
HAL Id: hal-02014418
https://hal.science/hal-02014418

Submitted on 11 Feb 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Code generation for multi-phase tasks on multicore with
distributed memory
Frédéric Fort, Julien Forget

To cite this version:
Frédéric Fort, Julien Forget. Code generation for multi-phase tasks on multicore with distributed
memory. Junior Researcher Workshop on Real-Time Computing, Oct 2018, Poitiers, France. �hal-
02014418�

https://hal.science/hal-02014418
https://hal.archives-ouvertes.fr

Code generation for multi-phase tasks on multicore with
distributed memory∗

Frédéric Fort
CRIStAL

Univ. Lille, CNRS, Centrale Lille, UMR 9189
Lille, F-59000, France

frederic.fort@univ-lille.fr

Julien Forget
CRIStAL

Univ. Lille, CNRS, Centrale Lille, UMR 9189
Lille, F-59000, France

julien.forget@univ-lille.fr

ABSTRACT
Predicting the temporal behavior of a real-time system em-
bedded on a multicore is a challenging task. One of the
main reasons is that cores share access to the main memory,
and contentions on the memory bus cause execution delays.
Multi-phase task models, where computations phases and
communication phases are separated (such as PREM [16]
and AER [6]), have been proposed to both mitigate these
delays and make them easier to analyze.

In this paper we present a compilation process, part of
the Prelude compiler [15], that automatically translates a
high-level system specification, consisting in a set of peri-
odic tasks with data-dependencies, into a C program that
operates according to the AER multi-phase model. The gen-
erated C program is targeted for a multicore platform with
distributed memory and includes code to perform commu-
nications between the different memories of the platform.

Keywords
Code generation, multi-phase tasks, distributed memory

1. INTRODUCTION
Multicore hardware platforms are now widely used for the

implementation of embedded systems, due to their potential
for increasing system performances. However, the imple-
mentation of real-time systems on such a platform remains
a challenge. Indeed, the increase in performance comes at
the cost of more complex hardware, which implies that the
timing behaviour of a program becomes more difficult to
predict. One of the key factors in this complexity is mem-
ory being shared between the different cores. Contentions
between cores to access the main memory cause significant
execution delays. Furthermore, these delays are hard to pre-
dict, since they require to finely analyze the code of each task
and interferences between the tasks.

To simplify the analyses of task interferences, the PRe-
dictable Execution Model (PREM) [16] advocates to decou-
ple communication phases from computation phases. The
AER task model [6] follows this approach and splits each
task of the system into three phases. The Acquisition phase
loads task data and instructions from the main memory into
the core’s local memory. Then, the Execution phase per-
forms the task computations using only local memory. Fi-
nally, the Restitution phase copies results of the E-phase
back into the main memory, for use by other tasks. Such a

∗Partially funded by the French National Research Agency,
Corteva project (ANR-17-CE25-0003)

model simplifies the timing analysis because: 1) communi-
cation phases are clearly identified, so the system scheduler
can knowingly schedule communication [1, 13] and avoid
contentions altogether; 2) worst-case execution time analy-
sis of computation phases is simplified because it does not
need to take bus contentions into account [16].

In this paper, we present a compilation process that gen-
erates C code compliant with the AER model. The input
of the compiler is a high-level specification, in the Pre-
lude [15] language, where the system is described as a set
of periodic tasks with data-dependencies. The target hard-
ware is a multicore platform with distributed memory, that
is to say with one shared main memory and one local mem-
ory for each core. According to a predefined distribution of
tasks onto cores, the compiler generates a separate C code
for each core. The generated C code includes mechanisms to
execute tasks periodically, synchronize task communications
across cores and perform data transfers from local memories
to the main memory. To validate our approach, we have
executed the generated code on an FPGA platform with
two NIOS-II Altera processors, using the ERIKA Real-Time
Operating System by Evidence [7]. Our approach simplifies
the development process by automating the translation from
the high-level specification in Prelude to the low-level im-
plementation in C. In particular, low-level implementation
concerns related to task communications become the respon-
sibility of the compiler, and can thus be handled in a more
systematic and, we believe, safer way.

