zone tends to be stabilized at higher values
of the Peclet (Pe) number. Periodic and quasi-periodic solute dispersion regimes are favored by
relatively high Pe values and low degree of pore scale heterogeneities, whereas chaotic regimes are
favored by low Pe values and high degree of pore-scale heterogeneities. Some ambiguity concerning the
classification of the observed solute dispersion regimes is due to the fact that the short length of the time
series does not allow the processing of datasets with the nonlinear methods of state-space analysis.
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INTRODUCTION

Over the past years, there has been considerable interest to
study the migration of solute in groundwater. Many of the
ongoing environmental problems in groundwater involve
issues including groundwater contamination, seawater
intrusion in coastal aquifers, radioactive waste disposal,
geothermal energy development, groundwater-surface water
interactions, and subsurface storage of materials, fluids and
energy (Simmons et al., 2001). 

Field and laboratory studies have shown that fluid density
gradients caused by variations in solute concentration and/or
temperature can play an important role in solute transport in
groundwater (Liu and Dane, 1997; Simmons and Narayan,
1997; van Duijn et al., 1998). When the density of the
invading plume is greater than that of the ambient
groundwater, density driven flow may result in lobe-shaped
instabilities and fingering. Density stratification, where a
dense fluid overlies a less dense one, is the main reason of
such instabilities (free convection), which have been studied
for almost a century (Turner, 1973; Drazin, 2002). In
essence, the buoyancy-driven free convection enhances
the hydrodynamic mixing of plume with groundwater by
decreasing the time-scales of mixing, increasing both the
total quantity of transferred solute, and the dimensions of the
mixing zone (Schincariol, 1998).  

In several cases, dense reactive and non-reactive solutes
may migrate through groundwater. Examples are:
– uncontrolled landfills;
– saltwater intrusion;
– toxic chemical disposal sites;
– CO2 storage in aquifers.

In these cases, instabilities may arise from the coupling of
chemical reactions with density-driven convective flow
(Freedman and Ibaraki, 2002). Results show that the
instability development is sensitive to the initial perturbation
caused by the density difference between the solute plume
and groundwater. If the initial perturbation is quite large then
it acts as a “trigger” in the flow system leading to the
development of instabilities across a planar reaction front.
When permeability changes occur, due to dissolution
reactions, a density-dependent reactive feedback loop may be
created (Freedman and Ibaraki, 2002). In real porous media,
different styles of heterogeneity may be considered ranging
from continuously trending heterogeneity (where the per-
meability fluctuates randomly at the scale of investigation) to
discretely fractured geologic media. Results indicate that the
onset of instabilities and their subsequent growth and decay
are related to the structure and variance of the permeability
field (Schincariol, 1998). 

Most studies investigating buoyancy driven instabilities in
solute dispersion have been focused on transient (Simmons
et al., 2001) or free convective flows (Schoofs et al., 1999),
while multiple steady-state dispersion regimes that may arise

from the coupling of diffusion with forced and free
convective flows have been overlooked. The study of
asymptotic chaotic steady-state regimes is associated with
points of multiple bifurcation (Drazin, 2002). This is the
situation which occurs when a stable equilibrium loses
stability and transits to a new asymptotic state with a
complicated dynamics. The most classical problem
belonging to this category is the thermohaline convection in a
horizontal layer of incompressible fluid having fixed
temperatures and salt concentrations on its upper and lower
boundaries (Turner, 1973; Proctor and Weiss, 1990; Vadasz,
1999). The routes to chaos in a fluid saturated porous layer
heated from below (Schoofs et al., 1999; Bera and Khalili,
2002) along with the nature of chaotic flows induced by
thermo-chemical convection (Basu and Islam, 1996) have
been studied theoretically. In spite of the numerous efforts
that have been done to simulate numerically density-driven
instabilities (Diersch and Kolditz, 2002), a few experimental
datasets are available and most of them refer to large-scale
systems where the pore scale phenomena are overlooked.

In the present study, solute dispersion visualization
experiments are performed on glass-etched pore networks
where the gravity acts perpendicular to the main flow
direction of a low solute concentration solution. A high
solute concentration solution is injected at low flow rate
through a hole (Fig. 2, single source). The buoyancy-driven
multiple steady-state solute dispersion regimes which are
observed in three model pore networks of different
morphology, are identified and quantified at various Peclet
numbers. The periodic, quasi-periodic or chaotic nature of
the transient fluctuations of the average solute concentration
of a small region of the pore network is examined by
analyzing the dataset in both time and frequency FFT (Fast
Fourier Transform) domains. 

