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Abstract 
This paper summarizes a vision of the challenges facing the so-called “Industry of the Future” as studied 

by the research community of the IFAC Coordinating Committee 5 on Manufacturing and Logistics 

Systems, which includes four Technical Committees (TC). Each TC brings its own vision and puts for-

ward trends and issues important and relevant for future research. The analysis is performed on the 

enterprise-level topics with an interface too other relevant systems (e.g., supply chains). The vision de-

veloped might lead to the identification of new scientific control directions such as Industry 4.0 tech-

nology-enabled new production strategies that require highly customised supply network control, the 

creation of resilient enterprise to cope with risks, developments in management decision-support sys-

tems for the design, and scheduling and control of resilient and digital manufacturing networks, and 

collaborative control. Cobots, augmented reality and adaptable workstations are a few examples of how 

production and logistic systems are changing supporting the operator 4.0. Sustainable manufacturing 

techniques, such closed-loop supply chains, is another trend in this area. Due to increasing number of 

elements and systems, complex and heterogeneous enterprise systems need to be considered (e.g., for 

decision-making). These systems are heterogeneous and build by different stakeholders. To make use 

of these, an environment is needed that allows the integration of the systems forming a System-of-Sys-

tems (SoS). The changing environment requires models which adapt over time. Some of the adaptation 

is due to learning, other mechanisms include self-organisation by intelligent agents. In general, models 

and systems need to be modular and support modification and (self-)adaptation. An infrastructure is 

needed that supports loose coupling and evolving systems of systems. The vision of the overall contri-

bution from the research community in manufacturing and logistics systems, over the next few years is 

to bring together researchers and practitioners presenting and discussing topics in modern manufacturing 

modelling, management and control in the emerging field of Industry 4.0-based resilient and innovative 

production SoS and supply networks. 

 

1. Introduction 

Integration in Manufacturing (IiM) is the first systemic paradigm to organise humans and ma-

chines as a whole system, not only at the field level, but at the management and corporate levels 

as well, producing an integrated and interoperable enterprise system. Business process software 

and Manufacturing Execution Systems are now available which meet the requirements of this 

fully computerised and automated integration. Major problems remain with respect to the in-

terface between the enterprise corporate level and the manufacturing shop floor level: manage-

ment and operation decisions within a closed loop are facilitated to pace the production accord-

ing to the life-cycle dynamics of the products, processes and humans inside and outside the 

enterprise.  

The role of research in the field is to create upstream conditions for technological break-

throughs, so that enterprise investment is not merely pulled by the incremental evolution of 
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information technology (IT) (Monostori, et al. 2015). Recent literature extensively dealt with 

smart manufacturing trends in industry of future (Davis et al. 2015, Moghaddam and Nof 2017, 

(Thoben et al, 2017, Kusiak 2018). However, the future of the industry relies on collaboration 

networks, and cyber-physical production systems that can be established among companies, 

people and societies to generate shared knowledge and wealth (Giovannini, et al., 2015). A 

number of important enablers are needed to support the creation of successful collaborative 

networks, e.g., common reference models, effective interoperability mechanisms and ap-

proaches, supporting infrastructures based on open architectures, design and engineering meth-

odologies to instantiate/duplicate already successful cases, and standardized market technolo-

gies and tools (Ollero, et al. 2002). 

The analysis in this paper is performed on the enterprise-level topics with an interface to other 

relevant systems (e.g., supply chains). Enterprise engineering models and tools are necessary 

for the seamless integration of business and manufacturing models in order to completely de-

scribe an integrated manufacturing system’s data. However, as of the time of writing, although 

some high-level standards are available for enterprise modelling and integration, they are not 

yet widely recognised as such or applied in industry (Panetto et al. 2012).  

Forecasts place Information and Communication Technologies (ICT) at the core of new devel-

opments. Digital megatrends such as e-Tailing, e-Government, e-Manufacturing, Entertainment 

on demand, virtual education and a wide set of online services (finance, publishing, marketing) 

will be part of everyone life’s. However, these applications and systems will need to satisfy 

several fundamental requirements for manufacturing: 

 

 Enterprise integration and interoperability 

 Distributed organization 

 Model-based monitoring and control 

 Heterogeneous systems and environments 

 Open and dynamic structure 

 Cooperation and Collaboration 

 Integration and interoperability of humans with software and hardware systems 

 Agility, scalability and fault tolerance 

 Interdependent networks 

 Service-oriented collaborative manufacturing platforms 

 Data-driven analysis, modelling, control, and learning systems for decision-making support. 

