N

N
N

HAL

open science

Fast audio-haptic prototyping with mass-interaction
physics

James Leonard, Jerome Villeneuve

» To cite this version:

James Leonard, Jerome Villeneuve. Fast audio-haptic prototyping with mass-interaction physics.
HAID 2019 - International Workshop on Haptic and Audio Interaction Design, Mar 2019, Lille, France.

hal-02015740v2

HAL Id: hal-02015740
https://hal.science/hal-02015740v2
Submitted on 25 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02015740v2
https://hal.archives-ouvertes.fr

HAID 2019, Lille, France

Fast audio-haptic prototyping with mass-interaction physics

JAMES LEONARD*" AND JEROME VILLENEUVE"!

TUNIV. GRENOBLE ALPES, CNRS, GRENOBLE INP”, GIPSA-LAB,
38000 GRENOBLE, FRANCE,
* INSTITUTE OF ENGINEERING UNIV. GRENOBLE ALPES

This paper presents ongoing work on the topic of physical modelling
and force-feedback interaction. Specifically, it proposes a frame-
work for rapidly prototyping virtual objects and scenes by means of
mass-interaction models, and coupling the user and these objects
via an affordable multi-DoF haptic device. The modelled objects can
be computed at the rate of the haptic loop, but can also operate at
a higher audio-rate, producing sound. The open-source design and
overall simplicity of the proposed system makes it an interesting so-
lution for introducing both physical simulations and force-feedback
interaction, and also for applications in artistic creation. This first
implementation prefigures current work conducted on the develop-
ment of modular open-source mass-interaction physics tools for the
design of haptic and multisensory applications.

INTRODUCTION

In recent years, the access to digital fabrication technologies coupled
with the surge of do-it-yourself electronics and a drive from the Virtual
Reality industry have givenrise to a new interest in haptics: once consid-
ered only as costly lab equipment reserved to specific academic fields,
a new generation of force-feedback and vibrotactile devices now offer
affordable open designs, that can be built, customised or tampered with,
and used by individuals for a vast range of purposes including musical
& artistic creation [1, 12].

Prototyping haptic interactions generally involves creating and comput-
ing a physical scene that the user will interact with through the device.
However, tools for designing the virtual scenes (such as CHAI3D') are
often difficult to apprehend. We argue that following the increased ac-
cessibility of haptic solutions, equally accessible tools should allow for
simple and fast prototyping of modular virtual scenes, applicable to any
number of purposes, including haptic-audio multi-modal VR.

This paper proposes such a framework using a new open-source mass-
interaction physical modelling engine and an existing open-source /
open-hardware haptic device. First, we briefly introduce the context
of force-feedback interaction technologies and physical modelling con-
cepts for designing multisensory virtual scenes. Our prototyping frame-
work is then presented and illustrated through a series of examples. Fi-
nally, we will offer perspectives for future work.

NATURAL INTERACTION WITH DIGITAL REALITIES

Throughout the history of information technologies, advances in com-
putation methods and process have always evolved in tight relationship
with technologies allowing humans to interact with the machine. In re-
centyears, global trends in HCI have shifted from input peripherals (such
as the keyboard and mouse), towards natural interaction through speech

*james.leonard@gipsa-lab.fr
tjerome.villeneuve@gipsa-lab.fr
Thttp://www.chai3d.org

Copyright is held by authors

recognition, motion capture and gesture recognition, and virtual reality
technologies.

Blending digital realities with the real physical world is now common-
place, and to this end technologies have evolved significantly both in per-
formances and affordability, driven essentially by the video-game and
entertainment industry. However, focus has primarily been on visual as-
pects (CGI animation, etc.), sometimes sound (through immersive 3D
audio techniques), but rarely on the sense of touch or physical presence
inside a virtual scene, using haptic (or force-feedback) technologies.