2. RELATED WORKS
Separating real-time tasks into phases that decouple com-

munication from computations was proposed in the PREM
approach [16] and later refined in the AER task model [6].
PREM was first designed for single core, but later extended
to multicore in [19, 1, 3, 18, 13]. These works mainly focus
on the problem of co-scheduling computation on the CPUs
and communications on the bus. Instead, we focus on low-
level implementation through automated code generation,
and deliberately ignore the scheduling problem, assuming it
is handled using existing techniques.

The Prelude language [15], which we take as input of
our compilation process, belongs to the Synchronous Lan-
guages family [4]. Compilation of synchronous languages
for distributed hardware platforms was studied in [2, 12,
11], but with a single execution thread per CPU. Compi-
lation into multi-thread/multi-task code was proposed for
Prelude in [15] and more recently for Scade in [14], but
with a single-phase task model.

3. MODEL
In this section, we first present the software and hardware

model on which we will rely for the rest of the paper.

3.1 Task graph
Prelude is a synchronous data-flow programming lan-

guage. In comparison with more traditional synchronous
languages like e.g. Lustre, it adds primitives dedicated
to the specification of real-time constraints and produces
concurrent multi-task code instead of mono-task code. The
translation of a Prelude program into C code consists of
two main steps. First, the Prelude program is translated
into a task graph. Then, the task graph is translated into C
code. The present work did not require any modification on
the first step (see [8] for a complete presentation), so in this
paper we will consider the task graph as a starting point.

The system software is modelled as a directed acyclic task
graph (T ,P). Each τi ∈ T is a task instantiated periodically
with period Ti ∈ N∗ and with relative deadline Di ≤ Ti.

In the AER model, each task τi is divided in three phases,
Acquisition phase Ai, Execution phase Ei and Restitution
phase Ri. During the Acquisition phase, data is copied from
global memory into local memory. The Execution then per-
forms all operations on local-memory only. Finally, in the
Restitution phase the results of the Execution phase are
copied back from local memory into global memory.

A directed edge (τi, τj) ∈ P (where P ⊆ T × T) repre-
sents a data-dependency from τi to τj . We consider causal
data-dependencies, meaning that data-dependencies induce
precedence constraints. Let Pi, Pj be two phases (either A,
E or R phases), Pi → Pj denotes a precedence constraint
from Pi to Pj . Data-dependencies induce the following con-
straints: 1) for all (τi, τj) ∈ P we have Ri → Aj ; 2) for all
Ai, Ei, Ri we have Ai → Ei → Ri.

3.2 Distributed memory
For more flexibility, and in order to simplify the com-

parison with other hardware architectures in the future, we
opted for a hardware solution that relies on an FPGA devel-
opment board (Cyclone II by Altera). Our reference hard-
ware system is depicted in Figure 1. It contains two NIOS-II
CPUs, one SRAM-chip and its controller, two on-chip RAMs
(scratchpads) and IOs. The SRAM and the IOs are part
of the development board; everything else is directly im-
plemented in the FPGA. NIOS-II CPUs access the SRAM
concurrently, but each on-chip RAM may only be accessed
by a single CPU. Local memory guarantees one 32-bit word
access per clock cycle (similar to a L1 cache), while it takes
8 cycles for an SRAM access. Local memory is addressable,
unlike cache memory. When the CPU emits a memory re-
quest, the Altera Avalon Interconnect dispatches the request
to the correct memory controller (either local RAM or global
SRAM), based on the memory address.

