J. J. Taylor and E. Strack, Pearl production, pp.273-302

M. H. Gervis and N. A. Sims, London: Manila: Overseas Development Administration of the United Kingdom; International Center for Living Aquatic Resources Management, 1992.

P. Kishore and P. C. Southgate, A detailed description of pearl-sac development in the black-lip pearl oyster, Pinctada margaritifera (Linnaeus 1758), Aquac Res, vol.47, pp.2215-2241, 2016.

C. Ky, C. Blay, M. Sham-koua, V. Vanaa, C. Lo et al., Family effect on cultured pearl quality in black-lipped pearl oyster Pinctada margaritifera and insights for genetic improvement, Aquat Living Resour, vol.26, pp.133-178, 2013.

S. Ellis and M. Haws, Producing pearls using the black-lip pearl oyster (Pinctada margaritifera), Aquafarmer Inf Sheet, vol.8, 1999.

R. Kvingedal, B. S. Evans, C. E. Lind, J. Taylor, M. Dupont-nivet et al., Population and family growth response to different rearing location, heritability estimates and genotype x environment interaction in the silverlip pearl oyster (Pinctada maxima), Aquaculture, vol.304, pp.1-6, 2010.

D. R. Jerry, R. Kvingedal, C. E. Lind, B. S. Evans, J. Taylor et al., Donor-oyster derived heritability estimates and the effect of genotype x environment interaction on the production of pearl quality traits in the silver-lipped pearl oyster, Pinctada maxima, Aquaculture, pp.66-71, 2012.

E. Mcginty, K. R. Zenger, J. U. Taylor, B. S. Evans, and D. R. Jerry, Diagnostic genetic markers unravel the interplay between host and donor oyster contribution in cultured pearl formation, Aquaculture, vol.316, pp.20-24, 2011.

E. L. Mcginty, B. S. Evan, J. Taylor, and D. R. Jerry, Xenografts and pearl production in two pearl oyster species, P. Maxima and P. Margaritifera: effect on pearl quality and a key to understanding genetic contribution, Aquaculture, vol.302, pp.175-81, 2010.

C. Blay, S. Planes, and C. Ky, Crossing phenotype heritability and candidate gene expression in grafted black-lipped pearl oyster Pinctada margaritifera, an animal chimera, J Heridity, 2018.

C. Ky, R. Okura, S. Nakasai, and D. Devaux, Quality trait signature at archipelago scale of the cultured pearls produced by the black-lipped pearl oyster (Pinctada margaritifera Var. cumingi) in French Polynesia, J Shellfish Res, vol.35, pp.827-862, 2016.

O. Latchere, L. Moullac, G. Gaertner-mazouni, N. Fievet, J. Magré et al., Influence of preoperative food and temperature conditions on pearl biogenesis in Pinctada margaritifera, Aquaculture, vol.479, pp.176-87, 2017.
URL : https://hal.archives-ouvertes.fr/hal-02155808

S. Li, J. Huang, C. Liu, Y. Liu, G. Zheng et al., Interactive effects of seawater acidification and elevated temperature on the transcriptome and biomineralization in the pearl oyster Pinctada fucata, Environ Sci Technol, vol.50, pp.1157-65, 2016.

Y. Gueguen, Y. Czorlich, M. Mastail, L. Tohic, B. Defay et al., Yes, it turns: experimental evidence of pearl rotation during its formation, R Soc Open Sci, vol.2, p.150144, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01681957

A. Tayalé, Y. Gueguen, C. Treguier, J. L. Grand, N. Cochennec-laureau et al., Evidence of donor effect on cultured pearl quality from a duplicated grafting experiment on Pinctada margaritifera using wild donors, Aquat Living Resour, vol.25, pp.269-80, 2012.

C. Ky, C. Blay, M. Sham-koua, C. Lo, and P. Cabral, Indirect improvement of pearl grade and shape in farmed Pinctada margaritifera by donor "oyster" selection for green pearls, Aquaculture, vol.432, pp.154-62, 2014.

C. Blay, M. Sham-koua, V. Vonau, R. Tetumu, P. Cabral et al., Influence of nacre deposition rate on cultured pearl grade and colour in the blacklipped pearl oyster Pinctada margaritifera using farmed donor families, Aquac Int, vol.22, pp.937-53, 2014.

C. Ky, C. Blay, V. Aiho, P. Cabral, L. Moullac et al., Macro-geographical differences influenced by family-based expression on cultured pearl grade, shape and colour in the black-lip 'pearl oyster' Pinctada margaritifera: a preliminary bi-local case study in French Polynesia, Aquac Res, vol.48, pp.270-82, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01469652

C. Blay, S. Planes, and C. Ky, Optimal age of the donor graft tissue in relation to cultured pearl phenotypes in the mollusc, Pinctada margaritifera, PLOS ONE, vol.13, p.198505, 2018.