1 MATERIALS AND METHODS

Photolithography was used to fabricate artificial large 2D
pore networks (Tsakiroglou et al., 2003) by etching mirror
image patterns (Fig. 1) on two glass plates with hydrofluoric
acid, and sintering the prealigned etched plates in a
programmable muffle furnace (the sintering is carried out by
increasing the temperature in a stepwise fashion up to a
maximum value of 650°C). The selected patterns of pore
networks (Fig. 1) represent homogeneous (M-1, S-1) and
heterogeneous (D-1) porous media having high (M-1, D-1)
or low (S-1, D-1) pore density (porosity), and low (M-1),
moderate (S-1) and high (D-1) variability of the pore sizes
(Table 1). The pore cross-sectional shape in these models is
lenticular (Tsakiroglou et al., 1997). The pore width distri-
bution (〈wp〉, σw) was determined by estimating the relative
variation caused on the pore sizes of the patterns (Fig. 1) by
the etching and sintering processes, whereas the pore depth
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distribution (〈dp, σd〉) was estimated by matching the calcu-
lated value of the absolute permeability to the experimentally
measured one (Table 1). The model pore network D-1 origi-
nates from the superposition of the network S-1 on a dense
network of thin and short pores of identical size (Table 1,
Fig. 1). For the calculation of the permeability, a hypothetical
cross-sectional area equal to Wlp was used in Darcy law. In
this manner, although the models S-1 and D-1 have larger
pore dimensions than those of model M-1, their permeabilities
appear smaller than that of model M-1 (Table 1).

An experimental apparatus was constructed to perform
visualization experiments of multiphase flow on planar pore
networks (Theodoropoulou et al., 2003). The entire system
was placed in a cooled incubator (Fig. 2a) in order to
maintain the temperature constant and to avoid any undesired
changes in fluid properties. Details about the type of fluids
used in experiments are reported elsewhere (Theodoropoulou
et al., 2003). The fluids were injected into the pore network
through four inlet ports and expelled from it through four
outlet ports. In addition, four holes were drilled on the centre
of the network that served either as solute sources or pressure
taps (Fig. 2b). Two syringe pumps were used for the
injection of fluids. A CCD video-camera, connected to an
image grabber built-in PC, was used to capture images and
store them directly on the hard-disk of the PC (Fig. 2a).

A technique was developed to measure the transient
changes of the solute concentration distribution throughout
the pore network (Theodoropoulou et al., 2003). The
technique is based on the detection of the color changes
caused by the mixing of a dilute HCl (C0 = 0.03 kmol/m3)
with a dense HCl (Ci = 0.41 kmol/m3) solution. A mixture of
organic color indicators was selected after testing the
sensitivity of the color variation with pH (Theodoropoulou
et al., 2003). As the pH varies in the range 1-3, structural
changes caused on the chromophore groups of indicators
affect drastically the absorption intensity of each colour. The 

Figure 1

Patterns of the three model pore networks (see Table 1):
a) M-1 (W = 0.104 m; b) S-1 (W = 0.113 m); c) D-1
(W = 0.113 m).

b)

a)

c)

w

w

w
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TABLE 1

Parameters of model pore networks

Topology Simple net - Simple net - Dual network -Square lattice

Square lattice Square lattice Large pores Fine pores

Parameters Model M-1 Model S-1 Model D-1

W (m) 0.104 0.113 0.113

〈wp〉 (µm) 470 1220 1226 160

σw (µm) 168 325 337 6.0

dp (µm) 126 172 162 100

σd (µm) 20 40 41 20

lp (µm) 1365 5560 5560 1390

b (m) 0.005 0.005 0.005

k (Da) 20.26 8.72 7.85

ϕa 0.57 0.39 0.524

ϕ 0.04 0.0095 0.0108
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a)

b)

c)
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Figure 2

a) schematic diagram of the experimental set-up; b) detailed representation of the flow conditions in model pore network (the lighter the colour
the higher the solute concentration); c) pore width and length.
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color of indicators, contained in traces in both solutions, was
so sensitive to the pH of the solution that even a small change
in solute concentration caused detectable changes in the color
intensity of the solution. Regarding the resolution of the
technique, it’s worth mentioning that eighteen colors are
distinguishable within the full range of solute concentrations
used in the experiments. An efficient algorithm was
developed in the environment of Scan Pro 5.0 (SPSS)
(Theodoropoulou et al., 2003) for the automatic identi-
fication of the pore space and solid matrix, recognition of the
boundaries of the unit cells (Fig. 2c), and measurement of the
intrinsic average colour intensity of each unit cell over
various regions of the pore network. With the aid of
calibration curves constructed from standard solutions,
the colour intensities were converted to solute (HCl)
concentrations (Theodoropoulou et al., 2003) .