Indeed, the sense of touch relies on a coupled action-perception loop
[11], distributed across the entire human body. Hence, when developing
or using haptic systems capable of "rendering" this interaction with a
virtual entity, one is faced with two main technological challenges:

+ Simulating the immediacy of the action-perception loop: in a force-
feedback chain the computer receives position data from a sensor,
computes interaction forces based on a virtual scene, and sends
these forces data back to mechanical transducers?. All of these
operations take time, and hardware/software architectures must
allow a sufficiently fast loop to convey the impression of immedi-
ate action-reaction, and also for stability reasons [14, 10].

Sufficient degrees of freedom: very few human gestures can be
reduced to a small number of degrees of freedom, and applied in
only one or a few points. However, designing haptic systems with
a large number of DoF and/or contact points poses many mechan-
ical challenges. Various systems have been proposed, from pen-
like interfaces [20], to exoskeletons [13] or haptic gloves [2], but in
each case they are generally specifically tailored to a specific type
of interaction.

Developments and applications of haptic devices for artistic creation
can be traced back to the late 1970s [8]. Since then, a steadily growing
scientific community has formed around the use of force-feedback and
E/ibaotactile technologies applied to the fields of music and digital arts
22].

OPEN-HARDWARE HAPTIC SYSTEMS

Due to their mechanical complexity and often dedicated hardware/soft-
ware, haptic systems are generally considered costly. Among others, we
can cite the Phantom system [20], or the TGR from ACROE [9]. The gam-
ing industry has led to some cheaper alternatives, such as the Novint
Falcon [19], at the cost of reduced performance. What's more, the rapid
evolution of computer systems and peripherals has rendered the soft-
ware and hardware compatibility of proprietary/commercial solutions
increasingly problematic as drivers are not always maintained for recent
operating systems.

2|n the case of impedance-based haptic devices.



HAID 2019, Lille, France

Partially in response to these issues, several open-hardware systems
have been proposed, such as the simple low-tech haptic systems de-
signed by Bill Verplank [25, 24]. More recently, the rise of digital fabri-
cation technologies and open-electronics have given rise to new, afford-
able and open-source & hardware haptic devices, such as Edgar Berdahl
& A. Kontogeorgokapopoulos' FireFader [1], or the Haply® system [7].
These systems are cheaper to build and repair, use simple communica-
tion protocols, and minimise or entirely circumvent the use of any pro-
prietary software.

We decided to use the Haply system for our work. Similarly to the Fire-
Fader, it relies on an Arduino-based board (the Haply M0) to process
sensor data and drive motors, and communicates over USB (through a
virtual serial port) with a simulation context running on a host machine.
However, the FireFader offers one or several 1 DoF sliders that are con-
nected to one-dimensional sound synthesis simulations, whereas the
Haply is a 2 DoF (cf. Figure 1) system that can be extended to 4, al-
lowing exploration of more complex interaction modalities with multi-
dimensional virtual environments. The open-source hAPI programming
interface allows to easily configure the haptic device and interact with a
virtual scene.

Figure 1: The 2-DoF Haply force-feedback device

DESIGNING MULTIMODAL VIRTUAL SCENES

A question of equal importance to the force-feedback peripheral itself
concerns how a multimodal (visual, audio and haptic) virtual scene can
be designed, computed and "rendered" for the user to see, hear and feel.
We categorise two main approaches, shown in Figure 2:

Distributed Approach Complex virtual scenes are often distributed
into separate computational processes for each modality [23]. Visual
rendering is handled at a relatively low rate (50-100 Hz, latency of up
to 40ms tolerated), audio is processed at a high-rate (44.1 kHz, with la-
tency under 10ms), and physics are generally computed around 1kHz,
with critical latency conditions for the haptic loop (1ms or less). This
scheme is especially adapted in cases where audio or visual processes
may rely on abstract (non-physical) algorithms. However, it does pose
the problem of defining mapping and control relationships between the
processes. If the correlation between different modalities is not suffi-
ciently explicit, the sensation of believability and presence of the virtual
objects may suffer.