C. Ky, S. Nakasai, S. Parrad, F. Broustal, D. Devaux et al., Variation in cultured pearl quality traits in relation to position of saibo cutting on the mantle of black-lipped pearl oyster Pinctada margaritifera, Aquaculture, vol.493, pp.85-92, 2018.

C. Ky, N. Molinari, E. Moe, and S. Pommier, Impact of season and grafter skill on nucleus retention and pearl oyster mortality rate in Pinctada margaritifera aquaculture, Aquac Int, vol.22, pp.1689-701, 2014.

S. Lemer, D. Saulnier, Y. Gueguen, and S. Planes, Identification of genes associated with shell color in the black-lipped pearl oyster, Pinctada margaritifera, BMC Genomics, vol.16, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01260141

D. B. Jones, D. R. Jerry, S. Foret, D. Konovalov, and K. R. Zenger, Genome-wide SNP validation and mantle tissue transcriptome analysis in the silver-lipped pearl oyster, Pinctada maxima, Mar Genomics, vol.15, pp.647-58, 2013.

D. B. Jones, D. R. Jerry, M. S. Khatkar, H. W. Raadsma, and K. R. Zenger, A high-density SNP genetic linkage map for the silver-lipped pearl oyster, Pinctada maxima: a valuable resource for gene localisation and marker-assisted selection, BMC Genomics, vol.14, p.810, 2013.

D. B. Jones, D. R. Jerry, M. S. Khatkar, G. Moser, H. W. Raadsma et al., Quantitative trait loci and genetic association analysis reveals insights into complex pearl quality traits in donor silver-lipped pearl oysters, Aquaculture, vol.434, pp.476-85, 2014.

N. Inoue, R. Ishibashi, T. Ishikawa, T. Atsumi, H. Aoki et al., Comparison of expression patterns of shell matrix protein genes in the mantle tissues between high-and low-quality pearl-producing recipients of the pearl oyster, Pinctada fucata, Zoolog Sci, vol.28, pp.32-38, 2011.

N. Inoue, R. Ishibashi, T. Ishikawa, T. Atsumi, H. Aoki et al., Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac?, Mar Biotechnol N Y N, vol.13, pp.48-55, 2011.

C. Blay, S. Planes, and C. Ky, Cultured pearl surface quality profiling by the shell matrix protein gene expression in the biomineralised pearl sac tissue of Pinctada margaritifera, Mar Biotechnol, 2018.

B. Marie, C. Joubert, A. Tayalé, I. Zanella-cléon, C. Belliard et al., Different secretory repertoires control the biomineralization processes of prism and nacre deposition of the pearl oyster shell, Proc Natl Acad Sci, vol.109, pp.20986-91, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00786507

B. Marie, D. J. Jackson, P. Ramos-silva, I. Zanella-cléon, N. Guichard et al., The shell-forming proteome of Lottia gigantea reveals both deep conservations and lineage-specific novelties, FEBS J, vol.280, pp.214-246
URL : https://hal.archives-ouvertes.fr/hal-00771503

Y. Isowa, I. Sarashina, D. Setiamarga, and K. Endo, A comparative study of the shell matrix protein aspein in pterioid bivalves, J Mol Evol, vol.75, pp.11-19, 2012.

T. Takeuchi, I. Sarashina, M. Iijima, and K. Endo, In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein, FEBS Lett, vol.582, pp.591-597, 2008.

D. Tsukamoto, I. Sarashina, and K. Endo, Structure and expression of an unusually acidic matrix protein of pearl oyster shells, Biochem Biophys Res Commun, vol.320, pp.1175-80, 2004.

S. Elhadj, J. Yoreo, J. R. Hoyer, and P. M. Dove, Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth, Proc Natl Acad Sci, vol.103, pp.19237-19279, 2006.

Y. Shi and M. He, Differential gene expression identified by RNA-Seq and qPCR in two sizes of pearl oyster (Pinctada fucata), Gene, vol.538, pp.313-335, 2014.

S. Li, C. Liu, J. Huang, Y. Liu, S. Zhang et al., Transcriptome and biomineralization responses of the pearl oyster Pinctada fucata to elevated CO 2 and temperature, Sci Rep, vol.6, p.18943, 2016.

X. Zhao, Q. Wang, Y. Jiao, R. Huang, Y. Deng et al., Identification of genes potentially related to biomineralization and immunity by transcriptome analysis of pearl sac in pearl oyster Pinctada martensii, Mar Biotechnol, vol.14, pp.730-739, 2012.

