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We consider the classical problem of invariant generation for programs with polynomial assignments and focus
on synthesizing invariants that are a conjunction of strict polynomial inequalities. We present a sound and
semi-complete method based on positivstellensätze, i.e. theorems in semi-algebraic geometry that characterize
positive polynomials over a semi-algebraic set. To the best of our knowledge, this is the first invariant
generation method to provide completeness guarantees for invariants consisting of polynomial inequalities.
Moreover, on the theoretical side, the worst-case complexity of our approach is subexponential, whereas
the worst-case complexity of the previously-known complete method ([Colón et al. 2003], CAV 2003), which
could only handle linear invariants, is exponential. On the practical side, we reduce the invariant generation
problem to quadratic programming (QCLP), which is a classical optimization problem with many industrial
solvers. Finally, we demonstrate the applicability of our approach by providing experimental results on several
academic benchmarks.
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1 INTRODUCTION

Invariants. Given a program, an assertion at a program location that is always satisfied by the
program variables when the location is reached is called an invariant. Invariants are essential for
many different formal and quantitative analyses of various types of programs [Chatterjee et al.
2017a; Halbwachs et al. 1997; Henzinger and Ho 1994; Ngo et al. 2018]. Invariant generation is
a classical problem in formal verification and programming languages, and has been studied for
decades, e.g. for analysis of safety and liveness properties of programs [Cousot and Cousot 1977;
Cousot and Halbwachs 1978; Manna and Pnueli 1995].
Inductive Invariants. An inductive assertion is an assertion that holds at a location for the first
visit to the location and is preserved under every cyclic execution path from and to the location.
Inductive assertions are guaranteed to be invariants, and the well-established method to prove that
an assertion is an invariant is to find an inductive invariant that strengthens it [Colón et al. 2003;
Manna and Pnueli 1995].
Previous Approaches. Given the importance of invariant generation, the problem has received
significant attention over the decades. A primary technique is abstract interpretation [Cousot
and Halbwachs 1978] that considers symbolic execution, and its termination is guaranteed by
an imprecise exploration operator called widening. However, this method is not complete and
exploration heuristics do not always guarantee convergence.
Linear vs Polynomial Invariants. For linear invariant generation over programs with linear
updates, a sound and complete methodology was obtained by [Colón et al. 2003]. In this work, we
consider programs with polynomial updates and the problem of generating polynomial invariants,
i.e. invariants that are a conjunction of polynomial inequalities over program variables. Hence,
our setting is more general than [Colón et al. 2003] in terms of the programs we analyze, and
also the desired invariants. To the best of our knowledge, there is no previous approach in the
literature that provides completeness guarantees for this problem. On the other hand, efficient



sound methodologies without completeness guarantees were proposed in [Farzan and Kincaid
2015; Kincaid et al. 2017, 2018].
Motivation for Polynomial Invariant Generation. Invariants are used as prerequisites in a
wide variety of program analysis methods, and their accuracy can directly impact the effectiveness of
those analyses. Given that polynomial invariants provide a higher degree of accuracy in comparison
with linear invariants, using them improves existing solutions to many classical problems in
programming languages, including the following:
• Safety Verification. Consider the fundamental problem of safety verification which is one
of the most well-studied model checking problems: Given a program and a set of safety
assertions that must hold at specific points of the program, prove that the assertions hold
or report that they might be violated by the program. Many existing approaches for safety
verification rely on invariants to prove the desired assertions (see [Albarghouthi et al. 2012;
Alur et al. 2006; Manna and Pnueli 1995; Padon et al. 2016]). In these cases, weak invariants
can lead to an increase in false positives, i.e. if the supplied invariants are inaccurate and
grossly overestimate the program’s behavior, then the verifier might falsely infer that a true
assertion can be violated.
• Termination Analysis. A principal approach in proving termination of programs is to synthe-
size ranking functions, i.e. well-founded functions whose value decreases at every step of
the program [Floyd 1993]. Virtually all synthesis algorithms for ranking functions depend
on invariants, e.g. see [Bradley et al. 2005; Chen et al. 2007; Colón and Sipma 2001]. Having
inaccurate invariants, such as using linear instead of polynomial invariants, can lead to a
failure in the synthesis and hence inability to prove termination. The same point also applies
to termination analysis of probabilistic programs [Chakarov and Sankaranarayanan 2013].
• Inferring Complexity Bounds. Another fundamental problem is to find automated algorithms
that infer asymptotic complexity bounds on the runtime of (recursive) programs. Current al-
gorithms for tackling this problem, such as [Chatterjee et al. 2017a], rely heavily on invariants
and their accuracy. Inaccurate invariants can lead to an over-approximation of complexity or
even failure of the algorithm to synthesize any complexity bound.

Note that the points mentioned above not only justify the use of polynomial invariants due to
their higher accuracy, but also demonstrate the need for approaches with completeness guarantees.
Lacking completeness guarantees is a gap in the state-of-the-art in polynomial invariant generation.
The current work aims to address this gap.
Our Contribution. We consider two variants of the invariant generation problem. Informally,
the weak variant asks for an optimal invariant w.r.t. a given objective function, while the strong
variant asks for a representative set of all invariants. Our contributions are as follows:
(i) Soundness and Semi-completeness. We present a sound and semi-complete method to generate

polynomial invariants for programs with polynomial updates and solve the strong invariant
generation problem. Our completeness requires a compactness condition that is satisfied by
all real-world programs (see Remark 5). We also show that, using the standard notions of pre
and post-conditions, our method can be extended to handle recursion as well.

(ii) Theoretical Contribution.We show that the worst-case complexity of our procedure is subexpo-
nential. Note that, in comparison, complexity of the procedure in [Colón et al. 2003], which is
sound and complete for linear invariants, is exponential, whereas we show how to generate
polynomial invariants in subexponential time.

(iii) Practical Contribution.We reduce theweak invariant generation problem to solving a quadratically-
constrained linear program (QCLP). Solving QCLPs is a hot topic and active area of research
in optimization. Moreover, there are many industrial solvers for handling real-world instances
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of quadratic programming and, using our algorithm, practical improvements to such solvers
carry over to polynomial invariant generation.

Hence, our main contribution is theoretical, i.e. presenting the first sound and semi-completemethod
for generating polynomial invariants. Nevertheless, we also demonstrate the applicability of our ap-
proach by providing experimental results on several academic examples from [Rodríguez-Carbonell
2018] that require polynomial invariants. Unsurprisingly, we observe that our approach is slower
than previous sound but incomplete methods, so there is a trade-off between completeness and
efficiency. However, we expect practical improvements in solving QCLPs to narrow the efficiency
gap in the future.
Techniqes. In terms of techniques, while the approach of [Colón et al. 2003] uses Farkas’ lemma
and quantifier elimination to generate linear invariants, our technique is based on a positivstellen-
satz∗. Moreover, our method replaces the quantifier elimination step with either (i) an algorithm
of [Grigor’ev and Vorobjov 1988] for characterizing solutions of systems of polynomial inequalities
or (ii) a reduction to QCLP.

1.1 Related works

Invariant Generation. Automated invariant generation is an important research topic that has
received much attention in the past years, and various classes of approaches have been proposed,
including recurrence analysis [Farzan and Kincaid 2015; Humenberger et al. 2017; Kincaid et al.
2017, 2018], abstract interpretation [Bagnara et al. 2005; Chakarov and Sankaranarayanan 2014;
Cousot et al. 2005; Müller-Olm and Seidl 2004; Rodríguez-Carbonell and Kapur 2007], constraint
solving [Chatterjee et al. 2017b; Chen et al. 2015; Colón et al. 2003; Cousot 2005; de Oliveira et al.
2016; Feng et al. 2017; Katoen et al. 2010; Lin et al. 2014; Rodríguez-Carbonell and Kapur 2004;
Sankaranarayanan et al. 2004; Yang et al. 2010], inference [Dillig et al. 2013; Gulwani et al. 2009;
Sharma and Aiken 2016], interpolation [McMillan 2008], symbolic execution [Csallner et al. 2008],
dynamic analysis [Nguyen et al. 2012] and learning [Garg et al. 2016].
Summary. A succinct summary of the results of the literature w.r.t. types of assignments, type
of generated invariants (polynomial, linear, etc), programming language features that can be
handled (i.e. non-determinism, probability and recursion), soundness, completeness, and whether
the approach can handle weak/strong invariant generation is presented in Table 1. Moreover, for
approaches that are applicable to weak/strong invariant generation, the respective runtimes are
also reported. Note that most of the previous approaches, which are included in Table 1 for the
sake of completeness, are indeed incomparable with our approach, given that they handle different
problems, e.g. different types of programs. As compared to previous works, we present the first
sound and semi-complete methodology for polynomial invariant generation, and our complexity
guarantee (subexponential) is better than the previous exponential-time complexity of the sound
and complete methods for linear invariants.
Recurrence Analysis. While approaches based on recurrence analysis can derive exact polynomial
invariants, they are applicable to a restricted class of programs where closed-form solutions exist.
Our approach however does not require closed-form solutions and is applicable to all programs.
Abstract Interpretation. Abstract interpretation is the oldest and most classical approach to
invariant generation [Cousot and Cousot 1977; Cousot and Halbwachs 1978]. However, unlike our
approach, it cannot provide any guarantee of completeness.

∗A positivstellensatz (German for “positive locus theorem”, plural: positivstellensätze) is a theorem in real semi-algebraic
geometry that characterizes positive polynomials over a semi-algebraic set.
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Approach
Assignments

and
Guards

Invariants Nondet Rec Prob Sound Complete Weak Strong

This Work Polynomial Polynomial ✓ ✓ × ✓ ✓♦ ✓
QCLP

✓
Subexp

[Colón et al. 2003]
CAV 2003 Linearc Linear ✓ × × ✓ ✓

✓
Exp†

✓
Exp†

[Feng et al. 2017]
ATVA 2017 Polynomial Polynomial × × ✓ ✓ ✓a ✓

Poly ×

[Hrushovski et al. 2018]
LICS 2018 Linear‡ Polynomial

Equalities ✓ × × ✓‡ ✓‡ × ✓‡,b

[Kincaid et al. 2018]
POPL 2018

Polynomial,
Exponential,
Logarithmic

Polynomial,
Exponential,
Logarithmic

✓ × × ✓ × × ×

[Rodríguez-Carbonell and Kapur 2004]*
ISSAC 2004

Polynomial,
Exponential

Polynomial
Equalities ✓ × × ✓ ✓ ✓b ✓b

[Sankaranarayanan et al. 2004]
POPL 2004 Polynomialc Polynomial

Equalities ✓ × × ✓ ✓b ✓b ✓b

[Farzan and Kincaid 2015]
FMCAD 2015 Generald Generald ✓ ×e × ✓ × × ×

[Kincaid et al. 2017]
PLDI 2017 General General ✓ ✓ × ✓ × × ×

[de Oliveira et al. 2016]
ATVA 2016

Polynomial,
Without

Conditional
Branching

Polynomial
Equalities ✓ × × ✓ ✓

✓
Poly

✓
Poly

[Humenberger et al. 2017]*
ISSAC 2017 Polynomial‡ Polynomial

Equalities ✓ × × ✓ ✓‡ ✓‡,b ✓‡,b

♦ The approach is semi-complete and assumes compactness (see Lemma 3.7 and Remark 5).
† Similar to our approach, [Colón et al. 2003] generates a system of quadratic inequalities, but then applies quantifier
elimination, leading to exponential runtime. This can be reduced to match our runtime by employing the same techniques
for solving the system.
‡ Treats branching conditions as non-determinism.
∗ Does not support nested loops.
a The approach is semi-complete.
b Uses Gröbner basis computations (super-exponential worst-case runtime in theory).
c Considers general transition systems instead of programs.
d Handles non-linearity using linearization heuristics.
e Can be extended to handle recursion (see [Kincaid et al. 2017]).