 

The following types of technology, which meet the requirements above, have been set forth as 

key success factors for next generation ICT manufacturing: 

 

 Modular and adaptable, integrated equipment, processes, and systems that can be readily 

reconfigured  

 System synthesis, modelling, and simulation for all manufacturing operations  

 Software agents and symbolic artificial intelligence (AI) 

 Cobots (Collaborative Robotics) 

 Technologies that can convert information into knowledge for effective decision-making  

 Enhanced human-machine interfaces  

 Educational and training methods that would enable the rapid assimilation of knowledge  

 Software for intelligent collaboration systems  

 Product and process design methods that address a broad range of product requirements  



 Innovative processes to design and manufacture new materials and components   

 Manufacturing processes that minimise waste production and energy consumption  

 Data-driven modelling, analysis and control 

 Technologies supporting collaborative modelling, group learning  

 Digital supply chain and smart operations 
 Risk analytics for resilient production systems and supply chains 

 Customised assembly systems for smart manufacturing when product and process are cre-

ated simultaneously. 

 

This paper does not pretend to be encyclopaedic and is not trying to cover “discrete manufac-

turing industry” in all its generality and specificity. It rather presents a vision of the challenges 

facing the so-called “Industry of the Future” as studied by the research community of the IFAC 

Coordinating Committee 5 on Manufacturing and Logistics Systems, which includes four Tech-

nical Committees, each one bringing its own vision and putting forward trends and issues im-

portant and relevant for future research. The grand challenges may be classified according to 

the following areas (Panetto and Molina, 2008), as shown in Table 1. The following sections 

will discuss, in relation with their specific domain, about specific challenges for the Cyber-

Physical Manufacturing Enterprises of the Future.



CHALLENGES  BUSINESS  KNOWLEDGE APPLICATIONS COMMUNICATIONS (ICT) 

Grand-Challenge 1. 

CPPS-based Manufactur-

ing Plant Control 

• Servitisation 

• Short lead-time to market 

• Data-driven performance 

management systems 

• Biological transformation 

in manufacturing 

• Digitalisation of produc-

tion 

• Mass customisation 

• Big-data analytics 

• CPPS-based human interactions 

• Simulation models for CPPS-based 

manufacturing control 

• IoT-enabled manufactur-

ing 

• Cloud services 

• Smart manufacturing ob-

jects 

Grand Challenge 2. 

Resilient digital manu-

facturing networks, col-

laborative control for In-

dustry 4.0 and cyber-

physical supply chains 

• Business and strategy models 

• Strategic risk management 

• Customised supply network 

control 

• Customised flexible process-

based services 

• Business processes and op-

erations in supply chains 

• Core competencies in the 

supply chains 

• Sharing principles and op-

eration rules 

• Collaborative software solutions 

• Simulation software for resilient 

and data-driven manufacturing sys-

tems 

• Tools for monitoring and control of 

disruptions in the supply chain 

• Reliable communication 

networks 

• Broadband 

• Wireless applications 

• e-Work, e-Manufactur-

ing, and e-Logistics 

Grand Challenge 3. 

 

Cyber-physical System-

of-Systems interoperabil-

ity 

• Integration of business infor-

mation 

• Ontology mapping and match-

ing 

• Consistent enterprise-wide de-

cision-making structure 

• Interoperability of models 

and processes 

• Shared ontology 

• Explicit knowledge 

• Knowledge management 

system 

• Modular and reconfigurable sys-

tems  

• Component-based software solu-

tions (Plug-in/Plug-out) 

• Symbolic artificial intelligence and 

software agents 

• Agent-based simulation software 

• Cobots and new Human / Machine 

Interaction with Robots 

• Standards  

• Interfaces and mediators 

• Interoperability  

• Service buses 

• Technologies for collabo-

rative learning 

Grand Challenge 4. 

 

Interdependent net-

worked systems and data 

analytics for decision 

support  

• New networked model of 

business 

• AI and data-driven business 

• Risk and operations manage-

ment through analytics from 

Big Data 

• Modelling of interdepend-

encies 

• Dynamical analysis 

• Behavioural pattern identi-

fication 

• Tools for monitoring and control 

• Building resilient systems 

• Prescriptive and predictive model-

ling 

• Risk analysis and control 

• Open platforms 

• Interactive applications 

 

Table 1: Grand-Challenges for the Manufacturing Industry of the Future



2. CPPS-based (Discrete) Manufacturing Plant Control 

Globally, a (discrete) manufacturing plant is a factory where goods/services are manufactured 

in accordance with customer/enterprise requirements and expected performance (Leitao, 2009). 