The glass micromodel was rotated 90° from the horizontal
position so that the gravity acted perpendicular to the main
flow direction (Fig. 2b). Single source experiments were
performed on each micromodel (Fig. 1), where the dilute
HCl solution was injected at a constant flow rate, Q0, through
the four inlet ports of the porous medium, and the dense HCl
solution was injected through a central hole (source), at a
flow rate Qi = 0.05 Q0 (Fig. 2b). Four tubes connected to the
outlet ports were kept below the free liquid surface in waste
storage tank to avoid, at equilibrium, the vertical component
of flow velocity. Snap-shots of the global and local solute
dispersion regimes were captured at various time intervals,
downstream from the source, and were recorded on the hard-
disk of the PC for further analysis (Fig. 2b). The transient
variation of the spatial distribution of the solute concentration
over various regions of the pore network was determined
using image analysis technique based on the recorded data.

2 SOLUTE DISPERSION EQUATIONS 

The steady flow of a liquid of variable density ρ through a
porous medium is described by the continuity equation:

(1)

When the density variation is quite small, the variations
of the thermodynamic properties (e.g. density, viscosity,
thermal diffusivity, specific heat, and molecular diffusion
coefficient) of a fluid are small and the fluid can be regarded
as incompressible and can be approximated by Boussinesq
equation (Drazin, 2002). The density is assumed independent
of pressure and is coupled with the solute concentration C
through the linearized approximation (Simmons et al., 2001):

(2)

Using tabulated data correlating the HCl concentration
with the density of the corresponding aqueous solution (Perry

and Chilton, 1973), it was found that β = 0.018 m3/kmol,
whereas ρ varies from 997.7 kg/m3 to 1004.5 kg/m3 as
the HCl concentration changes from C0 = 0.03 kmol/m3 to
Ci = 0.41 kmol/m3. According to the Boussinesq approxi-
mation, the flow can be regarded as incompressible without
any significant loss of accuracy so that Equation (1) is
simplified to:

∇ · u = 0 (3)

Under the action of the gravity vector, g, Darcy law is
written:

(4)

where the scalar function f(x,y) represents the spatial
variation of the local permeability from its average value 〈k〉 .
The solute mass balance is expressed by the well-known
advection-dispersion equation (Whitaker, 1999):

(5)

where the components of D may commonly be expressed as
functions of both the flow field and longitudinal (aL) and
transverse (aT) dispersivities (Zhang et al., 1997; Bruggeman,
1999).

In dimensionless form, Equations (3) and (4) are written:

(6)

(7a)

(7b)

By introducing the dimensionless stream function Ψ*

defined by the relationships:

(8)

and eliminating the pressure between Equations (6) and (7),
we get:

(9)

In dimensionless form, the solute mass balance, Equa-
tion (5), is also written:
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The dimensionless variables and parameters involved in the
foregoing relations are defined by:

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

In addition, the components of the dimensionless
dispersion tensor may be given by (Bruggeman, 1999):

(20a)

(20b)

(20c)

From a macroscopic point of view, the parameters that
control the solute dispersion process are the Rayleigh
number, Ra, the Peclet number, Pe, and the dispersivities
aL and aT. The Rayleigh number, Ra, expresses the ratio of
the buoyancy-driven solute transport to the diffusive solute
transport and refers to a characteristic length scale of the
porous medium. For sufficiently high Ra numbers greater
than some critical value gravity-based instability will occur
in the form of waves in the boundary layer that develop into

fingers or plumes. This critical Ra value defines the transition
between dispersive/diffusive solute transport (at lower Ra
values) and convective transport by density-driven fingers (at
higher Ra values) (Simmons et al., 2001).  For a planar 2-D
system, like the glass micro-models used here, the values of
〈k〉 and φ depend on the selected reference length along the
third direction. The usage of a modified Rayleigh number
defined by:

(21)

is preferable. 