This kind of architecture is radically different from cache-
based architectures, where cache memory is used in place
of local RAM. The main difference is that in our case, dis-
tributed memory is apparent at compilation-time, i.e. in
the program code. Therefore, memory transfers between
global and local memories are the responsibility of the pro-
gram, while they are handled automatically by cache co-
herency mechanisms in cache-based architectures. An im-
portant benefit of our architecture is that the cost of mem-
ory accesses is completely known statically, while it is hard

FPGA

NIOS
CPU 0

SP 0
NIOS
CPU 1

SP 1

Altera Avalon Interconnect

SRAM controller

SRAM IO
Altera Cyclone II

Figure 1: The hardware design

if

o

CPU 0 CPU 1

Figure 2: A simple task graph

to predict with cache-based architectures. This is an ad-
vantage for real-time systems, where predictability is of the
utmost importance.

4. CODE GENERATION WITH PRELUDE
In this section we detail the translation from a task graph

into AER C code dedicated to our hardware platform. We
illustrate the compilation for the simple task graph shown
in Figure 2. In this example, the task i represents a sensor,
task f performs logical operations and task o is an actuator.
The intermediate task is located on CPU 0, while the other
two are on CPU 1.

4.1 Compilation chain
The compilation of a Prelude program is done in two

steps, as shown in Figure 3. First the high-level system
specification in Prelude is compiled into C code. This code
implements the task set corresponding to the Prelude pro-
gram. It contains a C function for each task, communication-
and precedence-related logic, along with data-structures de-
scribing task real-time properties. Then, to produce binary
code, those sources are compiled along with the imported
node functions and the OS-specific wrapper. Imported node
functions are programmed directly in C and contain the
application-specific logic. The OS-specific wrapper contains
code identical for each application using a specific platform,

Prelude program task set (C)

OS-specific
wrapper (C)

binary

imported node
functions (C)

Figure 3: Overview of the Prelude compilation
chain

void f A () {
i f f = copy f rom buf f e r (i f g l o b a l) ;

}

void f E () {
i f o u t = f (i f f) ;

}

void f R () {
c opy t o bu f f e r (f o g l o b a l , i f o u t) ;

}

Figure 4: Illustration of the communication code

for instance the main function that initiates concurrent task
execution. The Prelude distribution currently provides a
wrapper for Linux, based on ptask [17], and a wrapper for
SchedMCore [5]. For the present work, we added a wrap-
per for Erika.

4.2 Communications
In mono-core, Prelude relies on precedence encoding [9,

10] to enforce precedence constraints between tasks. How-
ever, Prelude programs contain extended precedence con-
straints (i.e. constraints between tasks of different periods),
for which there currently exists no precedence encoding algo-
rithm in multi-core. Thus, in the present work precedences
are enforced using binary semaphores. Each precedence re-
lation is associated with a semaphore. Using the information
provided by Prelude the predecessor and the successor re-
spectively increment and decrement the semaphore.

Communications between tasks use two kinds of buffers,
global and local ones. Figure 4 shows the generated code
for task f in our example program. Whenever a task (here
f) wants to access the buffer between itself and its prede-
cessor (here i), it copies during the A-phase the data from
a global buffer (here i_f_global), into a local input buffer
(here i_f_f). The results of the E-phase are then stored in-
side a local output buffer (here i_f_out). During the R
phase, the contents of this buffer are then copied into a
global buffer for each successor task (here only one successor
o, with buffer f_o_global).

All memory accesses use the same addressing mechanism,
the underlying hardware mechanisms automatically dispatches
the requests to the right memory controller, based on the
memory address. This makes the use of either kind of mem-
ory transparent. Thus, operations on either kind of memory
are simply performed using a memcpy. However, the gen-
erated code is generic and can accept more complex copy
operations for specific platforms.