It can be assimilated with a Discrete Event System (DES) where each state refers to a product 

state within all its life cycle. This involves several processes, comprised of activities which 

support both the product state transformation through manufacturing resources and knowledge, 

and the shop floor level control of these transformations through the synchronization (in time 

and through time) of the product and information flows according to external demands and 

subject to the environmental context (Morel et al., 2007). The shop floor level is linked to the 

physical layer (sensing and actuating devices) and primarily implements real-time processing 

in different areas (e.g., monitoring, execution, supervision, tracking) by at least utilising an 

Industrial Control System (ICS), necessitating different performance and reliability require-

ments than those used for a typical IT system (Esmaeilian et al., 2016). In terms of engineering, 

control refers to logic control, loop control and supervisory control (Li et al., 2017a). Control 

is a key success factor for a plant because it directly impacts the plant’s flexibility, productivity, 

modularity, etc. (Colledani et al., 2014). To support the necessary synchronization, control must 

consider all the interactions between the activities, processes and resources which make up the 

manufacturing system. The complexity of this system evolves in relation to the dynamics of the 

plant (e.g., time evolution, component age, customer/enterprise requirements, other require-

ments such as those in terms of norms and legislations). 

(Diltis et al., 1991) consider four basic types of control architectures: centralised, hierarchical, 

modified hierarchical and heterarchical. This classification has been updated by (Morel et al., 

2003) who proposes five levels according to different perspectives (Figure 1); this is in order 

to demonstrate a clear relationship between the particular feature of the system architecture and 

the theoretical and modelling paradigms to be implemented. The fifth level is representative of 

‘intelligent’ as feature, such as that advocated by Intelligent Manufacturing System (IMS).   

 
System Architecture Feature Theoretical & Modelling Paradigms 

5. Intelligent Kenetics & MAS  & HMS 

4. Interoperable Cognitics & Ontology & Object-Oriented 

3. Integrated Systemics & Systems Engineering 

2. Hierarchical Systems Theory & Automatic Control 

1. Isolated Empiricism & Ad hoc approach 

 

Fig.1. Capability profile between architecture feature and the related theoretical and technical 

modelling framework (Morel et al., 2003) 

 

Today and into the future, the story of this profile continues and targets a longstanding issue in 

manufacturing plant control by investigating new manufacturing plants as advocated by visions 

for ‘Factory of the Future’ or ‘Industry 4.0’. This vision is of interest both for the industrial 

world (ex. EFFRA White paper1, PWC white paper2) than the academic one (Reischauer, 

2018)(Jardim-Goncalves et al., 2017). 

Indeed, next generation industry holds the promise of increased flexibility in manufacturing, 

along with mass customisation, better quality, improved productivity and servitisation (Zhong 

                                                           
1 Factory of the Future : Multi-annual roadmap for the contractual PPP under Horizon 2020  

https://www.effra.eu/sites/default/files/factories_of_the_future_2020_roadmap.pdf   

2 Digital factory 2020: Shaping the Future of Manufacturing; PWC document, www.pwc.de 



et al., 2017). It enables companies to cope with the challenges of producing individualised prod-

ucts as expected by customers with a short lead-time to market and at the cost of mass produc-

tion (Rojko, 2017). These challenges can only be met by further developing the digitalisation 

of production systems as promoted by new manufacturing concepts, such as Internet of Things 

(IoT)-enabled manufacturing or cloud manufacturing in which data science, smart manufactur-

ing objects (SMO) and services (e.g., RAMI model) are predominant. These new concepts have 

led to the introduction of new technologies/techniques such as IoT, advanced ICT, Big Data 

Analytics (BDA), cloud computing and the Cyber-Physical Production System (CPPS) (Mo-

nostori et al., 2016). However, these concepts cannot be reduced only to the assembly of new 

technologies (necessary but not sufficient step) within smart manufacturing platform or archi-

tecture (Davis et al., 2015) but require also a major extension of the paradigms at the ‘intelli-

gent’ level (fifth level in Figure 1). 