Table 1. A summary of invariant generation methods in the literature.

Constraint Solving. Our approach falls in this category. First, our approach can handle polynomial
invariants, thus extending the approaches based on linear arithmetics, such as [Chatterjee et al.
2017b; Colón et al. 2003; de Oliveira et al. 2016; Katoen et al. 2010]. Second, our approach can
handle invariants consisting of polynomial inequalities, whereas several previous approaches
generate polynomial equalities [Rodríguez-Carbonell and Kapur 2004; Sankaranarayanan et al. 2004].
Third, our approach is semi-complete, thus it is more accurate than approaches with relaxations
(e.g. [Cousot 2005; Lin et al. 2014]). Fourth, compared to previous complete approaches that solve
formulas in the first-order theory of reals (e.g. [Chen et al. 2015; Yang et al. 2010]) to generate
invariants for a more limited set of programs, our approach has lower computational complexity,
i.e. our approach is subexponential, whereas quantifier elimination and solving first-order formulas
take exponential time.
Comparison with [Feng et al. 2017]. Finally, we compare our approach with the most related
work, i.e. [Feng et al. 2017]. A main difference is that our approach can find a representative set
of all solutions, but [Feng et al. 2017] might miss some solutions, i.e. it only guarantees to find
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at least one solution as long as the problem is feasible. In terms of techniques, [Feng et al. 2017]
uses Stengle’s positivstellensatz, while we use Putinar’s positivstellensatz, Schweighofer’s theorem
and the algorithm of Grigor’ev and Vorobjov. Moreover, [Feng et al. 2017] considers the class of
probabilistic programs without non-determinism and only focuses on single probabilistic while
loops, while we consider programs in general form, with non-determinism and recursion, but
without probabilistic behavior.

2 PRELIMINARIES
In this section, we define the syntax and semantics of the programs we are considering in this work,
and then formally define the concept of invariants and the problem of invariant generation. We fix
two disjoint finite sets: the set V of program variables and the set F of function names. We define
several basic notions and then present the syntax.
Valuations. A valuation over a setW ⊆ V of variables is a function ν : W → R that assigns a real
value to each variable inW .We denote the set of all valuations onW by RW . We sometimes use a
valuation ν over a setW ′ ⊂W of variables as a valuation overW . In such cases, we assume that
ν (w) = 0 for everyw ∈W \W ′. Given a valuation ν , a variable v and x ∈ R, we write ν [v ← x] to
denote a valuation ν ′ such that ν ′(v) = x and ν ′ agrees with ν for every other variable.
Polynomial Arithmetic Expressions. A polynomial arithmetic expression e over V is an expression
built from the variables in V, real constants, and the arithmetic operations of addition, subtraction
and multiplication.
Propositional Polynomial Predicates. A propositional polynomial predicate is a propositional
formula built from (i) atomic assertions of the form e1 ▷◁ e2, where e1 and e2 are polynomial arithmetic
expressions, and ▷◁ ∈ {<, ≤, ≥, >} and (ii) propositional connectives ∨, ∧ and ¬. The satisfaction
relation |= between a valuation ν and a propositional polynomial predicate ϕ is defined in the
natural way, i.e. by substituting the variables with their values in ν and evaluating the resulting
boolean expression.

2.1 Syntax
In this work, we consider non-deterministic recursive programs with polynomial assignments and
guards. Our syntax is formally defined by the grammar in Figure 1†. Below, we intuitively explain
some aspects of the syntax:

⟨prog⟩ ::= ⟨func⟩ | ⟨func⟩ ⟨prog⟩
⟨func⟩ ::= ⟨fname⟩ ‘(’ ⟨varlist⟩ ‘)’ ‘{’ ⟨stmtlist⟩ ‘}’
⟨varlist⟩ ::= ⟨var⟩ | ⟨var⟩ ‘,’ ⟨varlist⟩
⟨stmtlist⟩ ::= ⟨stmt⟩ | ⟨stmt⟩ ‘;’ ⟨stmtlist⟩
⟨stmt⟩ ::= ‘skip’ | ⟨var⟩ ‘:=’ ⟨expr⟩

|‘if’ ⟨bexpr⟩ ‘then’ ⟨stmtlist⟩ ‘else’ ⟨stmtlist⟩ ‘fi’
|‘if’ ‘⋆’ ‘then’ ⟨stmtlist⟩ ‘else’ ⟨stmtlist⟩ ‘fi’
|‘while’ ⟨bexpr⟩ ‘do’ ⟨stmtlist⟩ ‘od’
|⟨var⟩ := ⟨fname⟩ ‘(’ ⟨varlist⟩ ‘)’
|‘return’ ⟨expr⟩

Fig. 1. The syntax of non-deterministic recursive programs. See Appendix A for more details.

• Variables and Function Names. Expressions ⟨var⟩ (resp. ⟨fname⟩) range over the set V (resp. F).

†See Appendix A for a more detailed grammar.
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• Arithmetic and Boolean Expressions. Expressions ⟨expr⟩ range over all polynomial arithmetic
expressions over program variables. Similarly, expressions ⟨bexpr⟩ range over propositional
polynomial predicates.
• Statements. A statement can be in one of the following forms:
– A special type of statement called ‘skip’ which does not do anything,
– An assignment statement (⟨var⟩ ‘:=’ ⟨expr⟩),
– A conditional branch (‘if’ ⟨bexpr⟩) in which the ⟨bexpr⟩ serves as the branching condition;
– A non-deterministic branch (‘if ⋆’),
– A while-loop (‘while’ ⟨bexpr⟩) in which the ⟨bexpr⟩ serves as the loop guard;
– A function call statement (⟨var⟩ := ⟨fname⟩ ‘(’ ⟨varlist⟩ ‘)’) which calls the function
specified by ⟨fname⟩ using the parameters specified in the ⟨varlist⟩ and assigns the resulting
returned value to the variable on its left hand side;

– A return statement (‘return’ ⟨expr⟩) that ends the current function and returns the value
of the expression ⟨expr⟩ and the control to the parent function or ends the program if there
is no parent function.

• Programs and Functions. A program is simply a list of functions. Each function has a name,
a set of parameters and a body. The function body is simply a sequence of statements. We
assume that there is a distinguished function fmain that serves as the starting point of the
program.

Simple vs. Recursive Programs. We call a program simple, or non-recursive, if it contains only one
function and no function call statements. Otherwise, we say that the program is recursive.

Program Counters (Labels). We assign a unique program counter to each statement of the
program and the endpoint of every function. We also refer to program counters as labels. We use L
to denote the set of all labels. We denote the first label in a function f by ℓfin and the label of its
endpoint by ℓfout.

Types of Labels. We partition the set L of labels as follows:

• La : Labels of assignment, skip or return statements,
• Lb : Labels of conditional branching (if) and while-loop statements,
• Lc : Labels of function call statements,
• Ld : Labels of non-deterministic branching statements,
• Le : Labels of the endpoints of functions.

Example 1. Consider the simple program in Figure 2. The numbers on the left are the labels and
their subscripts denote their types. We will use this program as our running example. It contains a
single function sum that takes a parameter n and then non-deterministically sums up some of the
numbers between 1 and n and returns the summation. Our goal is to prove that the return value of
sum is always less than 0.5 · n2 + 0.5 · n + 1.

■

2.2 Semantics

New Variables. In the sequel, we fix a non-deterministic recursive program P with variables
V, functions F and labels L. For each function f ∈ F, whose header is of the form f (v1, . . . ,vn),
we define n + 1 new variables retf , v̄1, . . . , v̄n . Intuitively, retf models the return value of the
function f and each variable v̄i holds the value passed to the function f from its parent function
for parameter vi without allowing f to change it.

6



sum (n ) {
1a : i : = 1 ;
2a : s : = 0 ;
3b : while i ≤ n do
4d : i f ⋆ then
5a : s : = s + i

e l se
6a : skip

f i ;
7a : i : = i + 1

od ;
8a : return s
9e : }

Fig. 2. A non-deterministic summation program

Notation. We define Vf
∗ := {retf ,v1, . . . ,vn , v̄1, . . . , v̄n} and let Vf be the set containing all

members of Vf
∗ , as well as any variable that appears somewhere in the body of the function f .

W.l.o.g. we assume that the Vf ’s are pairwise disjoint. Moreover, we write Rf as a shorthand for
RV

f . In other words, Rf is the set of all valuations over the variables that appear in f , including its
header, its body and its new variables. Similarly, we define Lf as the set of labels that occur in f .
We use the standard notion of control flow graphs as in [Allen 1970; Chatterjee et al. 2017a].

CFGs. A Control Flow Graph (CFG) is a triple (F, L,→) where:
• F is the set of functions;
• the labels L form the set of vertices, and
• → is a relation whose members are triples (ℓ,α , ℓ′) in which the source label ℓ and the target
label ℓ′ are in the same Lf , i.e. they correspond to labels in the same function, the source
label is not the end of function label, i.e. ℓ , ℓfout, and α is one of the following: (i) an update
function α : Rf → Rf if ℓ ∈ La , or (ii) a propositional polynomial predicate over Vf if ℓ ∈ Lb ,
or (iii) ⊥ if ℓ ∈ Lc , or (iv) ⋆ if ℓ ∈ Ld .

Intuitively, we say that a CFG (F, L,→) is the CFG of program P if (i) for each label ℓ ∈ L, the
successors of ℓ in→ are the labels that are in the same function as ℓ and can possibly be executed
right after ℓ, and (ii) the α ’s correspond to the behavior of the program, e.g. if (ℓ,α , ℓ′) ∈→, ℓ is an
if statement and ℓ′ is the first statement in its ‘else’ part, then α should be the negation of the if
condition. See [Chatterjee et al. 2017a] for more details. Note that a return statement in a function
f changes the value of the variable retf and is succeeded by the endpoint label ℓfout.

Example 2. Figure 3 provides the CFG of the program in Example 1.
■

We use the classical semantics for non-deterministic recursive programs.

Stack Elements and Configurations. A stack element ξ is a tuple (f , ℓ,ν ) where f ∈ F is a
function and ℓ ∈ Lf and ν ∈ Rf are respectively a label and a valuation in f . A configuration
κ = ⟨ξi ⟩

n
i=0 is a finite sequence of stack elements.

7



i	←11 s	←	02
i	≤	n

i	≥	n+13

retsum	←	s

8

9

4

s	←	s+i

567

i	←
	i+1

★ ★

Fig. 3. CFG of the Program in Example 1 (Figure 2)

Notation. Given a configuration κ and a stack element ξ , we write κ · ξ to denote the configuration
obtained by adding ξ to the end of κ. Also, we define κ−i as the sequence obtained by removing the
last i stack elements of κ.
A run is an infinite sequence of configurations that starts at the first label of fmain and follows

the requirements of the CFG. Intuitively, a run models the sequence of configurations that are met
in an execution of the program. We now formalize this notion.
Runs. Given a program P and its CFG (F, L,→), a run is a sequence ρ = {κi }∞i=0 of configurations
such that:
• κ0 = ⟨(fmain, ℓ

fmain
in ,ν )⟩ for some valuation ν ∈ Rfmain . Intuitively, a run begins from the fmain

function.
• If |κi | = 0, then |κi+1 | = 0, too. Informally, this case corresponds to when the program has
already terminated.
• Let ξ = (f , ℓ,ν ) be the last stack element in κi . Then, κi+1 should satisfy one of the following
rules:
(a) ℓ ∈ La and (ℓ,α , ℓ′) ∈→ and κi+1 = κ

−1
i · (f , ℓ

′,α(ν )).
(b) ℓ ∈ Lb and (ℓ,ϕ, ℓ′) ∈→ where ϕ is a predicate such that ν |= ϕ and κi+1 = κ

−1
i · (f , ℓ

′,ν ).
(c) ℓ ∈ Lc , the statement corresponding to ℓ is the function call v0 := f ′(v1,v2, . . . ,vn), the
header of the function f ′ is f ′(v ′1,v

′
2, . . . ,v

′
n), and κi+1 = κi · (f

′, ℓ
f ′

in,ν
′) where

ν ′(x) =

{
ν (vi ) x ∈ {v ′i , v̄

′
i }

0 otherwise .