Single Model Approach ~ An alternative way of designing multimodal vir-
tual scenes is to model them with a single formalism (cf. Figure 2b).
Physical modelling allows creating scenes of deformable objects that
exhibit visual, mechanical and acoustic behaviour. The object that we
touch is the one we see, and that we hear. This approach is sometimes

3http://www.haply.co

referred to as multisensory, and guarantees coherence between the dif-
ferent modalities. Works such as [16, 1] use this approach with mass-
interaction physical modelling, a formalism presented below.

MASS-INTERACTION PHYSICAL MODELLING

Representing mechanical systems by means of punctual masses linked
together by elements such as springs or dampers, and submitted to vari-
ous constraints, is one of the most common ways to describe and calcu-
late their behaviour. From Newton’s laws we know the equation of move-
ment of a mass in a given referential; the action of springs, dampers
and other elements can be mathematically described or approximated
by well known formulas. By resolving the equation system composed of
the equations of each element in a mechanical construction, we obtain
the global behaviour.

Mass-interaction physical modelling and simulation [4] relies on exactly
this principle: the inertial behaviours of material elements and interac-
tions (springs, dampers, etc.) are described by simple discrete-time dif-
ference equations, following a given discretisation scheme (see [3, 15]
for algorithms and implementation details). Positions and forces can
be expressed as scalar values (for 1D systems) or as 2D or 3D vectors
according to the spatial attributes of the scene.

Mechanical constructions are then built by assembling masses and in-
teractions together in a network, setting physical parameters and initial
conditions, and then computing the behaviour over time. Figure 3 shows
a topological representation of a mass-interaction model.

Owing to their inherent simplicity and efficient computation, lumped
methods such as mass-interaction physics have been widely used and
studied in the field of haptics, for the design of virtual deformable mat-
ter and haptic interaction models [6, 18, 10], including for direct force-
feedback interaction with virtual musical instruments [17, 1]. However,
we notice a relative lack of open and accessible frameworks or tools
allowing for modular and unified design of multisensory virtual objects
and scenes, that can be considered for their visual, acoustical, haptic
behaviour, or indeed any combination of the three.

In the following section, we present our contribution to such a framework
in the form a mass-interaction physics engine that can be coupled with
an open-hardware force-feedback device (in our case, the Haply) in order
to create any kind of haptic or audio-haptic virtual scene.

A PHYSICS-BASED HAPTIC PROTOTYPING FRAMEWORK

Our prototyping framework is based on PROCESSING*, an open-source
Java based programming environment tailored for sketching 2D and 3D
animated scenes. It is currently one of the most popular tools used to
introduce and teach interactive and visual programming, while remain-
ing capable of complex rendering, communication with hardware, and
even physical modelling®. What's more, hAPI, the Haply programming
interface, is written in Java and is directly fitted for running within Pro-
CESSING sketches. Although, itis not an audio programming environment
as such, external libraries can be used to add real-time sound synthesis
functionality.

A MASS-INTERACTION PHYSICS ENGINE IN JAVA

MIPHYSICS is a new open-source modular mass-interaction physics en-
gine prototype, recently developed by the authors. As opposed to ex-
isting physical modelling libraries within PROCESSING, MIPHYSICS allows
designing 3D physical objects through modular networks of masses and
interactions, easily integrating any type of user interaction (for manip-
ulation, parameter modification, dynamic topology changes, etc.), and
building any type of visualisation process on top of the created model.

“https://processing.org/
Shttps://github.com/diwi/PixelFlow



HAID 2019, Lille, France

VISUAL
FEEDBACK

VIRTUAL *
RENDERING

PROCESS ,

VIRTUAL -
PHYSICS

INTERACTION SCENE

S3ION3AN3d3a
® SNOILV13Y
TOYLNOD LOVYHLSavY

AUDIO

SYNTHESIS
PROCESS -

AUDIO
FEEDBACK

VISUAL
FEEDBACK

VIRTUAL

DEFORMABLE
OBJECT

HAPTIC
INTERACTION

AUDIO
FEEDBACK

Figure 2: a) Distributed approach to multi-modal virtual scenes (left), b) single model approach (right).