In that way, CPPS specialized for manufacturing has to be found on the CPS (Cyber-Physical 

System) principles which already poses many scientific issues in terms of its use in real appli-

cations (How to effectively model CPSs in real applications? (Nayak et al., 2016)). CPS pro-

motes intensive connection and coordination between physical elements and computational 

software providing and using data accessing and data-processing services simultaneously 

(Alippi, 2014) (Figure 2). So, CPPS consists of autonomous and cooperative elements and sub-

systems that are connected based on the context within and across all levels of production, from 

processes, through machines and up to production and logistics networks (Monostori et al., 

2016).   It leads to consider CPPS from CPS as built on three basic capabilities (Cardin, 2019): 

Intelligence (computation), Connectedness (communication), and Responsiveness (control).  

 
Fig. 2. CPS principle 

 

Challenge 1.1 CPPS-based autonomous shop-floor systems 

These capabilities allow to consider CPPS as a support to transform the manufacturing pro-

cesses into highly distributed but interconnected networks of “entities” requiring new way of 

collaborations between these entities based, for example, on formalism of collaborative control 

theory (Nof, 2007) to found collaborative factory of the future (Moghaddam and Nof, 2017). 

This compromise between autonomy and cooperation confers specific features to CPPS, such 

as self-organisation, self-maintenance (Iung et al., 2009), etc.  

This has led to the reconsideration of the purpose of control/automation on the shop floor as an 

evolution of IMS concern (Figure 3) because CPPS offers innovative capabilities of self-aware-

ness, self-prediction, self-reconfiguration in the face of internal and external changes. New 

manufacturing systems should be able to monitor physical processes, create a so-called “digital 

twin” of the physical world and make smart decisions through real-time communication and 

cooperation between humans, machines, smart equipment, sensors, and so forth.   

 



 
Fig.3. Positioning of CPS-based Automation (VDI/VDE, 2013) 

 

The low level of CPS-based automation (focused on the shop-floor level) is responsible for the 

advanced connectivity which ensures real-time data acquisition from the physical world and 

information feedback from the cyber-space (high level). It materialises the two first layers 

(smart connection layer and data conversion layer) of the 5C architecture for CPS proposed by 

(Lee et al., 2015). The advanced connectivity is made possible through the collection and intel-

ligent analysis of a massive amount of data (Big Data) gathered from numerous sources. In this 

way, the CPS-based machinery is equipped with prediction tools that process data to extract 

information and make real-time, informed decisions. 

 

Challenge 1.2 From CPPS to biological transformation in manufacturing (“biologicalisa-

tion”) 

The advanced global features and capabilities of CPPS are also introducing a highest level in 

the complexity of the manufacturing system. One way to address this issue is proposed through 

the paradigm of “biologicalisation” (biological transformation in manufacturing): (Byrne et al., 

2018) defined this as the use and integration of biological and bio-inspired principles, material, 

functions, structures and resources for intelligent and sustainable manufacturing technologies 

and systems with the aim of achieving their full potential. Indeed, CPS also creates opportunities 

to apply solutions inspired by biology to real practice, including to production systems, control 

systems and organisations. For example, the adage that “In biology, organisms adapt and 

evolve” can be transferred to self-organisation, self-reconfiguration, etc., in respect to environ-

ment changes (turbulences).  These biologically inspired solutions primarily use artificial intel-

ligence (computational intelligence) and machine learning approaches. 

In conclusion, the question is how (discrete) manufacturing plant control is impacted by these 

new CPPS/Biologicalisation considerations (e.g., paradigm, architecture, modelling, technolo-

gies); consequently, the goal is to identify the additional scientific control orientations that must 

be investigated to support Challenge 1.1 and Challenge 1.2.  

More precisely, the concrete issues faced may be summarized as research made in the following 

areas (including extracts from (Monostori et al., 2016), (Byrne et al., 2018), (Zhong et al., 

2017), (Esmaeilian, 2016) (Lee et al., 2016) (Rabetino et al., 2017) (Nof, 2007)): 

- Identification and modelling of the impacts of CPPS on manufacturing control; 

- Integration of the biologicalisation principles in CPPS and in manufacturing control in 

general; 

- Exploitation of collaborative control theory to support CPPS development at shop floor 

level 

- Impact of the servitisation paradigm in manufacturing plant control; 

- Development of Cyber-physical-biological solutions to master control complexity; 



- Robustness of new control structure to maintain its function against external and internal 

perturbations; 

- Reliability, robustness and (cyber)security of data produced and consumed at the shop 

floor level in respect to control objectives;  

- Compromise between robustness, complexity and efficiency (performance indicators of 

the automation structure based CPPS and/or biologicalisation) to favour mastered plant 

operation; 

- Self-aware and self-maintained control, machines, components; 

- Adaptation and extension of new technologies to support CPPS-based control. 