Intuitively, this corresponds to adding the new function to the stack.
(d) ℓ ∈ Ld and (ℓ,⋆, ℓ′) ∈→ and κi+1 = κ

−1
i · (f , ℓ

′,ν ).
(e1) ℓ ∈ Le and |κi | = 1 and |κi+1 | = 0. Informally, this case corresponds to the termination
of the program when the fmain function returns and the stack becomes empty.

(e2) ℓ ∈ Le , |κi | > 1, ξ̂ = ( f̂ , ℓ̂, ν̂ ) is the stack element before ξ in κi , the label ℓ̂ corresponds to
a function call of the form v0 := f (v1, . . . ,vn), (ℓ̂,⊥, ℓ̂′) ∈→ and κi+1 = κ

−2
i · ( f̂ , ℓ̂

′, ν̂ [v0 ←

ν (retf )]). Informally, this corresponds to returning control from the function f into its
parent function f̂ .

Return Assumption. We assume that every execution of a function ends with a return statement.
If this is not the case, we can add “return 0” to suitable points of the program to obtain an equivalent
program that satisfies this condition.
Semi-runs and Paths. A semi-run starting at a stack element ξ = (f , ℓ,ν ) is a sequence ϱ = ⟨κi ⟩∞i=0
that satisfies all the conditions of a run, except that it starts with κ0 = ⟨ξ ⟩. A path π = ⟨κi ⟩

n
i=0 of

length n is a finite prefix of a semi-run.
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2.3 Invariants
We now present the notion of inductive invariants and extend it to recursive programs using
the standard concepts of pre and post-conditions. Then, we formally define the strong and weak
variants of the invariant synthesis problem.
Pre-conditions. A pre-condition is a function Pre mapping each label ℓ ∈ Lf of a function f of
the program to a conjunctive propositional formula Pre(ℓ) :=

∧m
i=0 (ei ≥ 0), where each ei is an

arbitrary arithmetic expression over the set Vf of variables‡§.
Intuitively, a pre-condition specifies a set of requirements for the runs of the program, i.e. a run

that does not satisfy the pre-condition is considered to be invalid (e.g. impossible to happen or
leading to a runtime error).
Post-conditions. A post-condition is a function Post that maps each program function f of
the form f (v1, . . . ,vn) to a conjunctive propositional formula Post(f ) :=

∧m
i=0 (ei > 0) over

{retf , v̄1, . . . , v̄n}.
Intuitively, a post-condition characterizes the return value retf of each function f based on the

values of parameters passed to f when it was called.

Remark 1 (Strict and Non-strict Ineqalities). Note that in the definitions above the inequal-
ities in post-conditions are strict, whereas pre-conditions contain non-strict inequalities. There is a
technical reason behind this choice, having to do with Theorem 3.1. Basically, Putinar’s positivstel-
lensatz characterizes strictly positive polynomials over a closed semi-algebraic set. Therefore, this
subtle difference in the definitions of pre and post-conditions is necessary for our completeness result
(Lemma 3.7). However, the soundness of our approach does not depend on it.

Valid Runs and Reachable Stack Elements. A run ρ is valid w.r.t. a pre-condition Pre, if for
every stack element ξ = (f , ℓ,ν ) appearing in one of its configurations, we have ν |= Pre(ℓ). Valid
semi-runs and paths are defined similarly. A stack element is called reachable if it appears in a valid
run.
Model of Computation. As mentioned in the previous section, we consider programs in which
variables can have arbitrary real values. However, some of our results only hold if the variable
values are bounded. In such cases we explicitly mention that the result holds on “bounded reals”.
The formal interpretation of this point is that there exists a constant value c ∈ R+ such that for
every label ℓ ∈ Lf and every variable v ∈ Vf , the pre-condition Pre(ℓ) contains the inequalities
−c ≤ v ≤ c . In other words, in the bounded reals model of computation, a variable overflows if
its value becomes more than c (resp. underflows if its value becomes less than −c), and any run
containing an overflow or underflow is considered invalid. As a direct consequence, for every
reachable stack element ξ = (f , ℓ,ν ), we have ∥ν ∥2 ≤ c

√
|Vf |. Hence, when discussing bounded

reals, we assume that every pre-condition contains the inequality


Vf



2
2 ≤ c2 |Vf | as well¶.

Invariants. Given a program P and a pre-condition Pre, an invariant is a function Inv mapping
each label ℓ ∈ Lf of the program to a conjunctive propositional formula Inv(ℓ) :=

∧m
i=0 (ei > 0)

over Vf , such that for every reachable stack element (f , ℓ,ν ), it holds that ν |= Inv(ℓ).
‡Classically, pre-conditions are only defined for the first labels of functions. In contrast, we allow pre-conditions for

every label. Note that this setting is strictly more general, given that one can let Pre(ℓ) = true for every other kind of label.
§By definition of runs, the value of every variable v ∈ Vf \ Vf∗ is always 0 when the program reaches ℓfin. Hence,

w.l.o.g. we assume that Pre(ℓfin) contains the assertions v ≥ 0 and −v ≥ 0. Similarly, we assume that for every parameter v
of f , we have the assertions v − v̄ ≥ 0 and v̄ − v ≥ 0 in Pre(ℓfin).

¶On the LHS, Vf is considered as a vector and


Vf 

2 is its Euclidean norm. On the RHS, Vf is a set and |Vf | is its size.

More concretely, if Vf = {v1, v2, . . . , vn }, then the pre-condition contains the inequality v2
1 + v

2
2 + . . . + v2

n ≤ c
2 · n .
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PositivityWitnesses. Let e be an arithmetic expression over program variables andϕ =
∧m

i=0(ei ▷◁i
0) for ▷◁i ∈ {>, ≥}, such that for every valuation ν , we have ν |= ϕ ⇒ e(ν ) > 0. We say that a
constant ϵ > 0 is a positivity witness for e w.r.t. ϕ if for every valuation ν , we have ν |= ϕ ⇒ e(ν ) > ϵ .
In the sequel, we limit our focus to inequalities that have positivity witnesses. Intuitively, this
means that we consider invariants of the form

∧m
j=1(ej > 0) where the values of ej ’s in the runs of

the program cannot get arbitrarily close to 0∥.
Inductive Assertion Maps. Given a non-recursive program P and a pre-condition Pre, an inductive
assertion map is a function Ind mapping each label ℓ ∈ Lf of the program to a conjunctive
propositional formula Ind(ℓ) :=

∧m
i=0 (ei > 0) over Vf , such that the following two conditions hold:

• Initiation. For every stack element ξ = (fmain, ℓ
fmain
in ,ν0), we have ν0 |= Pre(ℓfmainin ) ⇒ ν0 |=

Ind(ℓfmainin ). Intuitively, this means that Ind(ℓfmainin ) should be deducible from the pre-condition
Pre(ℓfmainin ).
• Consecution. For every valid unit-length path π = ⟨(fmain, ℓ0,ν0), (fmain, ℓ1,ν1)⟩ that starts at
ℓ0 and ends at ℓ1, we have ν0 |= Ind(ℓ0) ⇒ ν1 |= Ind(ℓ1). Intuitively, this condition means
that the inductive assertion map cannot be falsified by running a valid step of the execution
of the program.

It is well-known that every inductive assertionmap is also an invariant. Hence, inductive assertion
maps are often called inductive invariants, too [Colón et al. 2003]. We present a short proof of this
fact.

Lemma 2.1. Given a non-recursive program P and a pre-condition Pre, every inductive assertion
map Ind is an invariant.

Proof. Consider an arbitrary valid run ρ = ⟨κi ⟩
∞
i=0 = ⟨⟨(fmain, ℓi ,νi )⟩⟩

∞
i=0 of P . Let π = ⟨κi ⟩

n
i=0 be

a prefix of ρ, which is a valid path of length n. We prove that νn |= Ind(ℓn). Our proof is by induction
on n. For the base case of n = 0, we have ℓ0 = ℓ

fmain
in . By validity of ρ, we have ν0 |= Pre(ℓfmainin ).

Hence, by initiation, ν0 |= Ind(ℓfmainin ). For the induction step, assuming that νn−1 |= Ind(ℓn−1),
we prove that νn |= Ind(ℓn). We apply the consecution property to the unit-length valid path
⟨(fmain, ℓn−1,νn−1), (fmain, ℓn ,νn)⟩, which leads to νn |= Ind(ℓn).
Hence, for every reachable stack element (fmain, ℓ,ν ), we have ν |= Ind(ℓ), which means Ind is an

invariant. □

Example 3. Consider the program in Figure 2. Assuming that we have the pre-condition n ≥ 0 at
label 1, it is easy to show that for any ϵ > 0, Ind(ℓ) := (n + ϵ > 0 ∧ i + ϵ > 0 ∧ s + ϵ > 0) for all
ℓ ∈ {1, . . . , 9} is an inductive assertion map, i.e. it holds at the beginning of the program and no
valid execution step falsifies it. Hence, it is also an invariant. Moreover, using this invariant, one
can prove the post-condition retsum + ϵ > 0. ■

We extend inductive invariants to recursive programs using abstract paths:
Abstract Paths. Given a pre-condition Pre and a post-condition Post, an abstract path starting at
a stack element ξ = (f , ℓ0,ν0) is a sequence ϖ = ⟨κi = ⟨(f , ℓi ,νi )⟩⟩ni=0 such that for all i < n, κi+1
satisfies either one of the conditions (a), (b) and (d) as in the definition of runs or the following
modified (c) condition:
(c′) ℓi ∈ Lc , i.e. the statement corresponding to ℓi is a function call v0 := f ′(v1, . . . ,vn) where f ′

is a function with the header f ′(v ′1, . . . ,v
′
n) and νi |= Pre(ℓf

′

in)[v
′
i ← vi , v̄

′
i ← vi ]. Moreover,

∥Note that this is a very minor restriction, in the sense that if e > 0 is an invariant, then so is e + ϵ > 0. Our algorithm
is unable to find invariants e > 0 where e can get arbitrarily close to 0 over all valid runs of the program. However, in such
cases, our approach can synthesize e + ϵ > 0 for any positive ϵ .
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(ℓi ,⊥, ℓi+1) ∈→, the valuation νi+1 agrees with νi over every variable, except possiblyv0, and
νi+1 |= Post(f )[v̄ ′i ← vi , ret

f ← v0]. The latter is the result of replacing each occurrence of
v̄ ′i with its respective vi and retf with v0 in Post(f ).

Informally, an abstract path is a path in which all function calls are abstracted, i.e. removed and
replaced with a simple transition that respects the pre and post-condition of the called function.
An abstract path always remains in the same function and hence each configuration in an abstract
path consists of only one stack element. A valid abstract path is defined similarly to a valid path.

