D. Lowe, Distinctive image features from scaleinvariant keypoints, IJCV, vol.60, issue.2, pp.91-110, 2004.

T. Lindeberg and J. Garding, Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure, ECCV, pp.389-400, 1994.

A. Baumberg, Reliable feature matching across widely separated views, CVPR, vol.1, pp.774-781, 2000.
DOI : 10.1109/cvpr.2000.855899

K. Mikolajczyk and C. Schmid, An affine invariant interest point detector, ECCV, vol.1, pp.128-142, 2002.
DOI : 10.1007/3-540-47969-4_9

URL : https://hal.archives-ouvertes.fr/inria-00548252

K. Mikolajczyk and C. Schmid, Scale and Affine Invariant Interest Point Detectors, IJCV, vol.60, issue.1, pp.63-86, 2004.
DOI : 10.1023/b:visi.0000027790.02288.f2

T. Tuytelaars, L. Van-gool, and O. , Contentbased image retrieval based on local affinely invariant regions, Int. Conf. on Visual Information Systems, pp.493-500, 1999.

T. Tuytelaars and L. Van-gool, Matching Widely Separated Views Based on Affine Invariant Regions, IJCV, vol.59, issue.1, pp.61-85, 2004.
DOI : 10.1023/b:visi.0000020671.28016.e8

T. Tuytelaars and L. Van-gool, Wide baseline stereo matching based on local, affinely invariant regions, pp.412-425, 2000.

T. Kadir, A. Zisserman, and M. Brady, An Affine Invariant Salient Region Detector, ECCV, pp.228-241, 2004.
DOI : 10.1007/978-3-540-24670-1_18

J. Matas, O. Chum, M. Urban, and T. Pajdla, Robust wide-baseline stereo from maximally stable extremal regions, IVC, vol.22, issue.10, pp.761-767, 2004.
DOI : 10.1016/j.imavis.2004.02.006

P. Musé, F. Sur, F. Cao, and Y. Gousseau, Unsupervised thresholds for shape matching, ICIP, 2003.

P. Musé, F. Sur, F. Cao, Y. Gousseau, and J. M. Morel, An A Contrario Decision Method for Shape Element Recognition, IJCV, vol.69, issue.3, pp.295-315, 2006.

F. Cao, J. Lisani, J. Morel, P. Musé, and F. Sur, A Theory of Shape Identification, 2008.
URL : https://hal.archives-ouvertes.fr/inria-00319719

J. M. Morel and G. Yu, ASIFT: A new framework for fully affine invariant image comparison, SIIMS, vol.2, issue.2, pp.438-469, 2009.
DOI : 10.1137/080732730

URL : http://www.cmap.polytechnique.fr/~yu/publications/ASIFT_SIIMS_final.pdf

M. Rodriguez, J. Delon, and J. Morel, Covering the space of tilts. application to affine invariant image comparison, SIIMS, vol.11, issue.2, pp.1230-1267, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01589522

R. Arandjelovic and A. Zisserman, Three things everyone should know to improve object retrieval, CVPR, pp.2911-2918, 2012.
DOI : 10.1109/cvpr.2012.6248018

G. Yu and J. Morel, ASIFT: An Algorithm for Fully Affine Invariant Comparison, IPOL, vol.1, pp.1-28, 2011.
DOI : 10.5201/ipol.2011.my-asift

URL : http://www.ipol.im/pub/art/2011/my-asift//article.pdf

Y. Pang, W. Li, Y. Yuan, and J. Pan, Fully affine invariant SURF for image matching, Neurocomputing, vol.85, pp.6-10, 2012.
DOI : 10.1016/j.neucom.2011.12.006

D. Mishkin, J. Matas, and M. Perdoch, MODS: Fast and robust method for two-view matching, CVIU, vol.141, pp.81-93, 2015.
DOI : 10.1016/j.cviu.2015.08.005

URL : http://arxiv.org/pdf/1503.02619

M. Rodriguez and R. Grompone-von-gioi, Affine invariant image comparison under repetitive structures, ICIP, pp.1203-1207, 2018.

M. Rodriguez, J. Delon, and J. Morel, Fast affine invariant image matching, IPOL, vol.8, pp.251-281, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02002845

S. Zagoruyko and N. Komodakis, Learning to compare image patches via convolutional neural networks, CVPR, pp.4353-4361, 2015.
DOI : 10.1109/cvpr.2015.7299064

URL : https://hal.archives-ouvertes.fr/hal-01246261

J. Zbontar and Y. Lecun, Stereo matching by training a convolutional neural network to compare image patches, JMLR, vol.17, issue.1-32, 2016.

I. Rocco, R. Arandjelovic, and J. Sivic, Convolutional neural network architecture for geometric matching, 2018.
DOI : 10.1109/cvpr.2017.12

URL : https://hal.archives-ouvertes.fr/hal-01513001

D. Detone, T. Malisiewicz, and A. Rabinovich, Deep image homography estimation, 2016.

K. Simonyan and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.

I. Rey-otero and M. Delbracio, Anatomy of the SIFT method, IPOL, vol.4, pp.370-396, 2014.
URL : https://hal.archives-ouvertes.fr/tel-01226489

J. M. Morel and G. Yu, Is SIFT scale invariant?, Inv. Problems and Imaging, vol.5, issue.1, pp.115-136, 2011.
DOI : 10.3934/ipi.2011.5.115

URL : https://doi.org/10.3934/ipi.2011.5.115

T. Lin, M. Maire, S. Belongie, J. Hays, P. Perona et al., Microsoft coco: Common objects in context, ECCV, pp.740-755, 2014.

L. Moisan, P. Moulon, and P. Monasse, Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers, IPOL, vol.2, pp.56-73, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00711852