 

 

3. Resilient and digital manufacturing networks for Industry 4.0 and Cyber-Physi-

cal Supply Chains 

Decision-support models range from optimisation and knowledge-based models to simulation 

models (discrete-event and continuous), all of them oriented to design and control of manu-

facturing and supply chain management. More specifically, the following models are usually 

considered in the decision-support systems for manufacturing and supply chains: 

 

(a) Models of manufacturing tasks in production as well as assembly units, with the aim of de-

signing the architecture of workstations, cells and production lines, quality assurance and 

maintenance; 

(b) Models of manufacturing processes aiming at the design of procedures for process plan-

ning, production planning and control, job and activity scheduling, inventory control and lo-

gistics; 

(c) Models of supply networks aiming at the design, planning and control of coordinated pro-

duction-logistics systems; 

(d) Models of Industry 4.0, CPS, computer-aided, communication-based and Internet-based 

procedures and processes with the aim of accomplishing the functions listed in (a) - (c). 

Current developments and future trends in decision-support systems (DSS) for manufacturing 

and supply chain management are based on the principles of CPS and the intellectualisation of 

models and algorithms in smart manufacturing (Kusiak 2018). According to Zhuge (2011), the 

evolution from cyberspace and systems to the cyber-physical-social space and systems can be 

described by three extensions.  It distinguishes two types of cyber spaces: the first allows users 

to read the information in cyberspace like the Web, and the other allows users to read and write 

information in cyberspace. Both rely on humans to add information to cyberspace in order to 

share it with others.  

The first extension to this basic concept depicts the extension of cyberspace to physical space 

through various sensors. Any significant information in the physical space can be automatically 

sensed, stored, and transmitted through cyberspace. The IoT can be considered a kind of cyber-

physical space. 

The second extension is that user behaviours can be sensed and fed back into cyber-space to 

analyse patterns of behaviours, and humans can remotely control the actuators to behave in the 

physical space through cyber-space. This enables cyber-space to adapt its services according to 

the feedback, since behaviour change may indicate some psychological change.  

In the third extension, i.e., the CPS, not only individuals’ behaviours, but also social interactions 

can be fed back into cyberspace for further processing. Users are considered according to their 

social characteristics and relations, rather than as isolated individuals. Sensors are limited in 

their ability to collect all information in physical space, so users still need to directly collect 



significant information in physical space and then put it into cyberspace after analysis (includ-

ing experiment). Users can also manipulate physical objects in physical space, which can also 

be fed back into cyberspace to reflect the real-time situation. Users’ statuses, interests and 

knowledge evolve with social interaction and operations in cyberspace.  

The aforementioned analysis can be presented as a digital cyber-physical supply chain frame-

work (Fig. 4).  

 

Fig. 4. Digital SC framework 

Analysis of digital supply chain framework allows formulating two important Challenges. 

Challenge 2.1 From competition between supply chains to competition between infor-

mation services and analytics algorithms 

When supply chain management was introduced into management practices, it was popular to 

say that the company is as good as the supply chain behind it. Later, the proposition was for-

mulated again: competition is not between enterprises, but rather between their supply chains. 

Today and looking at the near future, specialists say that the supply chain is as good as the 

digital technology behind it. Consider two examples to support this proposition.  

The first is the logistics service provider UPS. Development of additive manufacturing has led 

to the possibility of producing modules, components, and even end products in one place, and 

actually at any place in the supply chain (Feldmann and Pumpe 2017, Li et al. 2017b).  This 

implies supply chain design changes, a lower number of supplier layers and suppliers as such 

and the reduced need for transportation, which is a threat to logistics companies. UPS and SAP 

developed a joint technology which allows UPS to manufacture items using 3D printing directly 

at distribution centres. This contributes to a faster and more efficient supply chain. Such an 

integration of production, sourcing, and distribution also positively influences the ability to 

react to possible disruptions in the supply chain. The second example is blockchain technology. 

Contracts in supply chains often involve multi-party agreements, with regulatory and logistic 

constraints. Further complexities may arise from operations in different jurisdictions, as well as 

dynamic features embedded in the contracts. The flow of information in a supply chain plays a 

critical role in the efficiency of operations. Regulatory processes (e.g., customs) can be expe-

dited by improving confidence in documentation. This, in turn, will reduce wastage, risk and 

insurance premiums. IBM and Maersk are collaborating to create trust and transparency in 

global supply chains (IBM 2017). They are developing a distributed contract collaboration plat-

form using blockchain technology. Maersk estimates that shipping a single container of flowers 

from Kenya to Rotterdam requires nearly 200 communications. How can the efficiency of the 

global supply chain be improved? In their approach, each distinct entity involved in the trans-

action is allowed to access this system. Shipping from the port of Mombasa requires signatures 

from three different agencies and six documents: the smart contract will automatically generate 



after the system receives the signatures. Simultaneously, when the documents about inspection, 

sealing of refrigerator, pick up by the trucker, and approval from customs as communicated to 

the port of Mombasa are uploaded, all participants can see the data in the meantime, allowing 

the relevant entity to prepare for the container. 