Example 4. Assume the pre and post-conditions of Example 3 and consider a program P whose
main function fmain calls the function sum of Figure 2. Suppose sum is called at label ℓ, i.e. the
statement at ℓ is y := sum(x), and (ℓ,⊥, ℓ′) ∈→ . In a normal run of P , when the program reaches
ℓ, rule (c) is applied (cf. definition of runs) and control moves to sum. In contrast, in an abstract
path starting at ℓ, rule (c ′) is applied and control directly moves to ℓ′, provided that no variable
other than y gets its value changed and that the pre-condition and post-condition are satisfied. For
example, the following sequences are abstract paths:

⟨⟨(fmain, ℓ,x = 3,y = 0)⟩, ⟨(fmain, ℓ′,x = 3,y = ϵ)⟩⟩
⟨⟨(fmain, ℓ,x = 3,y = 1)⟩, ⟨(fmain, ℓ′,x = 3,y = 99.9)⟩⟩

Note that the latter configuration cannot happen in any valid run, but it does not violate the
conditions of an abstract path. This is because the post-condition in this example is very weak and
hence abstract paths grossly overestimate valid paths. As we will see, our algorithms synthesize
stronger post-conditions as part of the invariant generation process. Finally, in contrast to the
sequences above, the following are not abstract paths:
⟨⟨(fmain, ℓ,x = −1,y = 1)⟩, ⟨(fmain, ℓ′,x = −1,y = 10)⟩⟩ Violates Pre(ℓsumin )[n ← x , n̄ ← x]
⟨⟨(fmain, ℓ,x = 1,y = 1)⟩, ⟨(fmain, ℓ′,x = 1,y = −1)⟩⟩ Violates Post(sum)[n̄ ← x , retsum ← y]
⟨⟨(fmain, ℓ,x = 3,y = 3)⟩, ⟨(fmain, ℓ′,x = 2,y = 4)⟩⟩ Changes the value of x

■

Recursive Inductive Invariants. Given a recursive program P and a pre-condition Pre, a recursive
inductive invariant is a pair (Post, Ind)where Post is a post-condition and Ind is a function that maps
every label ℓ ∈ Lf of the program to a conjunctive propositional formula Ind(ℓ) :=

∧m
i=0 (ei > 0),

such that the following requirements are satisfied:
• Initiation. For every stack element ξ = (f , ℓfin,ν0) at the starting label of any function f , we
have ν0 |= Pre(ℓfin) ⇒ ν0 |= Ind(ℓfin).
• Consecution. For every valid unit-length abstract path π = ⟨(f , ℓ0,ν0), (f , ℓ1,ν1)⟩ that starts
at ℓ0 ∈ Lf and ends at ℓ1 ∈ Lf , we have ν0 |= Ind(ℓ0) ⇒ ν1 |= Ind(ℓ1).
• Post-condition Consecution. For every valid unit-length abstract pathπ = ⟨(f , ℓ0,ν0), (f , ℓ

f
out,ν1)⟩

that starts at ℓ0 ∈ Lf and ends at the endpoint label ℓfout, we have ν0 |= Ind(ℓ0) ⇒ ν1 |=

Post(f ).
Following an argument similar to the case of inductive invariants, we prove that if (Post, Ind) is

a recursive inductive invariant, then Ind is an invariant.

Lemma 2.2. Given a recursive program P and a pre-condition Pre, if (Post, Ind) is a recursive
inductive invariant, then the function Ind is an invariant.

Proof. Consider an arbitrary valid run ρ = ⟨κi ⟩
∞
i=0 of P . Let π = ⟨κi ⟩

n
i=0 be a prefix of ρ, which is

a valid path of length n and ξ = (f , ℓ,ν ) the last stack element of κn . We prove that ν |= Ind(ℓ). Our
proof is by induction on n.
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For the base case of n = 0, we have ℓ = ℓfmainin . By validity of ρ, we have ν |= Pre(ℓfmainin ). Hence, by
initiation, ν |= Ind(ℓfmainin ). For the inductive step, we let ξ

′ = (f ′, ℓ′,ν ′) be the last stack element in
κn−1. We prove that ν |= Ind(ℓ).We consider the following cases:
• If f ′ = f , then ⟨(f ′, ℓ′,ν ′), (f , ℓ,ν )⟩ is a valid abstract path of length 1. Hence, by consecution,
we have ν |= Ind(ℓ).
• If f ′ is the parent function of f , i.e. ℓ = ℓfin and ℓ

′ is a function-call statement calling f , then
by validity of ρ, we have ν |= Pre(ℓ) and by initiation, we infer ν |= Ind(ℓ).
• If f is the parent function of f ′, i.e. ℓ′ = ℓf

′

out, then let ξ̂ = (f , ℓ̂, ν̂ ) be the last visited stack
element in f before f ′ was called. It is easy to verify that ℓ̂ is a function-call statement calling
f ′ and (ℓ̂,⊥, ℓ) ∈→. By post-condition consecution, ν ′ |= Post(f ′), hence ⟨(f , ℓ̂, ν̂ ), (f , ℓ,ν )⟩ is
a valid abstract path of length 1. By the induction hypothesis, we have ν̂ |= Ind(ℓ̂), hence, by
consecution, we deduce ν |= Ind(ℓ).

Hence, for every reachable stack element ξ = (f , ℓ,ν ), we have ν |= Ind(ℓ) which means Ind is an
invariant. □

We define our synthesis problem in terms of (recursive) inductive invariants, because the classical
method for finding or verifying invariants is to consider inductive invariants that strengthen
them [Colón et al. 2003; Manna and Pnueli 1995].
The Invariant Synthesis Problem. Given a program P , together with a pre-condition Pre, the
invariant synthesis problem asks for (recursive) inductive invariants of a given form and size
(e.g. linear or polynomial of a given degree). The problem can be divided into two variants:
• The Strong Invariant Synthesis Problem asks for a characterization or a representative set of
all possible invariants.
• The Weak Invariant Synthesis Problem provides an objective function over the invariants
(e.g. a function over the coefficients of polynomial invariants) and asks for an invariant that
maximizes the objective function.

Polynomial Invariants. In the sequel, we consider the synthesis problems for polynomial invari-
ants and pre and post-conditions, i.e. we assume that all arithmetic expressions used in the atomic
assertions are polynomials.

3 POLYNOMIAL INVARIANTS FOR NON-RECURSIVE PROGRAMS
In this section, we consider the problem of synthesizing polynomial inductive invariants of a
given degree for an input non-recursive program P and pre-condition Pre. We first provide a
sound and semi-complete reduction from inductive invariants to solutions of a system of quadratic
equalities. Our main mathematical tool is a theorem in real semi-algebraic geometry called Putinar’s
positivstellensatz [Putinar 1993].

We show that the Strong Invariant Synthesis problem can be solved in subexponential time. On
the other hand, we show that theWeak Invariant Synthesis problem can be reduced to Quadratically-
Constrained Linear Programming (QCLP). We begin with presenting the required mathematical
tools and then proceed to strong and weak invariant generation.

3.1 Mathematical Tools and Lemmas
We start with a positivstellensatz due to Putinar. This theorem is our main tool in reducing invariant
generation to quadratic systems.

Theorem 3.1 (Putinar’s Positivstellensatz [Putinar 1993]). Let X be a finite set of vari-
ables and д,д1, . . . ,дm ∈ R[X ] be polynomials over X with real coefficients. We define Π := {x ∈
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RX | ∀i дi (x) ≥ 0} as the set of all points in which every дi is non-negative. If (i) there exists some дk
such that the set {x ∈ RX | дk (x) ≥ 0} is compact, and (ii) д(x) > 0 for all x ∈ Π, then

д = h0 +

m∑
i=1

hi · дi (1)

where each polynomial hi is the sum of squares of some polynomials in R[X ], i.e. hi =
∑n

j=0 f
2
j for

some fj ’s in R[X ].

Corollary 3.2. Let X ,д,д1, . . . ,дm and Π be as in the theorem above. Then д(x) > 0 for all x ∈ Π
if and only if:

д = ϵ + h0 +

m∑
i=1

hi · дi (2)

where ϵ > 0 is a real number and each polynomial hi is the sum of squares of some polynomials in
R[X ].

Proof. It is obvious that if (2) holds, then д(x) > 0 for all x ∈ Π. We prove the other side. Let
д(x) > 0 for all x ∈ Π. Given that Π is compact and д continuous, д(Π) must also be compact and
hence closed. Therefore, δ := infx ∈Π д(x) > 0. Let ϵ = δ/2, then д(x) − ϵ > 0 for all x ∈ Π. Applying
Putinar’s Positivstellensatz, i.e. equation (1), to д − ϵ leads to the desired result. □

Hence, Putinar’s positivstellensatz provides a characterization of all polynomials д that are
positive over the closed setΠ. Intuitively, given a set of atomic non-negativity assumptionsдi (x) ≥ 0,
in order to find all polynomials д that are positive under these assumptions, we only need to look
into polynomials of form (2). Moreover, the real number ϵ in (2) serves as a positivity witness for д.

Remark 2. As an alternative to Putinar’s positivstellensatz, one can use the following theorem, due
to Schweighofer, that provides necessary and sufficient conditions for a polynomial д to be positive over
a semi-algebraic set described by linear and polynomial inequalities. Hence, it can replace Corollary 3.2
and be directly applied in our algorithm.

Theorem 3.3 (Schweighofer [Maréchal et al. 2016; Schweighofer 2002]). Let P = {C1 ≥

0, . . . ,Cp ≥ 0} be a polytope where each Ci is an affine polynomial over x = (x1, . . . ,xn). Let
дp+1, . . . ,дq and д be polynomials. Then д(x) > 0 on P ∩ {дp+1 ≥ 0, . . . ,дq ≥ 0} if and only if

д = λ0 +
∑
I ∈Nq

λI · S
I λ0 ∈ R

∗+, λI ∈ R
+,

where S (i1, ...,iq ) = Ci1
1 · . . . ·C

ip
p · д

ip+1
p+1 · . . . · д

iq
q .

In our algorithm in the next section, we have to reduce the problem of checking whether a
polynomial h ∈ R[V ] is a sum-of-squares to solving a quadratic system. We now present this
reduction in detail. Our reduction is based on the following two well-known theorems:

Theorem 3.4 (See [Horn and Johnson 1990], Corollary 7.2.9). A polynomial h ∈ R[V ] of even
degree d is a sum-of-squares if and only if there exists a k-dimensional symmetric positive semi-definite
matrix Q such that h = yTQy, where k is the number of monomials of degree no greater than d/2 and
y is a column vector consisting of every such monomial.

Theorem 3.5 ([Golub and Van Loan 1996; Higham 2009]). A symmetric square matrix Q is
positive semi-definite if and only if it has a Cholesky decomposition of the form Q = LLT where L is a
lower-triangular matrix with non-negative diagonal entries.
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Given the two theorems above, our reduction uses the following procedure for generating
quadratic equations that are equivalent to the assertion that h is a sum-of-squares:
The Reduction. The algorithm generates the set M ⌊d/2⌋ of monomials of degree at most ⌊d/2⌋
over V . It then orders these monomials arbitrarily into a vector y and symbolically computes the
equality

h = yTLLTy (3)
where L is a lower-triangular matrix whose every non-zero entry is a new variable in the system.
We call these variables l-variables. For every li,i , i.e. every l-variable that appears on the diagonal of
L, the algorithm adds the constraint li,i ≥ 0 to the quadratic system. Then, it translates Equation (3)
into quadratic equations over the coefficients of h∗∗ and l-variables by equating the coefficients of
corresponding terms on the two sides of (3). The resulting system encodes the property that h is a
sum-of-squares.