CPU0 CPU1
−
int i f f ;
int i f o u t ;
−
−
−
void f A () ;
void f E () ;
void f R () ;
−
−

int i f i ;
−
−
int f o o ;
void i E () ;
void i R () ;
−
−
−
void o A () ;
void o E () ;

Figure 5: Code distribution in our example program

4.3 Distributed code
In a NIOS-II system, each CPU runs its own binary. Thus

the Prelude compiler produces specialized source files for
each CPU, giving each CPU only the information it needs to
run. Since those files use the same symbols, the wrapper of
each CPU can generically configure the system at run-time.

Figure 5 shows how functions and buffers are distributed
among CPUs, which is done simply by declaring them in the
C file dedicated to the corresponding CPU.

4.4 OSEK compliant code
We decided to use the RTOS Erika Enterprise for our ref-

erence implementation. Being an OSEK-compliant RTOS,
Erika has to follow specific rules concerning the compilation
process, the structure of source files and the declaration and
usage of OS primitives.

Most importantly, the OS has to be configured using a so-
called OIL-file. This file specifies the entities of the system.
It contains the number of CPUs, the OS tasks and the OS
primitives. All tasks are defined inside the OIL-file and if
they need to use a mutex or semaphore, it has to be defined
there. Primitives are referenced inside the source code by
the name they are given inside the OIL-file and it is not
possible to create new ones during run time. This required
an additional generation step inside the Prelude compiler.

In contrast to other RTOS, OSEK tasks are not intended
as being periodic but single-shot. All logic pertaining to
their periodic behaviour is supposed to be outside of the
task. In addition, tasks do not accept arguments. In the
other wrappers, we used the ability to pass arguments to
produce a generic task function and ship it with the wrap-
per. Here, it was impossible to directly reuse the task func-
tion. We could have generated the same task body for each
task of the task graph, but this would have dramatically in-
creased the binary size. Thus, we decided to write a generic
function task_do and generate task functions that just call
this function with the right arguments. Figure 6 shows an
example. The first two declarations (TASK(...)) are OSEK
task declarations generated by Prelude. The static vari-
able is needed by Prelude to count the number of job ex-
ecutions. The first argument to task_do is an index used
to reference the correct task in local data structures. The
call to TerminateTask is mandatory in Erika to signal task
completion. The task_do function shown here, is a simpli-
fied version, but the global idea is conserved. First, we wait
on all semaphores shared with our predecessors (to wait for
input data). Then, we call the task function and finally
we increment all semaphores shared with our successors (to
signal the availability of outputs).

TASK(Task A)
{

stat ic int i = 0 ;
task do (0 , i ++);
TerminateTask () ;

}

TASK(Task B)
{

stat ic int i = 0 ;
task do (1 , i ++);
TerminateTask () ;

}

void task do (int id , int i) {
for (int j =0; j<npreds [id];++ j)

WaitSem(preds [id] [j]) ;

task params [id] . fun () ;

for (int j =0; j<nsuccs [id];++ j)
PostSem(succs [id] [j]) ;

}

Figure 6: The generated task bodies and the generic
task do function

5. CONCLUSION
We presented a method to translate a fairly classic peri-

odic task graph model into a C program, targetted for ex-
ecution on a multicore platform using an industrial RTOS.
The generated code includes code to handle task commu-
nications and task synchronizations. Task execution follows
the AER model, which decouples communications from com-
putations, thus simplifying subsequent real-time analyses.
Schedulability analysis, which requires to consider extended
precedence constraints in multicore, is left for future works.

6. REFERENCES
[1] A. Alhammad and R. Pellizzoni. Schedulability

analysis of global memory-predictable scheduling. In
Proceedings of the 14th International Conference on
Embedded Software. ACM, 2014.

[2] P. Aubry, P. Le Guernic, and S. Machard.
Synchronous distribution of signal programs. In
System Sciences, 1996., Proceedings of the
Twenty-Ninth Hawaii International Conference on,,
volume 1, pages 656–665. IEEE, 1996.

[3] M. Becker, D. Dasari, B. Nicolic, B. Akesson, V. Nélis,
and T. Nolte. Contention-free execution of automotive
applications on a clustered many-core platform. In
Real-Time Systems (ECRTS), 2016 28th Euromicro
Conference on, pages 14–24. IEEE, 2016.