In the present work, no systematic attempt is done to
examine experimentally the effect of Ram on the solute
dispersion regime. Neither the properties of the model porous
medium (〈k〉 , W, φ) nor the properties of the fluid system
(ρ, β, Ci – C0, Dm) could change in a wide range of parameter
values. This is due to inherent limitations of the glass-etching
technique (the depth of etched pores ranges from 100 to
200 µm), and restrictions to the solute type (acid) and
concentrations used (above a relatively small HCl concen-
tration, no color intensity changes are visible).

3 TIME SERIES ANALYSIS

An acceptable definition of a chaotic concentration field can
be related to the value of the dimension of the chaotic
attractor. If the dimension is much greater than unity then the
concentration field is chaotic as defined by Guckenheimer
and Holmes (1986). In order to determine the dimension of
the attractor, state-space analysis of the experimental time
series is required (Johnson et al., 2000). All methods of the
nonlinear time-series analysis are based on the construction
of an attractor of the dynamic evolution of the system in
state-space. The method of reconstruction in state-space
(embedding) is theoretically (Takens, 1981) based on the fact
that all information needed to define the state of the system
exists in a time series of one single measured parameter, such
as the fluctuating solute concentration measured locally in
the pore network. The most common methods to characterize
the attractor are the evaluation of the correlation dimension
and the Kolmogorov entropy (Grassberger and Procaccia,
1984) and/or determination of the Lyapunov exponents
(Abarbanel, 1990). Because of the small number of
measurements that were acquired in each experiment, no
attempt was done to determine the attractor from the solute
concentration time series. Instead the linear methods of time
domain and frequency domain analysis were used.

3.1 Time Domain Analysis

All analyses are made on time-series with data points z(n),
with n = 1,2,3, ... N, measured at equidistant time intervals
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∆τ, where N is the total number of measurements, and z is the
variable signal. The amplitude of the signal is expressed by
the standard deviation: 

(22)

with the average: (23)

The higher order statistical moments are expressed in a
dimensionless form as the skewness (normalized 3rd-order
moment):

(24)

and the flatness (normalized 4th-order statistical moment):

(25)

The skewness indicates the lack of symmetry in the
probability distribution and is zero for a normal distribution
of noise. The flatness is a measure of the sharpness of the
distribution, is 3 for normal Gaussian distribution, and can be
regarded as the ratio of the time spent under quiescent
conditions to the time spent under active conditions. The
correlation between two points separated by a time lag
τk = k∆τ is expressed by the autocorrelation function, which
in normalized form, is given by:

(26)

The autocorrelation for a periodic signal is also periodic
and for deterministic chaotic systems the autocorrelation
function decays exponentially with increasing lag (Dimitrova
and Vitanov, 2001). When the autocorrelation function falls
abruptly to zero, that indicates the lack of a deterministic
component from the data; a slow fall to zero is a sign of
stochastic or deterministic behavior; when the data slowly
drops to zero and shows periodic behavior then the data is
highly correlated and is either periodic or chaotic in nature.

3.2 Frequency Domain Analysis

The power spectral density (power spectrum) of a signal is
defined by:

(27)

where Z(f) is the Fourier transform of the investigated signal
z(τ). The power spectrum of a discrete signal is identical to

the real part of the FFT, and give us information on how
much power is contained in each frequency. Thus, we can
visualize the dominant frequencies associated with the system
dynamics and we can investigate their shifting when the
system parameters change. Random and chaotic datasets fail
to demonstrate a dominant frequency. Periodic or quasi-
periodic datasets show a dominant or several frequencies.
By definition, a periodic signal is governed by a single
fundamental frequency or its simple multiples in the power
spectrum. Quasi-periodic signals are governed by two
fundamental frequencies or its multiples, whereas chaotic
signals comprise three or more fundamental frequencies
(Basu and Islam, 1996; Dimitrova and Vitanov, 2001). The
interpretation of power spectra is subjective. What is regarded
to be a peak for the determination of a dominant frequency
may differ between observers. The shape of a spectrum
depends on the number of samples, the sampling frequency,
and the number of the spectra averaged (Johnson et al., 2000).

Both deterministic/chaotic and stochastic systems have a
strong decay in autocorrelation function with time lag, and
broad banded power spectra (Baker and Gollub, 1996). The
link between the shape (fall-off with frequency, f) of the
power spectrum and the type of system (chaotic/deterministic
or stochastic) on measured time series may be used to
characterize the system. Specifically, the fall-off of power
spectrum at high frequencies follows a power law for
stochastic and multifractal systems and an exponential law for
systems exhibiting deterministic chaos (Johnson et al., 2000).