Y. Shi, C. Yu, Z. Gu, X. Zhan, Y. Wang et al., Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralization genes, Mar Biotechnol, vol.15, pp.175-87, 2013.

H. Li, B. Liu, G. Huang, S. Fan, B. Zhang et al., Characterization of transcriptome and identification of biomineralization genes in winged pearl oyster (Pteria penguin) mantle tissue, Comp Biochem Physiol Part D Genomics Proteomics, vol.21, pp.67-76, 2017.

C. Joubert, D. Piquemal, M. B. Manchon, L. Pierrat, F. Zanella-cléon et al., Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralization, BMC Genomics, vol.11, p.613, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00542855

V. Teaniniuraitemoana, A. Huvet, P. Levy, C. Klopp, E. Lhuillier et al., Gonad transcriptome analysis of pearl oyster Pinctada margaritifera: identification of potential sex differentiation and sex determining genes, BMC Genomics, vol.15, p.491, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01719157

X. Huang, M. Zhao, W. Liu, Y. Guan, Y. Shi et al., Gigabase-scale transcriptome analysis on four species of pearl oysters, Mar Biotechnol, vol.15, pp.253-64, 2013.

F. Marin, G. Luquet, B. Marie, and D. Medakovic, Molluscan shell proteins: primary structure, origin, and evolution, Curr Top Dev Biol, vol.80, pp.80006-80014, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00197133

B. Marie, J. Arivalagan, L. Mathéron, G. Bolbach, S. Berland et al., Deep conservation of bivalve nacre proteins highlighted by shell matrix proteomics of the Unionoida Elliptio complanata and Villosa lienosa, J R Soc Interface, vol.14, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01470764

K. M. Kocot, F. Aguilera, C. Mcdougall, D. J. Jackson, and B. M. Degnan, Sea shell diversity and rapidly evolving secretomes: insights into the evolution of biomineralization, Front Zool, vol.13, p.23, 2016.

S. Y. Bahn, B. H. Jo, Y. S. Choi, and H. J. Cha, Control of nacre biomineralization by Pif80 in pearl oyster, Sci Adv, vol.3, 2017.

Z. Gu, X. Yin, C. Yu, X. Zhan, Y. Shi et al., Expression profiles of nine biomineralization genes and their relationship with pearl nacre thickness in the pearl oyster, Pinctada fucata martensii dunker, Aquac Res, vol.47, pp.1874-84, 2016.

J. Arivalagan, T. Yarra, M. B. Sleight, V. A. Duvernois-berthet, E. Clark et al., Insights from the Shell proteome: biomineralization to adaptation, Mol Biol Evol, vol.34, pp.66-77, 2017.

D. J. Jackson, C. Mcdougall, B. Woodcroft, P. Moase, R. A. Rose et al., Parallel evolution of nacre building gene sets in molluscs, Mol Biol Evol, vol.27, pp.591-608, 2010.

X. Wang, Z. Liu, and W. Wu, Transcriptome analysis of the freshwater pearl mussel (Cristaria plicata) mantle unravels genes involved in the formation of shell and pearl, Mol Genet Genomics MGG, vol.292, pp.343-52, 2017.

S. Li, Y. Liu, J. Huang, A. Zhan, L. Xie et al., The receptor genes PfBMPR1B and PfBAMBI are involved in regulating shell biomineralization in the pearl oyster Pinctada fucata, Sci Rep, vol.7, 2017.

C. Joubert, C. Linard, G. L. Moullac, C. Soyez, D. Saulnier et al., Temperature and food influence shell growth and mantle gene expression of shell matrix proteins in the pearl oyster Pinctada margaritifera, PLoS One, vol.9, 2014.

C. Blay, S. Parrad, P. Cabral, V. Aiho, and C. Ky, Correlations between cultured pearl size parameters and PIF-177 biomarker expression in Pinctada margaritifera families reared in two contrasting environments, Estuar Coast Shelf Sci, vol.182, pp.254-60, 2016.

D. Feng, Q. Li, H. Yu, L. Kong, and S. Du, Identification of conserved proteins from diverse shell matrix proteome in Crassostrea gigas: characterization of genetic bases regulating shell formation, Sci Rep, vol.7, 2017.