0. 0-0-9
@Mﬂ@@@wwq

-+ e
+ -+
4» -|—

ree
rees

Figure 3: Representation of a mass-interaction model, composed of dif-
ferent types of mass and interaction elements.

As in any mass-interaction system, the main types of physical elements
proposed by MIPHYSICS are:

+ Mass-type modules: Three-dimensional masses, oscillators and
fixed-Points, as well as 2D masses (constrained on the z plane) or
1D masses (that only vibrate along the z plane).

+ Interaction-type modules: Three-dimensional interactions such
as springs, dampers, contacts, enclosing bubbles, etc. For spe-
cific use cases, 1D springs have also been implemented.

One of the main design goals for MIPHYSICS is simplicity of use and
direct access to each element of a physical model, including during
run-time. Each mass or interaction is labelled with a specific name or
identifier that can be used to connect the element to others, to read its
state or change its physical parameters during the simulation. Meta-
categories of physical elements can be created to allow for grouped
parameter modifications. In addition to specific physical parameters,
global "air friction" and gravity direction/force of the entire virtual scene
can be configured and modified. Figure 4 shows the general code struc-
ture when creating a physical model.

INTEGRATION OF THE HAPTIC DEVICE

From the point of view of the physical simulation, the haptic device is
represented by an avatar: a mass-type module, called Hapticlnput3D.
Instead of calculating a new position based on its previous states and
the forces applied to it (as a regular mass would), this module sends
its force signal out to the real haptic device's transducers and sets its
position from the haptic device's sensor data.

We use the existing hAPI functions to transform the encoder values of
the two motors into a 2D position by calculating the kinematics of the
linkage arms, and reciprocally to translate forces applied in a 2D space
to torque values applied to the motors. Therefore, the end-user has only
to consider the device’s end-effector in a 2D plane and connect it directly
to the simulation.

/* global variable */
PhysicalModel mdl;
simRate = 300;
dispRate = 60;

void setup() {
/* ...general setup code. =

mdl = new PhysicalModel (simRate, dispRate, paramSystem.ALGO_UNITS);
/* Create a mass, connected to fixed points via Spring Dampers */

mdl.addMass3D("mass", m, new Vect3D (0., 0., 0.), new Vect3D(0., 0., 1.));
mdl.

mdl.

addGround3D ("ground1"”
addGround3D ("ground2"

, new Vect3D(dist, 0., 0.));
, new Vect3D(—dist, 0., 0.));

/* ...add other material elements... */

mdl.
mdl.

addSpringDamper3D ("spring1”, 1., 0.1,
addSpringDamper3D ("spring2", 1., 0.15,

0.01,
0.01,

"mass”,
"mass",

"ground1");
"ground2");

/* ...add other interactions... */

mdl.init();
}

void draw () {

/* Calculate Physics */
mdl. draw_physics () ;

/* Get the position of the "mass" module */
PVector pos = mdl.getMatPVector("mass");

/* ... Draw the scene, the mass and the springs ... */

Figure 4: Creating a mass-interaction physical model with MIPHYSICS.

The 8-bit resolution of the encoders can result in strong quantisation
of the position data and fairly "jumpy" physical behaviour. We chose to
feed the raw position value into an Exponential Weighted Moving Average
filter with a high weighting decrease. As such the filter adds latency, the-
oretically impacting haptic stability. However, given the low resolution
position data, the trade-off of smoother data versus the small increase
in latency leads to no observable increase of instability.

Time has not yet allowed for complete real/virtual calibration of the
haptic device. For now, the real — wvirtual position gain alpha and
the virtual — real force gain beta (cf. Figure 5) are empirically de-
fined by the user depending on the mechanical impedance of the virtual
scene/objects.