4 RESULTS AND DISCUSSION

4.1 Estimation of Longitudinal
and Transverse Dispersivities

To determine the effective diffusion coefficient, Deff, the
following relationship can be used (Sahimi, 1995):

(28)

where the formation factor Ff can be either measured or calcu-
lated (Tsakiroglou, 2002). There is an ambiguity concerning
the definition of the porosity of a planar pore network. With
reference to a unit cell of four interconnected capillaries in a
square lattice (Fig. 2c), the areal porosity φa is given by: 

(29)

The volumetric porosity φ is defined as the ratio of the
pore volume to a reference total volume with height equal
to lp. Finally, we get:
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For the model M-1 it was found that Deff/Dm = 0.56
(Ff,exp = 44.42, φ= 0.04) and this value was set as the lower
limit to the estimated Dξξ and Dζζ values.

In a horizontal experiment without the action of gravity,
the steady-state solute dispersion regime depends on Pe and
remains unchanged in time (Theodoropoulou et al., 2003). If
the ξ-component of the flow velocity is constant throughout
the pore network, uξ = (W/Dm)u0, and the ζ-component is
negligible, uζ = 0, then:

Dξζ = 0 (31)

(32)

(33)

With this simplification it is easy to solve the advection-
dispersion equation analytically (Theodoropoulou et al.,
2003). The longitudinal and transverse dispersion coef-
ficients were estimated by fitting the measured transient
and steady-state solute concentration from experiments
performed on model M-1 to the analytical solution of the 2-
D advection-dispersion equation (Theodoropoulou et al.,
2003). However, both Dξξ and Dζζ values were over-
estimated (see Figure 17 in Theodoropoulou et al., 2003)
because the cross-section of the solute source was regarded
as rectangular with dimensions equal to b and lp. In reality,
the solute is injected through a disk (Fig. 2b) with dimen-
sions equal to Ps = πb and lp (note that the pore length was
used as a reference length for defining the porosity and
permeability of the planar network). The values of Dξξ and
Dζζ were reestimated using the solute fluxes based on a
cross-sectional area equal to πblp, and fitting the analytic
equation to the experimentally measured solute concen-
tration profiles using Bayesian estimator of the Gregplus
solver of Athena (Stewart and Associates, Inc.) software
package (Theodoropoulou et al., 2003). Two estimation
procedures were adopted: 
– the values of Dξξ and Dζζ were estimated by fitting

simultaneously the transient and steady-state solute
concentration profiles to the (transient) analytical solution
of the advection-dispersion equation;

– the following asymptotic steady-state solution (∂C*/∂τ = 0)
of the advection-dispersion equation is obtained:

(34)

where the parameters involved in Equation (34) are given
by:

(35)

(36)

(37)

Parametric analysis has shown that the value of Dξξ affects
weakly on the calculated solute concentration profile. The
Dζζ was first estimated by fitting steady-state datasets to
Equation (34), and afterwards the Dζζ was estimated by
fitting the transient data to the corresponding (transient)
analytic solution (Table 2). The fluctuation of Dξξ and Dζζ
values near very low Pe numbers (Table 2) may be attributed
to the deviation of the real boundary condition at the exit
(finite porous medium, four outlet ports) from those
assumptions made to derive them analytically (infinite
porous medium, ∂C*/∂ξ = 0 as ξ → ∞). The finite length of
the porous medium does not influence the solute concen-
tration profiles at the very early times, but affects drastically
the flow field near the exit, and subsequently the long-term
transient and steady-state solute concentration profiles. 

According to Equations (14), (19) and (20) the disper-
sivities aL and aT are given by:

(38a)

(38b)

In order to determine reasonable dispersivities, the values
of Dξξ, Dζζ values estimated using the 1st estimation
approach for Pe = 0.5, 2.5, whereas the 2nd approach was
used to estimate Dξξ and Dζζ for Pe = 1.0, 5.0, 10.0 (Table 2).
Evidently, the estimated aL and aT values are subjected to
higher uncertainty that is governed by Pe, the quantity and
quality of dataset, the procedure of parameter estimation, as
well as the choice of the analytical model C* = C* (ξ, ζ, τ).
The dimensionless values of Pe and Ram corresponding to
the experimental conditions are summarized in Table 3.
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TABLE 3

Dimensionless parameter values used in experiments

Parameter Model M-1 Model S-1 Model D-1

Pe 0.5, 1.0, 2.5, 5.0, 10.0 3.7, 5.6 3.3, 4.9

Ram 1060 2085 1650

4.2 Gravity Effects on Solute Dispersion Regimes

In the present work, we used conventional linear methods of
analysis, and conclusions pertinent to the system behavior
were drawn from the properties of the autocorrelation
function and power spectrum of the temporal evolution of the
solute concentration.