M. Suzuki, K. Saruwatari, T. Kogure, Y. Yamamoto, T. Nishimura et al., An acidic matrix protein, Pif, is a key macromolecule for nacre formation, Science, vol.325, pp.1388-90, 2009.
DOI : 10.1126/science.1173793

B. T. Livingston, C. E. Killian, F. Wilt, A. Cameron, M. J. Landrum et al., A genome-wide analysis of biomineralization-related proteins in the sea urchin Strongylocentrotus purpuratus, Dev Biol, vol.300, pp.335-383, 2006.

L. Luyer, BMC Genomics, vol.20, p.111, 2019.

E. B. Chuong, N. C. Elde, and C. Feschotte, Regulatory activities of transposable elements: from conflicts to benefits, Nat Rev Genet, vol.18, pp.71-86, 2017.

C. D. Hirsch and N. M. Springer, Transposable element influences on gene expression in plants, Biochim Biophys Acta BBA-Gene Regul Mech, vol.2017, pp.157-65, 1860.

M. Trizzino, Y. Park, M. Holsbach-beltrame, K. Aracena, K. Mika et al., Transposable elements are the primary source of novelty in primate gene regulation, Genome Res, 2017.

M. Ahmed and P. Liang, Transposable elements are a significant contributor to tandem repeats in the Human genome, Comparative and Functional Genomics, 2012.

A. Sharma, T. K. Wolfgruber, and G. G. Presting, Tandem repeats derived from centromeric retrotransposons, BMC Genomics, vol.14, p.142, 2013.
DOI : 10.1186/1471-2164-14-142

URL : https://bmcgenomics.biomedcentral.com/track/pdf/10.1186/1471-2164-14-142

J. Liu, D. Yang, S. Liu, S. Li, G. Xu et al., Microarray: a global analysis of biomineralization-related gene expression profiles during larval development in the pearl oyster, Pinctada fucata, BMC Genomics, vol.16, 2015.

A. M. Bolger, M. Lohse, and B. Usadel, Trimmomatic: a flexible trimmer for Illumina sequence data, Bioinformatics, vol.15, pp.2114-2134, 2014.

B. J. Haas, A. Papanicolaou, M. Yassour, M. Grabherr, P. D. Blood et al., De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis, Nat Protoc, vol.8, pp.1494-512, 2013.

F. A. Simão, R. M. Waterhouse, P. Ioannidis, E. V. Kriventseva, and E. M. Zdobnov, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs, Bioinformatics, vol.31, pp.3210-3212, 2015.

R. Smith-unna, C. Boursnell, R. Patro, J. M. Hibberd, and S. Kelly, TransRate: reference-free quality assessment of de novo transcriptome assemblies

, Genome Res, vol.26, pp.1134-1178, 2016.

T. D. Wu, J. Reeder, M. Lawrence, G. Becker, and M. J. Brauer, GMAP and GSNAP for genomic sequence alignment: enhancements to speed, accuracy, and functionality, Statistical Genomics: Methods and Protocols, pp.283-334, 2016.

A. Bairoch and R. Apweiler, The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000, Nucleic Acids Res, vol.28, pp.45-53, 2000.

S. F. Altschul, T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Res, vol.25, pp.3389-402, 1997.

C. Ky, C. Lau, M. S. Koua, and C. Lo, Growth performance comparison of Pinctada margaritifera juveniles produced by thermal dhock or gonad scarification spawning procedures, J Shellfish Res, vol.34, pp.811-818, 2015.

E. L. Mcginty, K. R. Zenger, D. B. Jones, and D. R. Jerry, Transcriptome analysis of biomineralisation-related genes within the pearl sac: host and donor oyster contribution, Mar Genomics, vol.5, pp.27-33, 2012.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan et al., The sequence alignment/map format and SAMtools, Bioinformatics, vol.25, pp.2078-2087, 2009.

S. Anders, P. T. Pyl, and W. Huber, HTSeq-a Python framework to work with highthroughput sequencing data, Bioinformatics, vol.31, pp.166-175, 2015.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, p.550, 2014.

D. V. Klopfenstein, L. Zhang, B. S. Pedersen, F. Ramírez, W. Vesztrocy et al., GOATOOLS: a Python library for gene ontology analyses, Sci Rep, vol.8, p.10872, 2018.

K. J. Livak and T. D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(?Delta Delta C(T)) method. Methods San Diego Calif, vol.25, pp.402-410, 2001.

C. L. Andersen, J. L. Jensen, and T. F. Ørntoft, Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets, Cancer Res, vol.64, pp.5245-50, 2004.

S. W. Hartley and J. C. Mullikin, QoRTs: a comprehensive toolset for quality control and data processing of RNA-Seq experiments, BMC Bioinformatics, vol.16, 2015.

S. W. Hartley and J. C. Mullikin, Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq, Nucleic Acids Res, vol.44, p.15, 2016.