These and further recent examples of digital technology applications to supply chains (Ivanov 

et al. 2018a, Ivanov et al. 2018b) support the new proposition that competition is not between 

the supply chains, but rather between the supply chain services and analytics algorithms behind 

the SCs. The services may be ordered in packages or as individual modules. Success in the 

supply chain service competition will be highly dependent on analytics algorithms in combina-

tion with optimisation and simulation modelling. Initially intended for process automation, dig-

ital technologies now disrupt markets and business models and significantly impact the devel-

opment of supply chain management. 

As such, new disruptive supply chain business models will arise where supply chains will not 

be understood as a rigid physical system with a fixed and static allocation of some processes to 

some firms. Instead, different physical enterprises will offer services in supply, manufacturing, 

logistics, and sales which will result in the dynamic allocation of processes and dynamic supply 

chain structures. Indeed, this idea is not really new. We can recall the virtual enterprises concept 

developed about 15-20 years ago. The supply chains in virtual enterprises were expected to be 

formed dynamically through so-called competence cells or agents networking (Teich 2003, 

Teich and Ivanov 2012, Ivanov and Sokolov 2012a,b). In essence, suppliers were integrated 

with a tool that contained their technological processes and related operational parameters (e.g., 

costs and lead-times). A customer was able to place an order specification, and an automatic 

algorithm was able to find the suppliers needed to be networked to fulfil this customer order. 

So, while the individual contributors (e.g., robots, sensors, radio frequency identification 

(RFID), agents, modular factories, etc.) are not really new, they are becoming more practical 

and companies more receptive to using them to stay competitive. In addition, an attempt to 

interconnect these local solutions using the progress in data processing technologies can be 

observed in practice. For example, with the help of smart sensors and plug-and-produce cyber-

physical systems, stations in an assembly system are capable of changing the operation pro-

cessing and setup sequences according to the actual order of incoming flows and capacity uti-

lisation (Theorin et al. 2017). As such, this trend calls for new principles and models to support 

supply chain management in such future factories.  

Challenge 2.2 From DSS to decision analysis, modelling, control and learning systems 

(DAMCLS) 

The second observation concerns quantitative analysis methods in supply chain management. 

In the past decades, simulation and optimisation have played significant roles in solving com-

plex problems in supply chain management. Successful examples include production planning 

and scheduling, supply chain design, and routing optimisation, to name just a few. However, 

many problems remain challenging because of their complexity and large scale and/or uncer-

tainty and stochastic nature. In addition, the major application of optimisation and simulation 

methods in the last decades was seen in decision support, meaning that decision-makers had to 

manually provide model input and interpret the model output. On the other hand, the rapid rise 

of business analytics provides exciting opportunities for operations research and the re-exami-

nation of these hard optimisation problems, as well as newly emerging problems in supply chain 

and operations management (Fig. 5). 



 

Fig. 5. Framework of decision analysis, modelling, control and learning system (DAMCLS) 

Examples of supply chain and operations analytics applications include logistics and supply 

chain control with real-time data, inventory control and management using sensing data, dy-

namic resource allocation in Industry 4.0 customised assembly systems, improving forecasting 

models using Big Data, machine learning techniques for process control, supply chain visibility 

and risk control, optimising systems based on predictive information (e.g., predictive mainte-

nance), combining optimisation and machine learning algorithms and simulation-based model-

ling and optimisation for stochastic systems.  

The applications of supply chain and operations analytics can be classified in four areas, i.e., 

 Descriptive and diagnostic analysis, 

 Predictive simulation and prescriptive optimization, 

 Real time control, and 

 Adaptive learning. 