Example 5. LetV = {a,b} be the set of variables andh ∈ R[V ] a quadratic polynomial, i.e.h(a,b) =
t1 + t2 ·a + t3 ·b + t4 ·a

2 + t5 ·a ·b + t6 ·b
2. We aim to encode the property that h is a sum-of-squares

as a system of quadratic equalities and inequalities. To do so, we first generate all monomials of
degree at most ⌊d/2⌋ = 1, which are 1, a and b. Hence, we let y =

[
1 a b

]T
.We then generate

a lower-triangular matrix L whose every non-zero entry is a new variable:

L =


l1 0 0
l2 l3 0
l4 l5 l6

 .
We also add the inequalities l1 ≥ 0, l3 ≥ 0 and l6 ≥ 0 to our system. Now, we write the equation
h = yTLLTy and compute it symbolically:

h =
[
1 a b

] 
l1 0 0
l2 l3 0
l4 l5 l6



l1 l2 l4
0 l3 l5
0 0 l6



1
a
b

 ,
which leads to:

t1 + t2 · a + t3 · b + t4 · a
2 + t5 · a · b + t6 · b

2

= l2
1 + 2 · l1 · l2 · a + 2 · l1 · l4 · b + (l2

2 + l
2
3 ) · a

2 + (2 · l2 · l4 + 2 · l3 · l5) · a · b + (l2
4 + l

2
5 + l

2
6 ) · b

2.

Note that both sides of the equation above are polynomials over {a,b}, hence they are equal iff
their corresponding coefficients are equal. So, we get the following quadratic equalities over the
t-variables and l-variables: t1 = l2

1 , t2 = 2 · l1 · l2, . . . , t6 = l2
4 +l

2
5 +l

2
6 . This concludes the construction

of our quadratic system. ■

We now have all the necessary ingredients to present our algorithms for the Invariant Synthesis
problems.

3.2 Overview of the Approach
In this section, we provide an overview of our algorithms. The next sections go through all the
details. Our algorithms for Strong and Weak Invariant Synthesis are very similar. They each consist
of four main steps and differ only in the last step. The steps are as follows:
Step 1) First, the algorithm creates a template for the inductive invariant at each label. More

specifically, it creates polynomial templates of the desired size and degree, but with unknown
coefficients. The goal is to synthesize values for these unknown coefficients so that the
template becomes a valid inductive invariant.

∗∗These coefficients are called t -variables in our algorithm.
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Step 2) The algorithm generates a set of constraints that should be satisfied by the template so as
to ensure that it becomes an inductive invariant. These constraints encode the initiation and
consecution requirements as in the definition of inductive invariants. Moreover, they have a
very specific form: each constraint consists of polynomials д1, . . . ,дm and д and encodes the
requirement that for every valuation ν , if we have д1(ν ) ≥ 0,д2(ν ) ≥ 0, . . . ,дm(ν ) ≥ 0, then
we must also have д(ν ) > 0.

Step 3) Exploiting the structure of the constraints generated in the previous step, the algorithm
applies Putinar’s positivstellensatz to translate the constraints into quadratic equalities over
the unknown coefficients.

Step 4) The algorithm uses an external solver for handling the system of quadratic equalities
generated in the previous step. In case of Strong Invariant Synthesis, the external solver
would use the algorithm of [Grigor’ev and Vorobjov 1988] to provide a representative set of
all invariants. In contrast, for Weak Invariant Synthesis, the external solver is an optimization
suite for quadratic programming (QCLP).

3.3 Strong Invariant Synthesis and Theoretical Guarantees
We now provide a formal description of the input to our algorithm for Strong Invariant Synthesis
and then present details of every step.
The StrongInvSynth Algorithm. We present an algorithm StrongInvSynth that gets the following
items as its input:
• A non-recursive non-deterministic program P , with polynomial assignments and guards,
which is generated by the grammar in Figure 1,
• A polynomial pre-condition Pre,
• Three positive integers d, n and ϒ, where d is the degree of polynomials in the desired
inductive invariants, n is the desired size of the invariant generated at each label, i.e. number
of atomic assertions, and ϒ is a technical parameter, used to ensure semi-completeness, which
will be discussed later;

and produces a representative set of all inductive invariants Ind of the program P , such that for all
ℓ ∈ L, the set Ind(ℓ) consists of n atomic assertions of degree at most d . Our algorithm consists of
the following four steps:

Step 1) Setting up templates. Let Vf = {v1,v2, . . . ,vt } and defineM
f
d = {m1,m2, . . . ,mr } as the

set of all monomials of degree at most d over Vf , i.e.Mf
d := {

∏t
i=1v

αi
i | ∀i αi ∈ N0 ∧

∑t
i=1 αi ≤ d}.

At each label ℓ ∈ Lf of the program P , the algorithm generates a template η(ℓ) :=
∧n

i=1 φℓ,i where
each φℓ,i is of the form φℓ,i :=

(∑r
j=1 sℓ,i, j ·mj > 0

)
. Here, the sℓ,i, j ’s are new unknown variables.

For brevity, we call them s-variables. Intuitively, our goal is to synthesize values for s-variables
such that η becomes an inductive invariant.

Example 6. Consider the summation program in Figure 2. We have Vsum = {n, n̄, i, s, retsum}. For
brevity we define r := retsum. Suppose that we want to synthesize a single quadratic assertion as
the invariant at each label. In Step 1, the algorithm creates the following template for each label
ℓ ∈ {1, 2, . . . , 9}:

η(ℓ) := sℓ,1,1 + sℓ,1,2 · n + sℓ,1,3 · n̄ + sℓ,1,4 · i + sℓ,1,5 · s + sℓ,1,6 · r+

sℓ,1,7 · n
2 + sℓ,1,8 · n · n̄ + sℓ,1,9 · n · i + sℓ,1,10 · n · s + sℓ,1,11 · n · r+

sℓ,1,12 · n̄
2 + sℓ,1,13 · n̄ · i + sℓ,1,14 · n̄ · s + sℓ,1,15 · n̄ · r + sℓ,1,16 · i

2+

sℓ,1,17 · i · s + sℓ,1,18 · i · r + sℓ,1,19 · s
2 + sℓ,1,20 · s · r + sℓ,1,21 · r

2 > 0.
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Step 2) Setting up constraint pairs. For each transition e = (ℓ,α , ℓ′) of the CFG of P , the
algorithm constructs a set Λe of constraint pairs of the form λ = (Γ,д) where Γ =

∧m
i=1 (дi ≥ 0) and

д,д1, . . . ,дm are polynomials with unknown coefficients (based on the s-variables). Intuitively, a
condition pair (Γ,д) encodes the following condition:

∀ν ∈ Rf ν |= Γ ⇒ д(ν ) > 0 ≡ ∀ν ∈ RVf (∀дi ∈ Γ дi (ν ) ≥ 0) ⇒ д(ν ) > 0.
The construction is as follows (note that all computations are done symbolically):
• If ℓ ∈ La , for every polynomial д for which д > 0 appears in η(ℓ′), the algorithm adds the
condition pair (Pre(ℓ) ∧ η(ℓ) ∧ (Pre(ℓ′) ◦ α),д ◦ α) to Λe . Note that in this case α is an update
function that assigns a polynomial to every variable and hence the constraint pair can be
computed symbolically.
• If ℓ ∈ Lb , then α is a propositional predicate. The algorithm first writes α in disjunctive
normal form as α = α1 ∨ α2 ∨ . . . ∨ αa . Each αi is a conjunction of atomic assertions. For
every αi and every д such that д > 0 appears in η(ℓ′), the algorithm adds the condition pair
(Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓ′) ∧ αi ,д) to Λe .
• If ℓ ∈ Ld , for every д for which д > 0 appears in η(ℓ′), the algorithm adds the condition pair
(Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓ′),д) to Λe .

Finally, the algorithm constructs the following set Λin:
• For every polynomial д for which д > 0 appears in η(ℓ

f
in), the algorithm constructs the

constraint pair (Pre(ℓfin),д) and adds it to Λin.

Example 7. In the summation program of Figure 2, suppose that Pre(1) := (n ≥ 0) ∧ (i ≥
0) ∧ (−i ≥ 0) ∧ (s ≥ 0) ∧ (−s ≥ 0) ∧ (retsum ≥ 0) ∧ (−retsum ≥ 0) ∧ (n − n̄ ≥ 0) ∧ (n̄ − n ≥ 0) and
Pre(ℓ) := (1 ≥ 0) ≡ true for every ℓ , 1. Note that (n ≥ 0) is the only non-trivial assertion and all
the other assertions are true by definition, given that 1 is the first statement in sum. We provide
some examples of constraint pairs generated in Step 2 of the algorithm:
• 1 ∈ La and e1 = (1, [i ← 1], 2) ∈→ (see the CFG in Figure 3). Hence, we have the following
constraint pair:

(Pre(1) ∧ η(1) ∧ Pre(2)[i ← 1],η(2)[i ← 1])
which is symbolically computed as:

©­­­«
(n ≥ 0) ∧ (i ≥ 0) ∧ (−i ≥ 0)∧
(s ≥ 0) ∧ (−s ≥ 0) ∧ (r ≥ 0)∧

(−r ≥ 0) ∧ (n − n̄ ≥ 0) ∧ (n̄ − n ≥ 0)∧
(s1,1,1 + s1,1,2 · n + . . . + s1,1,21 · r

2 ≥ 0)

,

(s2,1,1 + s2,1,2 · n + . . . + s2,1,4 + . . .+
s2,1,9 · n + . . . + s2,1,13 · n̄ + s2,1,16+

s2,1,17 · s + s2,1,18 · r + . . .+
s2,1,21 · r

2)

ª®®®¬
and added to Λe1 . Note that Pre(2) is true and can be ignored.
• 3 ∈ Lb and e2 = (3, (n − i ≥ 0), 4) ∈→, so the constraint pair (Pre(3) ∧η(3) ∧ Pre(4) ∧ (n − i ≥

0),η(4)) ≡ (η(3) ∧ (n − i ≥ 0),η(4)) is symbolically computed (as above) and added to Λe2 .
• 1 = ℓsumin , so the constraint pair (Pre(1),η(1)) is symbolically computed and added to Λin.

■

Step 3) Translating constraint pairs to quadratic equalities. Let Λ :=
⋃

e ∈→ Λe ∪ Λin be the
set of all constraint pairs constructed in the previous step. For each λ =

(∧m
i=1 (дi ≥ 0) ,д

)
∈ Λ, the

algorithm takes the following actions:
(i) Let V = {v1, . . . ,vt ′} be the set of all program variables that appear in д or the дi ’s. The

algorithm computes the setMϒ = {m
′
1,m

′
2, . . . ,m

′
r ′} of all monomials of degree at most ϒ over

V . Note that ϒ is a technical parameter that was supplied as part of the input.
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(ii) It symbolically computes an equation of the form (2), i.e.
д = ϵ + h0 +

∑m
i=1 hi · дi (†)

where ϵ is a new unknown and positive real variable and each polynomial hi is of the form∑r
j=1 ti, j ·m

′
j . Here, the ti, j ’s are also new unknown variables. Intuitively, we aim to synthesize

values for both t-variables and s-variables in order to ensure the polynomial equality (†). Note
that both sides of (†) are polynomials in R[V ] whose coefficients are quadratic expressions
over the newly-introduced s-, t- and ϵ-variables.

(iii) The algorithm equates the coefficients of corresponding monomials in the left and right hand
sides of (†), hence obtaining a set of quadratic equalities over the new variables.

(iv) The algorithm computes a set of quadratic equalities which are equivalent to the assertion
that the hi ’s can be written as sums of squares. See Section 3.1 for more details.

The algorithm conjunctively compiles all the generated quadratic equalities into a single system.

Remark 3. Based on above, the technical parameter ϒ is the maximum degree of the sum-of-
squares polynomials hi in (†). More specifically, in Step 3, we are applying a special case of Putinar’s
positivstellensatz, in which the sum-of-square polynomials can have a degree of at most ϒ.