END USER ENVIRONMENT: PROCESSING

Haptic Simulation Framework In the case of non-audio haptic simu-
lations, the PROCESSING sketch is organised as shown in Figure 5: the
haptic input/output communication with the Haply Board, the kinemat-
ics and the physical computation all run in a dedicated thread running
at a fixed-rate, generally 1kHz. The draw() method renders the model by
observing its state at a lower display rate. The rendering process can be
generic (visualise all mass-type and interaction-type elements accord-
ing to pre-defined drawing routines) or custom-coded by the user.

NG s wN =

il

12
13
14
15
16
17
18
19
20
21

22
23
24
25

27
28
29
30
31
32
33
34
35

37



HAID 2019, Lille, France

enc. val
N x2 Forward
Haply Device Haply MO Kinematics
‘ 3;’1‘5353% —— Board ltorque cmd
2x motors (firmware) x2 Inverse
Kinematics

Processing Sketch

haptic thread
(~1 kHz)

drawing thread
(~60 Hz)

Mass-Interaction Model
Virtual
Scene
Renderer

EWMA
(smoothing)

(openGL, etc.)

Ul Callback System

parameter
modfification, etc

Figure 5: Full user-model interaction chain for non-audio haptic simulations. The kinematic calculations, physical computation and position/force
1/0 are all performed in a haptic thread, running at 1 kHz. The model is rendered at a lower rate in the draw() method.

Portability and ease of use is an important consideration. The sketches
run on Mac, Linux and Windows, the only noticeable difference mea-
sured being the scheduling performance of the haptic thread: early tests
show a higher dropout rate (missed steps in the haptic-loop) on a Win-
dows system, correlated with system load; however, on a standard Linux
0S the scheduling is more robust, and very few steps are missed. Per-
formance in these conditions is satisfactory, meaning there is no need
for a dedicated Real-Time OS, sometimes used in high-performance syn-
chronous systems [17].

Real-time Audio-Haptic Simulation Framework Handling real-time au-
dio streams in Processing can be done using the MINIM library®, which
implements the common Unit Generator paradigm, found in environ-
ments such as Super Collider [21]. A PHYUGEN class has been cre-
ated, extending the MINIM UGEN template. It contains the mass interac-
tion model (built and initialized in the class constructor), and computes
steps whenever needed (by overriding the uGenerate() method).

The system is slightly more complex here:

« The haptic thread runs at 1kHz, getting the haptic I/0 and perform-
ing the kinematic transformations. At each step, it sets a new po-
sition value from incoming sensor data, and discharges the force
from the model to the haptic device (sending it to the motors).

« The sound synthesis UGEN runs at the audio rate (44.1 kHz), pro-
viding new audio data by computing steps of the physical model
whenever needed through a callback API. The haptic avatar mod-
ule upsamples and smoothes raw position data from the haptic
device, using by the EWMA filter. Symmetrically, force applied by
the model to the avatar is accumulated into a buffer until it is con-
sumed by the haptic thread (see [17] for details regarding multirate
audio mass-interaction systems with haptics).

+ The visualisation thread (draw() method) observes the model po-
sitions and creates the visual representation.

A lock synchronisation system ensures mutual exclusion in the criti-
cal sections of the haptic, sound synthesis and rendering threads, thus
avoiding temporary glitches & errors that can be induced by concurrent
memory access (e.g. reading the model state in the display thread while
it is being updated by the physics thread).

bhttp://code.compartmental.net/tools/minim/

RESULTS & EXAMPLES

A number of Haply-specific examples can be found the in the example
section of the MIPHYsICS github repository’, as well as ready-to-use tem-
plates in which the user has only to add his/her physical model code and
visualisation specificities. Below, we present four simple cases:

HAPTIC EXAMPLE 1: HEAVY MASS CHAIN

This simple example attaches a chain of 3D masses to the haptic de-
vice (which moves on the x-y plane). The springs are fairly loose, but the
combined weight of the virtual masses is enough to add significant iner-
tial behaviour to the system: when dragging the chain, one can feel the
effort needed to set them in motion, and must work with/against their
momentum when stopping or changing direction.