Sourcing, manufacturing, logistics, and sales data are distributed among very different systems, 

such as enterprise resources planning (ERP), RFID, sensors, and blockchain. BDA translated 

this data into information usable by AI algorithms in cyber supply chains and managers in 

physical supply chains. For example, electronic retailers are using their extensive transactional 



and behavioural customer data to offer customers new ways of trying, experiencing, and pur-

chasing their products (e.g., Amazon with Alexa). AI is becoming more pervasive in the real 

world with every project, and of necessity it must be part of our simulations. It will not only be 

part of our simulations, our simulation will also help to develop AI. Resilience360 at DHL 

enables comprehensive disruption risk management by mapping the supply chain end-to-end, 

building risk profiles, and identifying critical hotspots in order to initiate mitigation activities 

and send alerts in near-real time mode about incidents that could disrupt the supply chain. 

As such, a new generation of simulation and optimisation models can be observed that extends 

the DSS towards DAMCLS. The pervasive adoption of analytics and its integration with oper-

ations research shows that simulation and optimization are the key, not only to modelling phys-

ical supply chain systems, but also to learning and modelling cyber supply chain systems. In 

the near future, success in supply chain competition will be highly dependent on analytics al-

gorithms in combination with optimisation and simulation modelling. Initially intended for pro-

cess automation, business analytics techniques now disrupt markets and business models and 

significantly impact the development of supply chain management. 

All in all, the future development of DSS for manufacturing and supply chain management are 

driven by transformations towards a digital factory evolving in DAMCLS (Fig. 5). 

 

Fig. 6. Combination of industrial engineering, operations research, and data science as a multi-

disciplinary research base for management decision-support in manufacturing and supply chain 

management 

Fig. 6 shows the vision of a combination of industrial engineering, operations research, and data 

science as a promising multi-disciplinary research base that can contribute to the improvements 

of the DSS for manufacturing and supply chain management towards DAMCLS. 

 

4. Cyber-Physical System-of-Systems (SoS) Interoperability 

In an enterprise, dynamics in business are increased by new technical possibilities stemming 

from, e.g., the IoT, CPS, Digital Twin, S^3 Enterprise (Sensing, Smart, and Sustainable Enter-

prise). Much effort is currently put into technologies to sense the environment, digitalise ob-

served systems and maintain a link between the physical and the digital/cyber (Weichhart et al. 

2016). In an enterprise, there is an additional social element, which needs to be considered: the 

information sensed via such technologies is often relevant to more than one decision-maker 

(Agostinho and Goncalves, 2015). Semantic interoperability is relevant (Liao et al, 2016).  



Semiotics is a field of investigation that is concerned with the meaning and semantics of signs. 

Since models are built on symbols and signs, semantic interoperability in an organisational 

context is highly relevant. The semantics of a sign is established between three elements: the 

sign, the referent/object and the interpretation (i.e., the concept) (Stamper et al. 2000).  

In the context of the S^3 Enterprise, raw data from sensors is transferred into a data structure 

that is used to convey that information to an information processing system. This may be a 

machine (e.g. a robot), a piece of software, or a human. These systems will use the information, 

combine it with other information and take some action according to its meaning.  

At any time, in the above, briefly sketched process, models might get modified. Organisational 

knowledge management is relevant for keeping the organisational members up-to-date (Fire-

stone & McElroy 2005). The organisational knowledge life cycle of Fireston and McElroy 

(2005) provides organisational roles and specifies the features of organisational information 

systems. In this framework, the distributed organisational knowledge base (as a technical in-

strument provided by the organisation) is of fundamental importance. Here models, including 

facts and procedures, are stored and updated over time. The evolution of knowledge and models 

go hand-in-hand with the possibility and support for learning. Learning itself is a process that 

updates not only the mental models of the human and artificial agents involved, but also the 

models of the organisational knowledge base (Oppl and Stary 2014, Oppl and Hoppenbrouwers 

2016).  

In general, learning, sharing knowledge and connecting information systems highlights an im-

portant fact (Vernadat, et al. 2018): there are heterogeneous systems involved in the enterprise’s 

SoS. Enterprise interoperability is a research field that is concerned with loosely coupled sys-

tems (Panetto, 2007). Enterprise interoperability goes hand-in-hand with enterprise integration. 

However, the term ‘interoperability’ highlights the decentralised nature of systems in a SoS 

(Weichhart, Stary and Vernadat 2018). There is no central point of view. Of course, this requires 

additional effort such as knowledge management (Vernadat, 2010). In order to manage and 

control firms, an increasing number of environmental, organisational and technological factors 

need to be taken into account, and captured in models for decision-making). This increases the 

complexity that must be handled by organisations. To manage the complexity of the enterprise’s 

system in general, a SoS perspective is taken. A SoS perspective of the enterprise (Gorod et al. 