[4] A. Benveniste, P. Caspi, S. A. Edwards,
N. Halbwachs, P. Le Guernic, and R. De Simone. The
synchronous languages 12 years later. Proceedings of
the IEEE, 91(1):64–83, 2003.

[5] M. Cordovilla, F. Boniol, J. Forget, E. Noulard, and
C. Pagetti. Developing critical embedded systems on
multicore architectures: the Prelude-SchedMCore
toolset. In 19th International Conference on
Real-Time and Network Systems, Nantes, France,
Sept. 2011.

[6] G. Durrieu, M. Faugere, S. Girbal, D. G. Pérez,
C. Pagetti, and W. Puffitsch. Predictable flight
management system implementation on a multicore
processor. In Embedded Real Time Software
(ERTS’14), 2014.

[7] Erika. Erika enterprise.
http://erika.tuxfamily.org/drupal/.

[8] J. Forget. A synchronous language for critical
embedded systems with multiple real-time constraints.
Ph. D. dissertation, 2009.

[9] J. Forget, F. Boniol, E. Grolleau, D. Lesens, and
C. Pagetti. Scheduling Dependent Periodic Tasks
Without Synchronization Mechanisms. In 16th IEEE
Real-Time and Embedded Technology and Applications
Symposium, Stockholm, Sweden, Apr. 2010.

[10] J. Forget, E. Grolleau, C. Pagetti, and P. Richard.
Dynamic Priority Scheduling of Periodic Tasks with
Extended Precedences. In IEEE 16th Conference on
Emerging Technologies Factory Automation (ETFA),
Toulouse, France, Sept. 2011.

[11] A. Girault, X. Nicollin, and M. Pouzet. Automatic
rate desynchronization of embedded reactive
programs. ACM Transactions on Embedded
Computing Systems (TECS), 5(3):687–717, 2006.

[12] T. Grandpierre, C. Lavarenne, and Y. Sorel.
Optimized rapid prototyping for real-time embedded
heterogeneous multiprocessors. In Proceedings of the
seventh international workshop on Hardware/software
codesign, pages 74–78. ACM, 1999.

[13] C. Maia, G. Nelissen, L. Nogueira, L. M. Pinho, and
D. G. Pérez. Schedulability analysis for global
fixed-priority scheduling of the 3-phase task model. In
Embedded and Real-Time Computing Systems and
Applications (RTCSA). IEEE, 2017.

[14] B. Pagano, C. Pasteur, G. Siegel, and R. Knizek. A
model based safety critical flow for the aurix
multi-core platform. Proceedings ERTS2, Toulouse,
France, 2018.

[15] C. Pagetti, J. Forget, F. Boniol, M. Cordovilla, and
D. Lesens. Multi-task implementation of
multi-periodic synchronous programs. Discrete Event
Dynamic Systems, 21(3):307–338, 2011.

[16] R. Pellizzoni, E. Betti, S. Bak, G. Yao, J. Criswell,
M. Caccamo, and R. Kegley. A predictable execution
model for cots-based embedded systems. In Real-Time
and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2011.

[17] ptask. Periodic real-time task interface to pthreads,
2013. https://github.com/glipari/ptask.

[18] R. Tabish, R. Mancuso, S. Wasly, A. Alhammad, S. S.
Phatak, R. Pellizzoni, and M. Caccamo. A real-time
scratchpad-centric os for multi-core embedded
systems. In Real-Time and Embedded Technology and
Applications Symposium (RTAS), 2016 IEEE, pages
1–11. IEEE, 2016.

[19] G. Yao, R. Pellizzoni, S. Bak, E. Betti, and
M. Caccamo. Memory-centric scheduling for multicore
hard real-time systems. Real-Time Systems,
48(6):681–715, 2012.