O-g

Figure 6: Chain of masses (green) attached to the Haply system (red) by
springs.

HAPTIC EXAMPLE 2: ENCLOSED MARBLES

In this model, two-hundred 3D masses are enclosed within a sphere (us-
ing bubble interactions) and above a flat surface (using planeContact
modules). Each mass has contact interactions set up with all other
masses, as well as with the haptic input module. Gravity and air friction
are configured so that the masses fall down onto the plane, and even-
tually stop moving. By "rummaging" around with the haptic device, the
user interacts simultaneously with many masses, sending them bounc-
ing up against the edges, giving a global "stirring" motion, and so forth.
Dropping the haptic thread rate to 200 Hz allows to increase the number
of masses to 600, at the cost of reduced bandwidth (less sharp dynam-
ics) in the physics computation.

"https://github.com/mi-creative/miPhysics_Processing



HAID 2019, Lille, France

... ege® e &P
: S bee #‘: S8, 3
.0.0‘.3

® %

Figure 7: The "Enclosed Marbles" example sketch.

AupI0-HAPTIC EXAMPLE 1: PLUCKED STRING

Using the real-time audio architecture described in the previous section,
this model illustrates the simple case of a plucked string. The string it-
self is composed of masses constrained to move along the x-y plane
(keeping a constant z value), connected by damped 3D springs, and
ended with two fixed points.

Contact interactions link the haptic device to each mass of the string,
with a given sphere of action (analogous to the "width" of the plectrum),
so that the user can pluck the string in any part (in the middle, near the
bridge, etc.) and also excite and rapidly dampen the string in specific ar-
eas to obtain palm-mute or natural harmonic effects. A similar example
combines multiple strings placed below each other, so that they can be
played one at a time or strummed together.

.\.___—-.

Figure 8: 2D Plucked String Example. The haptic mass (red) is pressed
against the string.

It can be noted that in the case of 2D strings, the resting length of the
springs relative to the elongation imposed by the extremities is a key fac-
tor in the physical behaviour, in particular regarding non-linear tension
effects [5] such as the "twang" or pitch glide at high excitation levels.
This will be illustrated in the last example.

Aupi0-HAPTIC EXAMPLE 2: THE RECOIL STRING

This model explores the non-linearities of 2D strings by pushing the situ-
ation to the extreme: the string is still attached to a fixed point at one end
but the other end is a very heavy mass set with an initial velocity. This
mass slowly stretches the string until it recoils, then loosening up until
it is completely limp, before stretching again. What's more, by pluck-
ing or exerting pressure on the string, the user can influence the course
of the heavy mass, resulting in bizarre "worm-like" behaviour, the string
sometimes wrapping almost entirely around the haptic device (as seen
in Figure 9.

These four examples serve as a small introduction to what is possible
with the platform. The modular design of the physics and the haptic in-
teraction allow creating all kinds of virtual objects and interaction sce-
narios, the only real limit being the computational complexity that can fit

Figure 9: Various screen shots of the "recoil” string. The green point is
fixed, whereas the yellow one is a very heavy mobile mass, causing the
string to tighten/loosen, wrap around the Haply device, etc.

inside a haptic or audio frame. Preliminary results (on a fairly worn-down
laptop running Debian 7) show a maximal attainable model complexity
of approximately ten thousand 3D elements at 1 kHz for haptics-only
sketches, and four hundred elements for audio-rate sketches.

PERSPECTIVES & FUTURE WORK

This work offers several possible axes for improvement:

1. Performance, stability and robustness of the haptic device: the
Haply's 3D printed plastic parts lack rigidity and present some
play between mechanical elements (especially concerning the link-
age arm pivots). This could be addressed by making sturdier alu-
minium parts based on the provided mechanical schematics. The
motor performance also presents some limits for small amounts
of force feedback (it takes a certain threshold of command torque
for the motor to actually move). For these reasons, implementing
stiff spring interactions directly between the device and a virtual
point is problematic, as unstable oscillations tend to occur.