Example 8. Consider the first constraint pair generated in Example 7. The algorithm writes (†),
i.e. д = ϵ+h0+

∑10
i=1 hi ·дi where д = s2,1,1+ . . .+s2,1,21 ·r

2 (the polynomial in the second component
of the constraint pair), д1 = n, д2 = i , д3 = −i , . . . , д10 = s1,1,1 + . . . + s1,1,21 (the polynomials in the
first component of the constraint pair) and each hi is a newly generated polynomial containing all
possible monomials of degree at most ϒ, e.g. if ϒ = 2, we have hi = ti,1+ti,2 ·n+ . . .+ti,21 ·r

2, where
each ti, j is a new unknown variable. It then equates the coefficients of corresponding monomials
on the two sides of (†). For example, consider the monomial r 2. Its coefficient in the LHS of (†) is
s2,1,21. In the RHS of (†), there are a variety of ways to obtain r 2, hence its coefficient is the sum of
the following:
• t0,21, i.e. the coefficient of r 2 in h0,
• t6,6, i.e. the coefficient of r 2 in h6 · д6 = h6 · r ,
• −t7,6, i.e. the coefficient of r 2 in h7 · д7 = h7 · (−r ),
• t10,1 · s1,1,21 + t10,6 · s1,1,6 + t10,21 · s1,1,1, i.e. the coefficient of r 2 in h10 · д10.

Hence, the algorithm generates the quadratic equality s2,1,21 = t0,21 + t6,6 − t7,6 + t10,1 · s1,1,21 +

t10,6 · s1,1,6 + t10,21 · s1,1,1 over the s− and t−variables. The algorithm computes similar equalities for
every other monomial. ■

Step 4) Finding representative solutions. The previous step has created a system of quadratic
equalities over s-variables and other new variables. In this step, the algorithm finds a representative
set Σ of solutions to this system by calling an external solver. Then, for each solution σ ∈ Σ, it
plugs the values synthesized for the s-variables into the template η to obtain an inductive invariant
ησ := η[sℓ,i, j ← σ (sℓ,i, j )]. The algorithm outputs I = {ησ | σ ∈ Σ}.

Remark 4 (Representative Solutions). In real algebraic geometry, a standard notion for a
representative set of solutions to a polynomial system of equalities is to include one solution from
each connected component of the set of solutions [Basu et al. 2007]. The classical algorithm for this
problem is called cylindrical algebraic decomposition and has a doubly-exponential runtime [Basu
et al. 2007; Sturmfels 2002]. However, if the coefficients are limited to rational numbers instead of real
numbers, then a subexponentail algorithm is provided in [Grigor’ev and Vorobjov 1988]††. Hence, Step
4 of StrongInvSynth has subexponential runtime in theory.

††No tight runtime analysis is available for this algorithm, but [Grigor’ev and Vorobjov 1988] proves that its runtime is
subexponential.
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Lemma 3.6 (Soundness). Every output of StrongInvSynth is an inductive invariant. More generally,
for every solution σ ∈ Σ obtained in Step 4, the function ησ := η[sℓ,i, j ← σ (sℓ,i, j )] is an inductive
invariant.

Proof. The valuation σ satisfies the system of quadratic equalities obtained in Step 3. Hence, for
every constraint pair (Γ,д) ∈ Λ, д[sℓ,i, j ← σ (sℓ,i, j )] can be written in the form (†). Hence, we have
σ |= (Γ,д). By definition of Step 2, this is equivalent to ησ having the initiation and consecution
properties and hence being an inductive invariant. □

We now prove our completeness result. Our approach is semi-complete for bounded reals in the
sense of [Chatterjee et al. 2016]. Concretely, this means that if we assume the bounded reals model
of computation (see Section 2.3), then any valid inductive invariant can be found by our approach
so long as the technical parameter ϒ is large enough. Recall that ϒ is an upperbound on the degree
of the sum-of-square polynomials (see Remark 3).

Lemma 3.7 (Semi-completeness with Compactness). If the pre-condition Pre satisfies the com-
pactness condition of Theorem 3.1 (Putinar’s Positivstellensatz), i.e. if in every label ℓ, Pre(ℓ) contains
an atomic proposition of the form д ≥ 0 such that the set {ν ∈ RV

f
| д(ν ) ≥ 0} is compact, then for

every inductive invariant Ind that has the form of the template η, there exists a natural number ϒInd,
such that for every technical parameter ϒ ≥ ϒInd, the invariant Ind corresponds to a solution of the
system of quadratic equalities obtained in Step 3 of StrongInvSynth.

Proof. Let Ind be an inductive invariant in the form of the template η. We denote the value of sℓ,i, j
in Ind by σ (sℓ,i, j ). Given that Ind satisfies initiation and consecution, the valuation σ satisfies every
constraint pair (Γ,д) generated in Step 2. By assumption, each such Γ contains an assertion дi ≥ 0 such
that {x ∈ RV

f
| дi (x) ≥ 0} is compact. Hence, by Corollary 3.2, д can be written in the form (†)‡‡. So,

for large enough ϒ, there exists a solution to the system of quadratic equalities that maps each sℓ,i, j to
σ (sℓ,i, j ). □

Remark 5 (Bounded Reals, Compactness and Real-world programs). Note that in the
bounded reals model of computation, every pre-condition enforces that the value of every variable is
between −c and c and also contains the polynomial inequality



Vf


2

2 ≤ c2 · |Vf | (see Section 2.3). The
set of valuations that satisfy the latter polynomial are points in Rf whose distance from the origin is at
most a fixed amount c

√
|Vf |. Hence, this set is closed and bounded and therefore compact, and satisfies

the requirement of Putinar’s positivstellensatz. So, our approach is semi-complete for bounded reals.
It is worth mentioning that almost all real-world programs have bounded variables. For example,

programs that use floating-point variables can at most store a finite number of different values in each
variable, hence their variables are always bounded§§. Also, note that while the completeness result is
dependent on bounded variables, our soundness result holds for general unbounded real variables.

Remark 6 (Non-strict ineqalities). Although we considered invariants consisting of inequal-
ities with positivity witnesses, i.e. invariants of the form

∧
(д(x) > 0), our algorithm can easily be

extended to generate invariants with non-strict inequalities, i.e. invariants of the form
∧
(д(x) ≥ 0).

To do so, it suffices to replace Equation (†) in Step 3 of the algorithm with Equation (1), i.e. remove
the ϵ-variables (positivity witnesses). This results in a sound, but not complete, method for generating
non-strict polynomial invariants.

‡‡Note that Putinar’s positivstellensatz requires the compactness condition and so does Corollary 3.2.
§§In order to obtain a more realistic model of floating-point variables, one should also introduce constraints that ensure

a variable cannot hold an arbitrarily small non-zero value. However, these details are beyond the scope of the current work.
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Remark 7 (Complexity). It is straightforward to verify that Steps 1–3 of StrongInvSynth have
polynomial runtime. Hence, our algorithm provides a polynomial reduction from the Strong Invariant
Synthesis problem to the problem of finding representative solutions of a system of quadratic equalities.
As mentioned earlier, this problem is solvable in subexponential time (see [Grigor’ev and Vorobjov
1988]). Hence, the total runtime of our approach is subexponential, too.

Given the discussion above, we have the following theorem:

Theorem 3.8 (Strong Invariant Synthesis). Given a non-recursive program P and a pre-
condition Pre that satisfies the compactness condition, the StrongInvSynth algorithm solves the Strong
Invariant Synthesis problem in subexponential time. This solution is sound and semi-complete.

Remark 8 (Practical Inefficiency). Despite its subexponential runtime, the algorithm of [Grigor’ev
and Vorobjov 1988] has a poor performance in practice [Hong 1991]. Hence, Theorem 3.8 can only be
considered as a theoretical contribution and is not applicable to real-world programs.

3.4 Weak Invariant Synthesis and Practical Method for Invariant Generation
Due to the practical inefficiency mentioned in Remark 8, in this section we focus on using a very
similar approach to reduce the Weak Invariant Synthesis problem to QCLP. Given that there are
many industrial solvers capable of handling large real-world instances of QCLP, this reduction will
provide a practical sound and semi-complete method for polynomial invariant generation. We now
provide an algorithm for the Weak Invariant Synthesis problem. This algorithm is very similar to
StrongInvSynth, so we only describe the differences.
The WeakInvSynth Algorithm. Our algorithm WeakInvSynth takes the same set of inputs as
StrongInvSynth, as well as an objective function obj over the resulting inductive invariants. We
assume that obj is a linear or quadratic polynomial over the s-variables in the template. Intuitively,
obj serves as a measure of desirability of a synthesized invariant and the goal is to find the most
desirable invariant.

The first three steps of the algorithm are the same as StrongInvSynth. The only difference is in
Step 4, whereWeakInvSynth needs to find only one solution for the computed system of quadratic
equalities, i.e. the solution that maximizes obj. Hence, Step 4 is changed as follows:
Step 4) Finding the optimal solution. Step 3 has generated a system of quadratic equalities. In
this step, the algorithm uses a QCLP-solver to find a solution σ of this system that maximizes the
objective function obj. It then outputs the inductive invariant ησ := η[sℓ,i, j ← σ (sℓ,i, j )].

Example 9. In Example 1, we mentioned that our goal is to prove that the return value of sum is
less than 0.5 · n2 + 0.5 · n + 1, i.e. we want to obtain

0.5 · n̄2 + 0.5 · n̄ + 1 − r > 0 (∗)

at the endpoint label 9 of sum. To do so, our algorithm calls a QCLP-solver over the system of
quadratic equalities obtained in Example 8, with the objective of minimizing the Euclidean distance
between the coefficients synthesized for η(9) and those of (∗). The QCLP-solver obtains a solution
σ (i.e. a valuation to the new unknown s−, t− and ϵ−variables), such that η(9)[s9,i, j :← σ (s9,i, j )] =

0.5 · n̄2 + 0.5 · n̄ + 1 − r > 0, hence proving the desired invariant. The complete solution is provided
in Appendix B.1. ■

Remark 9 (Form of the Objective Function). At first sight, the objective functions considered
above might seem rather bizarre, given that they are functions of the unknown s-variables, i.e. the
coefficients of the invariant which should be synthesized by the algorithm. We remark two points:
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• In our view, this is the most useful formulation. Note that in many cases, such as the example
above and our experimental results in Section 5, the goal of a verification process is to prove
that a certain desired invariant Inv(ℓ) holds at a specific point ℓ of the program. This goal
can be specified as an objective function over the s-variables. However, it does not simplify the
invariant generation problem, because although Inv(ℓ) is given, in order to prove that it is really
an invariant, the algorithm has to generate an inductive invariant at every other point of the
program, too.
• Our approach does not depend on the form of objective functions, hence the objective can be any
other linear or quadratic function (possibly depending on other variables) and our results will
remain intact. It can even be a non-quadratic function, in which case the reduction would be to
general quadratically-constrained optimization.

Remark 10 (QCLP). QCLP is one of the most well-studied optimization problems [Chen et al. 2017;
Linderoth 2005]. It is NP-hard in theory, but in practice, there are many efficient solvers (e.g. [Andersen
and Andersen 2018; IBM 2019; Rothberg et al. 2018]) for handling its real-world instances. These solvers
are scalable and have been successfully applied to important real-world verification problems, such as
solving large POMDPs [Amato et al. 2007].

Note that Lemmas 3.6 and 3.7 (Soundness and Completeness) carry over to this case without any
modification, so we have the following theorem:

Theorem 3.9 (Weak Invariant Synthesis). Given a non-recursive program P , a pre-condition Pre
that satisfies the compactness condition and a linear/quadratic objective function obj, theWeakInvSynth
algorithm reduces the Weak Invariant Synthesis problem to QCLP in polynomial time. This reduction
is sound and semi-complete.