Successive snap-shots of the solute dispersion in the
model pore network M-1 at various times and for several Pe
numbers are shown in Figures 3a-c. The solute dispersion
plume exhibits a fluctuating behavior reflected in the lobe-
shaped instabilities. The transient evolution of the lobes
along the plume have the characteristics of a periodic or
chaotic behavior (Fig. 3). The multiple of steady-state solute
concentration profiles are caused by the downward flow of
the heavier solution injected at the source and the upward
flow of the lighter solution injected at the inlet ports. The
longitudinal dispersivity remains almost unchanged,
exhibiting a local minimum at Pe = 2.5, whereas the
transverse dispersivity monotonically decreases as the Pe
number increases (Table 2). The lobe-shaped instabilities
become distinguishable at Pe = 2.5 (Fig. 3b) and this is in
agreement with earlier macroscopic numerical studies
predicting that the buoyancy-driven instabilities are favored
by small values of the dispersivities (Liu and Dane, 1997). At
higher Pe numbers, the longitudinal dispersion coefficient
increases while the transverse dispersion coefficient remains
almost constant (Table 2). In this manner, the thickness of the
dispersion zone and buoyancy-driven lobes is reduced, and
the solute dispersion regime tends asymptotically to be
stabilized, although the multiple of steady-states is still
observed (Fig. 3c).

A small region in the pore network M-1, indicated in
square box in Figure 3b is blown up in Figure 4 to show how

the solute concentration varies with the time without
converging to any stable solute concentration distribution.
The solute dispersion regime (Fig. 4a) is converted to equi-
concentration contours (Fig. 4b) that illustrate the
fluctuations of the local solute concentration at smaller
scales. Evidently, the experimental technique enables us to
quantify local fluctuations of the solute concentration at
different scales ranging from a unit cell of four
interconnecting pores (Fig. 4a) to the pore network scale
(Fig. 3b). The average solute concentration over a small
region of the model M-1 (Figs. 3b, 4a) was plotted as a
function of time and the mean period between two
neighboring maxima or minima were helpful to identify
eventual periodic fluctuations (Fig. 5a). An almost constant
mean period of fluctuations was found (Fig. 5a). This is
indicative of the periodic nature of the solute dispersion
regime. The autocorrelation function tends slowly to zero
(indicative of stochastic or deterministic processes) with
fluctuations that indicate some form of periodic behavior
(Fig. 5b). The amplitude of the fluctuations is quite
large compared to their average (σ/〈C*〉 ≅ 0.4), they are
asymmetric (S = 0.51) and flatter than the Gaussian noise
(F = 2.47). No dominant frequency is evident in the power
spectrum (Fig. 5c) and hence we are unable to draw any clear
conclusion about the periodic or chaotic nature of the
fluctuations from frequency domain analysis. Actually, the
number of measurements is so small, or equivalently the
frequency range is so narrow that the identification of
dominant frequencies is impossible.

The steady-state solute dispersion regimes in the single
pore network S-1 are shown in Figure 6. At low Pe values,
the mixing zone is very wide reaching the lower boundary of
the pore network (Fig. 6a) so that it is difficult to distinguish
clearly any individual lobes. The fluctuations are
characterized by a broad amplitude (σ/〈C*〉 = 0.67), and the
lack of periodicity (Fig. 7a). Likewise, no periodicity is
evident in the oscillations of the autocorrelation function
(Fig. 7b) whereas a broad band FFT power spectrum with a
negative fall-off slope appears in the frequency domain
(Fig. 7c). Such a dispersion regime can be considered as
chaotic although the aforementioned characteristics of the
solute concentration time series are simply indicative of such 
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TABLE 2

Dispersion coefficients estimated from experimental datasets of model M-1

1st approach 2nd approach
aL (m) aT (m)