2. Calibration of the real/virtual chain: through mechanical charac-
terisation of the device and dedicated calibration models, it should
be possible to set exactly how a mass of 1gram in the virtual model
is projected into the real world, and reciprocally, helping to stan-
dardise the parametrisation of virtual models and make them eas-
ier to port to & from other haptic devices.

3. Optimisation of the simulation engine: this work is a prototype de-
veloped entirely in Java and has prioritised object-oriented con-
cepts and global intelligibility over lean, speed-oriented process-
ing. Switching the core engine to a more powerful language such
as C++ while keeping user-friendly model building functions is an
interesting perspective for future work.

The authors feel that the presented system constitutes an interesting
base for teaching students about modular physical modelling and force-
feedback interaction : the overall framework is very straightforward and
concise, placing emphasis on the concepts of mass-interaction physical
modelling, the specific time constraints of haptic feedback loops and
real-time audio computation. The entire system is open-source, multi-
platform and very affordable. As with any newly released open-source
tool, the next step is to measure its ease-of-use and robustness in a
variety of applications and contexts, hopefully developing a community
of users and contributors over time.



HAID 2019, Lille, France

CONCLUSION

In this paper, we have presented a new open-source & open-
hardware framework for prototyping audio-haptic interaction with mass-
interaction models. Based on the Haply device, a new physics engine
prototype, and the PROCESSING sketching environment, users can easily
create scenes composed of virtual objects and interact with them. Two
scenarios allow the physical computation to either be calculated in sync
with the haptic data acquisition & computation loop, or in a higher rate
thread in the form of a physics-based Unit Generator for real time audio.

A first batch of examples shows promising results. The 2D haptic de-
vice offers new interactions with virtual acoustical objects; augmenting
the current Haply device to 3 or 4 DoF should open further perspectives.
The simplicity and affordability of the proposed system makes it an ideal
candidate for teaching students about force-feedback interaction and
mass-interaction physical modelling. More generally, is serves as a gen-
eral framework for modular, open haptic interaction design. We aim to
host a series of introductory workshops in the coming months.

REFERENCES

[1 E. Berdahl and A. Kontogeorgakopoulos. The firefader: Simple,
open-source, and reconfigurable haptic force feedback for musi-
cians. Computer Music Journal, 37(1):23-34, 2013.

[2] J.Blake and H. B. Gurocak. Haptic glove with mr brakes for virtual
reality. IEEE/ASME Transactions On Mechatronics, 14(5):606-615,
2009.

[3] C. Cadoz and J.-L. Florens. The physical model : Modeling and
simulating the instrumental universe. In Representations of Musical
Signals, pages 227-268. MIT Press, 1991.

[4] C. Cadoz, A. Luciani, and J. L. Florens. Cordis-anima: a modeling
and simulation system for sound and image synthesis: the general
formalism. Computer music journal, 17(1):19-29, 1993.

[5] N. Castagné and C. Cadoz. Physical modeling synthesis: balance
between realism and computing speed. In Proceedings of the COST
G-6 conference on the digital audio effects (DAFX-00), page 6, 2000.

[6] M. C. Cavusoglu and F. Tendick. Multirate simulation for high fi-
delity haptic interaction with deformable objects in virtual environ-
ments. In Robotics and Automation, 2000. Proceedings. ICRA’00.
IEEE International Conference on, volume 3, pages 2458-2465.
IEEE, 2000.

[71 S.Ding and C. Gallacher. The haply development platform: A mod-
ular and open-sourced entry level haptic toolset. In Extended Ab-
stracts of the 2018 CHI Conference on Human Factors in Computing
Systems, page D309. ACM, 2018.