4 POLYNOMIAL INVARIANTS FOR RECURSIVE PROGRAMS
In this section, we extend our algorithms to handle recursion. Recall that the only differences
between recursive and non-recursive inductive invariants are (i) the presence of function-call
statements in recursive programs, (ii) the presence of post-conditions, and (iii) the post-condition
consecution requirement. Note that we expect an invariant generation algorithm for recursive
programs to also synthesize a post-condition for every function. We now describe how to change
the algorithms in the previous section to handle these points and illustrate the changes on an
example program.
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rsum (n ) {
1 : i f n ≤ 0 then
2 : return n

e l se
3 : m : = n − 1 ;
4 : s : = rsum (m ) ;
5 : i f ⋆ then
6 : s : = s + n

e l se
7 : skip

f i ;
8 : return s

f i
9 : }

Fig. 4. A recursive variant of the non-deterministic summation program

Example 10. Consider the program in Figure 4, which is a recursive variant of the non-deterministic
summation program of Figure 2. We use this program to illustrate our approach for handling recur-
sion. ■

The RecStrongInvSynth and RecWeakInvSynth Algorithms. Our algorithm for Strong (resp.
Weak) Invariant Synthesis over a recursive program P is calledRecStrongInvSynth (resp.RecWeakInvSynth).
It takes the same input as StrongInvSynth (resp. WeakInvSynth), except that the input program P
can now be recursive. It performs the same steps as in its non-recursive counterpart, except that
the following additional actions are taken in Steps 1 and 2¶¶:

Step 1.a) Setting up a template for the post-condition. Let M̂f
d = {m̂1,m̂2, . . . ,m̂r̂ } be the set

of all monomials of degree at most d over {retf , v̄1, . . . , v̄n}. The algorithm generates an additional
template µ(f ) :=

∧n
i=1 φf ,i where each φf ,i is of the form φf ,i :=

(∑r̂
j=1 sf ,i, j · m̂j > 0

)
where

the sf ,i, j ’s are additional new s-variables. Intuitively, our goal is to synthesize the right value for
s-variables such that (µ,η) becomes a recursive inductive invariant. As a consequence, µ will be a
post-condition and η a valid invariant.

Example 11. Consider the program in Figure 4 and assume that each desired invariant/post-
condition consists of a single quadratic inequality. The algorithm generates a template µ(rsum)
for the post-condition of rsum. By definition, such a post-condition can only depend on n̄, i.e. the
value passed for the parameter n when rsum is called, and the return value r := retrsum. Hence,
the algorithm generates the following template:

µ(rsum) := srsum,1,1 + srsum,1,2 · n̄ + srsum,1,3 · r + srsum,1,4 · n̄
2 + srsum,1,5 · n̄ · r + srsum,1,6 · r

2 > 0

■

Step 2.a) Setting up constraint pairs at function-call statements. For every transition e =
(ℓ,⊥, ℓ′) where ℓ is a function-call statement of the form v0 := f ′(v1, . . . ,vn) calling a function

¶¶More specifically, the order of steps in the recursive variants of our algorithms is as follows: 1, 1.a, 2, 2.a, 2.b, 3, 4.
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with header f ′(v ′1, . . . ,v
′
n), and every polynomial д for which д > 0 appears in η(ℓ′), the algorithm

defines a new program variable v∗0 and adds the following constraint pair to Λe :(
Pre(ℓ) ∧ η(ℓ) ∧ Pre(ℓf

′

in)[v
′
i ← vi , v̄

′
i ← vi ]∧

µ(f ′)[retf
′

← v∗0 , v̄
′
i ← vi ] ∧ Pre(ℓ′)[v0 ← v∗0]

, д[v0 ← v∗0]

)
,

in which ϕ[x ← y] is the result of replacing every occurrence of x in ϕ with a y. Intuitively, v∗0
models the value of v0 after the function call (equivalently the return value of f ′)∗∗∗. The constraint
pair above encodes the consecution requirement at function-call labels, i.e. it simply requires every
valid abstract path that satisfies the invariant at ℓ to satisfy it at ℓ′, too. Note that a valid abstract
path must satisfy the post-condition and all the pre-conditions.

Example 12. Consider the transition e = (4,⊥, 5) in Figure 4. The algorithm computes the
following constraint and adds it to Λe :(

Pre(4) ∧ η(4) ∧ Pre(1)[n ←m, n̄ ←m]∧
µ(rsum)[retrsum ← s∗, n̄ ←m] ∧ Pre(5)[s ← s∗]

, η(5)[s ← s∗]

)
.

We now explain this constraint in detail. The purpose of this constraint is to enforce the consecution
property in the transition e from label 4 to label 5. Recall that the consecution property requires that
for every valid unit-length abstract path π = ⟨(rsum, 4,ν4), (rsum, 5,ν5)⟩, we have ν4 |= η(4) ⇒
ν5 |= η(5). Since the variable s is updated in line 4, we use s to denote its value before execution of
the recursive call and s∗ to model its value after the function call. Hence, ν5 |= η(5) can be simply
rewritten as η(5)[s ← s∗] (the second component of the above constraint). On the other hand, the
first component of the constraint should encode the properties that (a) ν4 |= η(4) and (b) π is a valid
abstract path. The property (a) is ensured by including η(4) in the first component of the constraint.
Similarly, (b) is encoded as follows:
• Pre(4) encodes the requirement ν4 |= Pre(4).
• Pre(1)[n ←m, n̄ ←m] encodes the requirement that the function rsum can be called using
the parameterm, i.e. thatm satisfies the pre-condition of 1 = ℓrsumin .
• µ(rsum)[retrsum ← s∗, n̄ ←m] checks that the call to rsum is abstracted correctly, i.e. that
the value s∗ returned by rsum respects the post-condition µ(rsum). Note that in this case we
know that rsum was called with parameterm, hence the replacement n̄ ←m.
• Finally, Pre(5)[s ← s∗] encodes the requirement that the program should be able to continue
its execution from point 5 with the new value of s , or equivalently that ν5 |= Pre(5).

■

Step 2.b) Setting up constraint pairs for post-condition consecution. For each transition
e = (ℓ,α , ℓ′) where ℓ is a return statement and ℓ′ = ℓfout for some program function f , the
algorithm generates the following constraint pairs:
• For every polynomial д such that д > 0 appears in µ(f ), the algorithm adds the condition
pair (Pre(ℓ) ∧ η(ℓ) ∧ (Pre(ℓ′) ◦ α),д ◦ α) to Λe .

Informally, these constraints encode the post-condition consecution requirement.

Example 13. Consider the transition e = (2, retrsum ← n, 9) in the program of Figure 4. The
algorithm generates the following constraint and adds it to Λe :(

Pre(2) ∧ η(2) ∧ Pre(9)[retrsum ← n] , µ(rsum)[retrsum ← n]
)
=

∗∗∗Note that v0 is the only variable in f whose value might change after the call to f ′. Hence, we need to distinguish
between the initial value of v0 and its value after the execution of f ′, which is denoted by v∗0 . However, such distinction is
unnecessary for other variables.
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(
Pre(2) ∧ η(2) ∧ Pre(9)[retrsum ← n] ,

srsum,1,1 + srsum,1,2 · n̄ + srsum,1,3 · n + srsum,1,4 · n̄
2

+srsum,1,5 · n̄ · n + srsum,1,6 · n
2 > 0

)
.

Intuitively, the constraint above enforces the post-condition consecution requirement, i.e. that in
every valid execution step going from line 2 to line 9, the post-condition µ(rsum) holds. The exact
same process applies to the transition (8, retrsum ← s, 9) and produces the following constraint:

(
Pre(8) ∧ η(8) ∧ Pre(9)[retrsum ← s] , µ(rsum)[retrsum ← s]

)
=

(
Pre(8) ∧ η(8) ∧ Pre(9)[retrsum ← s] ,

srsum,1,1 + srsum,1,2 · n̄ + srsum,1,3 · s + srsum,1,4 · n̄
2

+srsum,1,5 · n̄ · s + srsum,1,6 · s
2 > 0

)
.

■

The soundness, completeness and complexity arguments carry over from the non-recursive case.
Hence, we have the following theorems:

Theorem 4.1 (Recursive Strong Invariant Synthesis). Given a recursive program P and a
pre-condition Pre that satisfies the compactness condition, the RecStrongInvSynth algorithm solves the
Strong Invariant Synthesis problem in subexponential time. This solution is sound and semi-complete.

Theorem 4.2 (Recursive Weak Invariant Synthesis). Given a recursive program P , a pre-
condition Pre that satisfies the compactness condition and a linear/quadratic objective function obj,
the RecWeakInvSynth algorithm reduces the Weak Invariant Synthesis Problem to QCLP/QCQP in
polynomial time. This reduction is sound and semi-complete.

5 EXPERIMENTAL RESULTS

Implementation.We implemented our algorithms forweak invariant generation, i.e.WeakInvSynth
and RecWeakInvSynth, in Java and used the LOQO optimizer [Vanderbei 2006] for solving the
QCLPs. All results were obtained on an Intel Core i5-7200U (2.5 GHz) machine with 6 GB of RAM,
running Ubuntu 18.04.

Non-recursive Results. We used the benchmarks in [Rodríguez-Carbonell 2018], which contain
programs, pre-conditions, and the desired partial invariants (invariants at a few points of the
program) that are needed for their verification. We ignored benchmarks that contained non-
polynomial assignments/pre-conditions. The results are summarized in Table 2. Note that our
algorithm is not complete for non-strict invariants (Remark 6), but it could successfully generate all
the desired invariants for these benchmarks.
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Benchmark n d |V| |S| Runtime
cohendiv 1 1 6 622 15.236s
divbin 1 1 5 738 5.399s
hard 1 2 6 8324 27.952s

mannadiv 1 2 5 2561 18.222s
wensely 1 2 7 9422 20.051s
sqrt 1 2 4 2030 5.808s

dijkstra 1 2 5 5072 12.776s
z3sqrt 1 2 6 4692 12.944s
freire1 1 2 3 1210 26.474s
freire2 1 2 4 1016 10.670s

euclidex1 1 2 11 11191 1m37.493s
euclidex2 1 2 8 11156 39.323s
euclidex3 1 2 13 36228 3m23.110s
lcm1 1 2 6 6589 17.851s
lcm2 1 2 6 6176 18.714s

prodbin 1 2 5 5038 12.125s
prod4br 1 2 6 10522 43.205s
cohencu 1 2 5 3424 11.778s
petter 1 2 3 1080 20.390s

Table 2. Experimental results over the benchmarks of [Rodríguez-Carbonell 2018]. Each benchmark contained
a single function. |V| is the number of program variables and |S| is the size of the quadratic system, i.e. number
of quadratic equalities and inequalities, generated by our approach.

Recursive Results. Recursive results are shown in Table 3. Our recursive benchmarks can be
divided in two categories:

• Reinforcement Learning for Cyber-physical Systems. We ran our approach on three programs
from [Zhu et al. 2019] which are used for safety verification of reinforcement learning
applications in cyber-physical systems such as Segway transporters. In these examples, the
desired partial invariants are linear. However, the programs themselves contain polynomial
assignments and conditions of degree 4. For this reason, the given partial invariants cannot be
extended to a linear inductive invariant. Therefore, approaches for linear invariant generation
cannot handle these programs.
• Classical Examples. Additionally, we considered the recursive summation program of Figure 4,
as well as its extensions to sums of squares and cubes, in order to show that our algorithm is
able to synthesize invariants of higher degrees. We also considered a program that recursively
computes the largest power of 2 that is no more than a given bound x , showing that our
algorithm can handle recursive invariants with more than one assertion at each label. Finally,
we generated invariants for an implementation of the Merge Sort algorithm that returns the
number of inversions in a given sequence [Cormen et al. 2009]†††. See Appendix B.2 for
details.