Pe Dξξ Dζζ Dξξ Dζζ

0.5 1.45 ± 0.017 0.745 ± 0.062 – 3.02 ± 0.19 0.00243 0.00050

1.0 4.86 ± 1.8 0.56 3.23 ± 1.77 0.643 ± 0.068 0.00364 0.00011

2.5 1.73 ± 0.69 0.622 ± 0.111 – 1.684 ± 0.104 0.00064 0.000034

5.0 11.1 ± 13.3 0.56 11.85 ± 14.7 0.67 ± 0.17 0.00310 0.00003

10.0 28.8 ± 8.15 0.56 28.7 ± 41.1 0.92 ± 0.1 0.00385 0.00005
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Figure 5

a) temporal evolution; b) autocorrelation function; c) FFT
power spectrum of the average solute concentration over a
small region (Fig. 3b) of the model pore network M-1 for
Pe = 2.5.

a behavior (Johnson et al., 2000). At higher Pe values,
unstable lobes of finite thickness smaller than the width of
the network are created (Fig. 6b). The amplitude of the
concentration fluctuations is almost constant with two
characteristic periods to be identified in the time domain
(Fig. 8a). The fluctuations are slightly asymmetric (S = 0.21)
and much flatter than a Gaussian noise (F = 1.53) whereas
some form of periodicity may appear in the oscillations of
the autocorrelation function (Fig. 8b). The broad band FFT
power spectrum that decays exponentially at high fre-
quencies (Fig. 8c) is typical of chaotic motions. The
dispersion regime (Fig. 6b) may be regarded as a quasi-
periodic or chaotic one, but additional information
concerning the behavior of the solute concentration series at
long times is required before such a classification is done. In
other words, we are unable to classify clearly the solute
dispersion regime because of the small number of exper-
imental measurements that are available to time domain and
frequency domain analyses.

The steady-state solute dispersion regimes in the dual pore
network D-1 are shown in Figure 9. At relatively low Pe
values, the length of the lobes is quite large and the solute
concentration is characterized by slightly asymmetric
(S = 0.37) and very flat (F = 1.45) fluctuations of high
amplitude (σ/〈C*〉 = 0.46) (Fig. 9a). The lack of a constant
period in the time series (Fig. 10a), the periodicity observed
on the oscillations of the autocorrelation function before
their decay to zero (Fig. 10b) and the three fundamental
frequencies identified on the power spectrum (Fig. 10c) are
indicative of a chaotic dispersion regime. At higher Pe
values, the dispersion regime is dominated by unstable lobes
of smaller length, and progressively it tends to be stabilized
(Fig. 9b). Three different periodic fluctuations of the
concentration are evident in the time domain for Pe = 4.9
(Fig. 11a). The autocorrelation function decreases slowly
toward zero by exhibiting some oscillations (Fig. 11b),
whereas a broad band power spectrum without any dominant
frequency is observed (Fig. 11c). The foregoing char-
acteristics may be regarded indicative of a chaotic dispersion
regime with some uncertainty associated with the narrow
time/frequency range of the experimental measurements. 

By comparing the dispersion regimes observed in model
S-1 with those observed in model D-1 some information can
be deduced with respect to the role of pore scale heterogene-
ities on buoyancy driven instabilities. It seems that the exis-
tence of the network of thin and short pores has a stabilizing
effect on the dispersion regime by reducing the thickness of
the mixing zone at the corresponding Pe value (Figs. 6a and
9a). On the other hand, the high degree of pore-scale heteroge-
neities embedded into the dual pore network D-1 favors the
onset of chaotic regimes even at relatively high Pe values,
where the length of the unstable lobes is finite and the lateral
boundaries don’t influence the evolution of the dispersion
within the pore network (Fig. 9b).
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Figure 7

a) temporal evolution; b) autocorrelation function; c) FFT
power spectrum of the average solute concentration over a
small region (Fig. 6a) of the model pore network S-1 for
Pe = 3.7.

Figure 8

a) temporal evolution; b) autocorrelation function; c) FFT
power spectrum of the average solute concentration over a
small region (Fig. 6b) of the model pore network S-1 for
Pe = 5.6.
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Figure 10

a) temporal evolution; b) autocorrelation function; c) FFT
power spectrum of the average solute concentration over a
small region (Fig. 9a) of the model pore network D-1 for
Pe = 3.3.