[8] J.-L. Florens. Coupleur Gestuel Retroactif pour la Commande et le
Controle de Sons Synthetises en Temps-Reel. PhD thesis, Institut
National Polytechnique de Grenoble, 1978.

[9] J.-L. Florens, A. Luciani, C. Cadoz, and N. Castagné. Ergos: Multi-
degrees of freedom and versatile force-feedback panoply. In Euro-
Haptics 2004, 2004.

[10] J.-L. Florens, A. Voda, and D. Urma. Dynamical issues in interac-
tive representation of physical objects. In EuroHaptics 2006 con-
ference, pages 213-219, 2006.

[11] R.B.Gillespie and S. 0'Modhrain. Embodied cognition as a motivat-
ing perspective for haptic interaction design: A position paper. In
World Haptics Conference (WHC), 2011 IEEE, pages 481-486. IEEE,
2011.

[12] M. Giordano and M. M. Wanderley. Perceptual and technological

issues in the design of vibrotactile-augmented interfaces for music

technology and media. In International Workshop on Haptic and

Audio Interaction Design, pages 89-98. Springer, 2013.

[13] A. Gupta and M. K. O’'Malley. Design of a haptic arm exoskeleton

for training and rehabilitation. IEEE/ASME Transactions on mecha-

tronics, 11(3):280-289, 2006.

[14] V. Hayward, 0. R. Astley, M. Cruz-Hernandez, D. Grant, and

G. Robles-De-La-Torre. Haptic interfaces and devices. Sensor Re-

view, 24(1):16-29, 2004.

[15] A. Kontogeorgakopoulos and C. Cadoz. Cordis anima physical

modeling and simulation system analysis. In 4th Sound and Mu-

sic Computing Conference 2007, pages 275-282. National and

Kapodistrian University of Athens, 2007.

[16] J.Leonard and C. Cadoz. Physical modelling concepts for a collec-

tion of multisensory virtual musical instruments. In New Interfaces

for Musical Expression 2075, pages 150-155, 2015.

[17] J. Leonard, N. Castagné, C. Cadoz, and A. Luciani. The msci plat-

form: A framework for the design and simulation of multisensory

virtual musical instruments. In Musical Haptics, pages 151-169.

Springer, 2018.

[18] S. Marliere, F. Marchi, J.-L. Florens, A. Luciani, and J. Chevrier. An

augmented reality nanomanipulator for learning nanophysics: The.

In International Conference on Cyberworlds 2008, pages 94-101.

IEEE, 2008.

[19] S. Martin and N. Hillier. Characterisation of the novint falcon hap-

tic device for application as a robot manipulator. In Australasian

Conference on Robotics and Automation (ACRA), pages 291-292.

Citeseer, 2009.

[20] T. H. Massie, J. K. Salisbury, et al. The phantom haptic interface:

A device for probing virtual objects. In Proceedings of the ASME

winter annual meeting, symposium on haptic interfaces for virtual

environment and teleoperator systems, volume 55, pages 295-300.

Citeseer, 1994.

[21] J. McCartney. Rethinking the computer music language: Supercol-

lider. Computer Music Journal, 26(4):61-68, 2002.

[22] S. Papetti and C. Saitis. Musical haptics: Introduction. In Musical

Haptics, pages 1-7. Springer, 2018.

[23] S. Sinclair and M. M. Wanderley. A run-time programmable sim-
ulator to enable multi-modal interaction with rigid-body systems.
Interacting with Computers, 21(1-2):54-63, 2008.

[24] W. Verplank. Haptic music exercises. In Proceedings of the 2005
conference on New interfaces for musical expression, pages 256-
257. National University of Singapore, 2005.

[25] W. Verplank, M. Gurevich, and M. Mathews. The plank: designing
a simple haptic controller. In Proceedings of the 2002 conference
on New interfaces for musical expression, pages 1-4. National Uni-
versity of Singapore, 2002.