†††We replaced comparisons over sequence elements with non-determinism and obtained invariants that proved the
return value, i.e. number of inversions in a sequence of length k , is at most

(k
2
)
.
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Benchmark n d |V| |S| Runtime

Reinforcement Learning
[Zhu et al. 2019]

inverted-pendulum 1 3 7 9951 8m16.093s
strict-inverted-pendulum 4 2 7 14390 9m47.783s

oscillator 1 2 7 3552 39.749s

Classical Examples
(Appendix B.2)

recursive-sum 1 2 3 1700 10.919s
recursive-square-sum 1 3 3 1121 17.438s
recursive-cube-sum 1 4 3 15840 3m41.211s

pw2 2 1 3 430 5.438s
merge-sort 1 2 13 33002 1m18.093s

Table 3. Experimental results over recursive programs. |V| is the number of program variables and |S| is the
size of the quadratic system, i.e. number of quadratic equalities and inequalities, generated by our approach.

Remark 11. Note that our runtimes are typically under a minute, while the maximum runtime
is close to 10 minutes. This shows that our approach is applicable in practice and that the reduction
to QCLP does not suffer from the same impracticalities as the algorithm of [Grigor’ev and Vorobjov
1988], which, according to [Hong 1991], would take years to solve problems of this size. Also note that
previous approaches with completeness guarantees, such as [Colón et al. 2003], are not applicable to
our benchmarks due to the presence of non-linear invariants/assignments.

This being said, our approach is still much slower than previous sound approaches that do not provide
any completeness guarantee, e.g. [Farzan and Kincaid 2015]. Hence, there is currently a trade-off between
exactness (completeness guarantees) and efficiency. While the theoretical semi-completeness guarantee
is a key novelty of our approach, we expect that further advancements in quadratic programming,
which is an active area of research in optimization, would narrow the runtime gap.

6 CONCLUSION
We presented a sound and semi-complete method to generate polynomial invariants for programs
with polynomial updates. On the theoretical side, we showed that our approach has subexponential
complexity. On the practical side, we demonstrated how to generate polynomial invariants using
QCLP. While there are many sound and efficient methods for polynomial invariant generation, they
lack guarantees of completeness. The key novelty of our method is to ensure semi-completeness,
albeit at the cost of efficiency. Using further optimization techniques in conjunction with our
method, or finding further practical improvements to quadratic constraint solving that can be
utilized for improving the efficiency of polynomial invariant generation are directions of future
work.
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A DETAILED SYNTAX

Detailed Grammar. Figure 5 provides a more detailed grammar specifying the syntax of non-
deterministic recursive programs with polynomial assignments and guards.

⟨prog⟩ ::= ⟨func⟩
|⟨func⟩ ⟨prog⟩

⟨func⟩ ::= ⟨fname⟩ ‘(’ ⟨varlist⟩ ‘)’ ‘{’ ⟨stmtlist⟩ ‘}’
⟨varlist⟩ ::= ⟨var⟩

|⟨var⟩ ‘,’ ⟨varlist⟩
⟨stmtlist⟩ ::= ⟨stmt⟩

|⟨stmt⟩ ‘;’ ⟨stmtlist⟩
⟨stmt⟩ ::= ‘skip’

|⟨var⟩ ‘:=’ ⟨expr⟩
|‘if’ ⟨bexpr⟩ ‘then’ ⟨stmtlist⟩ ‘else’ ⟨stmtlist⟩ ‘fi’
|‘if’ ‘⋆’ ‘then’ ⟨stmtlist⟩ ‘else’ ⟨stmtlist⟩ ‘fi’
|‘while’ ⟨bexpr⟩ ‘do’ ⟨stmtlist⟩ ‘od’
|⟨var⟩ := ⟨fname⟩ ‘(’ ⟨varlist⟩ ‘)’
|‘return’ ⟨expr⟩

⟨bexpr⟩ ::= ⟨literal⟩
|‘¬’ ⟨bexpr⟩
|⟨bexpr⟩ ‘∨’ ⟨bexpr⟩
|⟨bexpr⟩ ‘∧’ ⟨bexpr⟩

⟨literal⟩ ::= ⟨expr⟩ ‘<’ ⟨expr⟩
|⟨expr⟩ ‘≤’ ⟨expr⟩
|⟨expr⟩ ‘≥’ ⟨expr⟩
|⟨expr⟩ ‘>’ ⟨expr⟩

⟨expr⟩ ::= ⟨var⟩
|⟨constant⟩
|⟨expr⟩ ‘+’ ⟨expr⟩
|⟨expr⟩ ‘−’ ⟨expr⟩
|⟨expr⟩ ‘∗’ ⟨expr⟩

Fig. 5. Detailed Syntax of Non-deterministic Recursive Programs

Syntactic Assumptions. We assume that each function in F is defined exactly once in the program,
function headers do not contain duplicate variables, and each function call statement provides
exactly as many parameters as defined in the header of the function that is being called. Moreover,
we assume that no variable appears in both sides of a function call statement.

B EXPERIMENTAL RESULTS
B.1 The Invariant Synthesized for Our Running Example
Our weak invariant generation algorithm, i.e. WeakInvSynth, generates the following inductive
invariant for the running example of Figure 2:
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ℓ Pre(ℓ) Ind(ℓ)
1 n̄ = n,n ≥ 1 0.13 − 0.01 · n̄ − 0.05 · r − 0.07 · s − 0.24 · i + 0.06 · n + 0.16 · n̄2 − 0.08 · n̄ · r

+0.11 · r 2 − 0.13 · n̄ · s + 0.18 · r · s + 0.15 · s2 − 0.13 · n̄ · i + 0.16 · r · i
+0.24 · i · s + 0.23 · i2 + 0.07 · n̄ · n − 0.52 · r · n − 0.67 · n · s − 0.66 · i · n + 1.10 · n2 > 0

2 true 0.09 − 0.01 · n̄ − 0.18 · r − 0.30 · s + 0.09 · i + 0.11 · n + 0.03 · n̄2 + 0.01 · n̄ · r
+0.13 · r 2 − 0.03 · n̄ · s + 0.16 · r · s + 0.23 · s2 − 0.01 · n̄ · i − 0.18 · r · i

−0.30 · i · s + 0.09 · i2 + 0.01 · n̄ · n + 0.11 · i · n > 0
3 true 0.49 + 0.01 · n̄ + 0.11 · r − 0.59 · s − 0.30 · i − 0.29 · n

+0.13 · r 2 − 0.01 · n̄ · s − 0.35 · r · s + 0.60 · s2 + 0.05 · r · i
−0.01 · i · s + 0.16 · i2 − 0.04 · r · n − 0.06 · n · s − 0.04 · i · n + 0.18 · n2 > 0

4 true 0.20 − 0.12 · n̄ + 0.01 · r − 0.01 · s − 0.22 · i − 0.07 · n
+1.08 · n̄2 + 0.10 · n̄ · r + 0.15 · r 2 − 0.49 · n̄ · s − 0.08 · r · s + 0.10 · s2 − 0.65 · n̄ · i − 0.15 · r · i
+0.16 · i · s + 0.14 · i2 − 0.57 · n̄ · n − 0.11 · r · n + 0.13 · n · s + 0.24 · i · n + 0.22 · n2 > 0

5 true 0.22 − 0.12 · n̄ + 0.01 · r − 0.02 · s − 0.05 · i − 0.28 · n + 1.08 · n̄2 + 0.10 · n̄ · r
+0.15 · r 2 − 0.49 · n̄ · s − 0.08 · r · s + 0.10 · s2 − 0.63 · n̄ · i − 0.13 · r · i

+0.16 · i · s + 0.14 · i2 − 0.60 · n̄ · n − 0.12 · r · n + 0.13 · n · s + 0.22 · i · n + 0.24 · n2 > 0
6 true 0.22 − 0.12 · n̄ + 0.01 · r − 0.02 · s − 0.05 · i − 0.28 · n + 1.08 · n̄2 + 0.10 · n̄ · r

+0.15 · r 2 − 0.49 · n̄ · s − 0.08 · r · s + 0.10 · s2 − 0.63 · n̄ · i − 0.13 · r · i
+0.16 · i · s + 0.14 · i2 − 0.60 · n̄ · n − 0.12 · r · n + 0.13 · n · s + 0.22 · i · n + 0.24 · n2 > 0

7 true 0.15 − 0.09 · n̄ − 0.12 · r + 0.03 · s − 0.07 · i − 0.13 · n + 0.23 · n̄2 + 0.48 · n̄ · r
+0.35 · r 2 − 0.31 · n̄ · s − 0.40 · r · s + 0.13 · s2 + 0.16 · n̄ · i + 0.13 · r · i

−0.09 · i · s + 0.06 · i2 − 0.24 · n̄ · n − 0.24 · r · n + 0.18 · n · s − 0.10 · i · n + 0.14 · n2 > 0
8 true 0.18 − 0.11 · n̄ + 0.01 · r + 0.50 · i − 0.79 · n + 1.09 · n̄2 + 0.11 · n̄ · r

+0.15 · r 2 − 0.48 · n̄ · s − 0.08 · r · s + 0.10 · s2 − 0.57 · n̄ · i − 0.09 · r · i
+0.16 · i · s + 0.18 · i2 − 0.66 · n̄ · n − 0.16 · r · n + 0.12 · n · s + 0.13 · i · n + 0.27 · n2 > 0

9 true 1 + 0.5 · n̄ − r + 0.5 · n̄2 > 0
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B.2 Recursive Examples
We used the following recursive examples as benchmarks. Desired assertions are shown in brackets.
Pre-conditions are enclosed in # signs. In all cases our algorithm synthesizes an inductive invariant
that contains the desired assertions.

recursive-sum (n ) {
# n ≥ 0 #
i f n ≤ 0 then

return n

e l se
m : = n − 1 ;
s : = recursive-sum (m ) ;
i f ⋆ then

s : = s + n

e l se
skip

f i ;
return s

f i
[retrecursive-sum < 0.5 · n̄2 + 0.5 · n̄ + 1 ] }

recursive-square-sum (n ) {
# n ≥ 0 #
i f n ≤ 0 then

return n

e l se
m : = n − 1 ;
s : = recursive-sum (m ) ;
i f ⋆ then

s : = s + n ∗ n

e l se
skip

f i ;
return s

f i
[retrecursive-square-sum < 0.34 · n̄3 + 0.5 · n̄2 + 0.17 · n̄ + 1 ] }

recursive-cube-sum (n ) {
# n ≥ 0 #
i f n ≤ 0 then

return n

e l se
m : = n − 1 ;
s : = recursive-sum (m ) ;
i f ⋆ then

s : = s + n ∗ n ∗ n

e l se
skip

f i ;
return s

f i
[retrecursive-cube-sum < 0.25 · n̄2 · (n̄ + 1)2 + 1 ] }

pw2 (x ) {
/ / computes the largest power of 2 that is ≤ x

# x ≥ 1 #
i f x ≥ 2 then

y : = 0.5 ∗ x ;
return 2 ∗ pw2(y)

e l se
return 1

f i
[retpw2 ≤ x̄ ∧ 2 · retpw2 > x̄] }
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merge-sort ( s , e ) / / sorts and returns number of inversions in[s ..e]
{

# e ≥ s #
i f s ≥ e then

return 0
e l se

i : = 0.5 ∗ s + 0.5 ∗ e ;
j : = ⌊i⌋ ;
i : = j + 1 ;
r : = merge-sort(s, j) ;
ans : = merge-sort(i, e) ;
ans : = ans + r ;
k : = s ;

while i ≤ e do
while k ≤ j do

i f ⋆ then / / array[k] ≤ array[i]

k : = k + 1 ;
skip / / temp.push_back (array[k] )

e l se / / array[k] > array[i]

ans : = ans + j − k + 1 ; / / add inversions
i : = i + 1 ;
skip / / temp.push_back (array[i] )

f i
od ;
skip ; / / temp.push_back (array[i] )
i : = i + 1

od ;

while s ≤ e do
skip ; / / copy from temp to array
s : = s + 1

od ;

return ans

f i
[retmerge-sort < 0.5 · (ē − s̄) · (ē − s̄ + 1) + 1 ] }
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