Figure 11

a) temporal evolution; b) autocorrelation function; c) FFT
power spectrum of the average solute concentration over a
small region (Fig. 9b) of the model pore network D-1 for
Pe = 4.9.
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The visualization experimental technique demonstrated
that a periodic or quasi-periodic solute dispersion regime is
favored by relatively high Pe values and relatively low degree
of pore-scale heterogeneities, while a chaotic dispersion
regime is favored by low Pe values and high degree of pore-
scale heterogeneities. The instabilities may be caused by
absolute permeability perturbations, which strengthen as the
spatial heterogeneity of the pore network increases. 

The present work is the first experimental demonstration
of the onset of buoyancy-driven periodic and chaotic solute
dispersion regimes that may arise in a pore network. The
high resolution of the experimental technique allows the
accurate measurement of the transient fluctuations of the
solute concentration at a very wide range of scales. To fully
understand the mechanisms and factors that favor the growth
of chaotic, periodic, quasi-periodic or fully stable dispersion
regimes, a more systematic investigation need to be exerted.
Specifically, the duration of the experiments must be
extended from several days to several weeks, a great number
of datasets has to be collected, and the time series must be
employed by using nonlinear methods of state-space
analysis. In addition, the mathematical model presented in
Section 2 could be used to simulate the single source-solute
transport experiments, validate the experimental observations
and perform a complete parametric study.

5 DISCUSSION AND PERSPECTIVES
OF APPLICATION

The dispersive transport of dense plumes in underground
reservoirs is one of the most important environmental
problems. Two characteristic examples are reported:

– The multispecies leachate plumes that can develop in
shallow unconfined aquifers (Zhang and Schwartz, 1995).

– The density variations occurring in groundwater during
the injection of liquefied CO2 in it; the aqueous CO2
solution is heavier than pure water even at small
concentrations and the identification of the CO2 dispersion
regime in the aquifer might be helpful in taking decisions
relevant to CO2 sequestration projects.

In flow through a natural porous medium, perturbations or
interfacial disturbances are continuously generated because of
heterogeneities of the medium. These random perturbations to
flow occur over many scales ranging from slight differences
in pore geometry to larger heterogeneities on the scale of the
problem under consideration. Unresolved questions remain
with respect to the manifestation of unstable flows in
heterogeneous media. The artificial model pore networks used
in the present study enable us to insight into the effect of the
pore-scale heterogeneities and flow conditions on the density-
driven contaminant dispersion patterns, and the route from
periodic to chaotic solute concentration profiles. Such
information may be proved useful in designing landfills or

selecting underground saline aquifers for the CO2 storage.
Moreover, the experimental data presented here, may be
helpful in validating mechanistic pore network or macro-
scopic simulators of the solute dispersion in homogeneous
and heterogeneous porous media. However, longer time series
of solute concentration must be collected by increasing by
several times the duration of experiments, before a systematic
analysis of the chaotic nature of density-driven dispersion
regime is clarified quantitatively. 

CONCLUSIONS

Visualization of single source-solute transport experiments
performed on three glass-etched pore networks of different
geometry reveal the existence of multiple steady-state solute
concentration profiles at longer time scale when gravity acts
perpendicular to the main flow direction. These dispersion
regimes arise from the interaction of forced convective flow,
buoyancy-driven free convective flow, and diffusion. Data
collected from experiments performed without the action of
gravity are fitted to analytical models of the advection-
dispersion equation to estimate the longitudinal and transverse
dispersivities. The transient evolution of the average solute
concentration along with its autocorrelation function and FFT
power spectra are employed to get information on the
periodic, quasi-periodic or chaotic nature of the fluctuations in
the three model pore networks used in the experiments. The
most important conclusions are outlined below:
– The estimated values of dispersivities depend strongly on

the quantity and quality of experimental datasets, the esti-
mation procedure adopted, and the analytical models used.

– As Pe increases, the fluctuations tend to vanish, the
mixing zone is reduced, and progressively the dispersion
regime is stabilized.

– When the Pe number decreases, and the mixing zone
intersects the lateral boundaries of the porous medium, the
dispersion regime tends to transit from periodic to chaotic
regime.

– Periodic and/or quasi-periodic dispersion regimes are
favored by relatively high Pe values and small pore-scale
heterogeneities.

– Chaotic dispersion regimes are favored by relatively low
Pe values and strong pore-scale heterogeneities.

– Long time series of solute concentration is required to
quantify the periodic/chaotic nature of the fluctuations by
using the non-linear state-space analysis.
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