2014) includes all socio, economic and technical systems that are necessary to make the enter-

prise work (in the general sense). General Systems Theory (GST) provides a basic theory for 

modelling systems, and aims to support the modelling process and abstraction (von Bertalanffy 

1969). A system is composed of elements and has a certain purpose (or function) to fulfil 

(Boardman and Sauser 2006). The elements of a system are an inherent and integrated part of 

the system. Elements lose autonomy with respect to the purpose of the system they are a part 

of. In a SoS, the purpose remains with each system. This implies that systems in a SoS remain 

independent and may leave their super system. 

In addition to structural complexity, there is an important dynamic perspective to be taken. This 

dynamic aspect leads to the observation that the enterprise is not only complex, but also an 

adaptive SoS (Agostinho and Jardim-Goncalves, 2015; Weichhart, Guedria and Naudet 2016). 

Complex adaptive system (CAS) (Holland 1996) research identified active sub-systems, called 

agents, which communicate and interact with their environment. However, interaction of agents 

is of such a dynamic nature that the overall system state may not be determined by the sum of 

the individual agents’ behaviours. The communication and collaboration of the agents realises 

relationships which are not linear or directly related to each other. 

The following figure (Fig. 7) builds on the European Interoperability Framework (EIF, 2017). 

The first level interoperability is seen from a societal perspective where organisations are resil-

ient, sustainable, or not. On the second level, interoperability between multiple organisational 



units (e.g., departments, workers, etc.) is shown. Processes spanning multiple systems and 

agents have to be interoperable to maintain a running organisational system.  

On the third level, the ontology-based semantics of sensed information and shared models is 

relevant. This level bridges technical systems with organisational systems (Giovannini et al. 

2012). On the bottom of this figure, technical interoperability is discussed. This level concerns 

the IT and data-based interaction between systems.  

The dark ellipses are concepts (discussed above). The framework is used to organise the major 

elements from modelling an enterprise to establish a knowledge-based, enterprise point of view.  

 

 

 

Fig. 7. Points of interest for the future model-based cyber-physical enterprise mapped to the 

European Enterprise Interoperability Framework.  

 

 

Challenge 3.1 Enterprise models for knowledge management and collaboration 

Approaches addressing this challenge may be summarized as research in information systems 

for (automatic) control in socio-technical enterprise systems-of-systems (SoS).  

Enterprise integration supports a ubiquitous sensing system that digitalises everything and 

makes it available to human and artificial decision-makers. Several integration approaches pro-

vide an abstraction layer that unifies the exchanged data. An example for this is enterprise ap-

plication integration using an enterprise service bus. Such a service bus is a central component, 

supporting a loose coupling between the other systems. The enterprise service bus also supports 

manual mapping between models to support data exchange between systems. 

Interoperability is a term that, in addition to this, emphasizes that systems are decentralised. 

Interoperability aims at a very loose integration of systems. Loose integration / interoperability 
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allows systems in a SoS to join or leave. Tight integration with strong dependencies does not 

allow this, and violates the idea of a system-of-systems. Enterprise interoperability emphasise 

a loose coupling, supporting an adaptive enterprise system-of-systems (Boardman and Sauser, 

2006) that is composed of autonomous and intelligent agents. Enterprise modelling (EM) is 

needed for semantically interpretable information flows from sensors and people to actuators, 

including people. EM is also needed for knowledge exchange between artificial agents or other 

intelligent software modules.  

Organisational knowledge management provides methods to guide human agents with respect 

to knowledge externalisation (and learning) to meet the challenges imposed by the external 

dynamics of changing environments (Giovannini, et al. 2015, Oppl and Hoppenbrouwers 2016). 

Structured externalised knowledge is a requirement to construct models and necessary for en-

terprise models.  

Technologies for group modelling support the collaborative construction of models (Oppl 2017, 

Oppl 2017a, Weichhart 2015). These applications support the articulation of (partially shared) 

knowledge in groups. This collaborative construction of models is a form of group learning, 

enabling knowledge flows. Through the collaborative work on models, these evolve. The com-

mon activity also influences the mental models of the participants. This highlights a need for 

technologies that support knowledge management and the evolution of enterprise models. In 

particular, the interoperability of multiple enterprise models has to be assured.   

Challenge 3.2 Process interoperability for collaborative control 

One particular, important type of model are process models. Such models make flows between 

systems explicit. One of many challenges is the need in socio technical SoSs for processes to 

span artificial and human systems. For enterprise models, it is necessary to distinguish different 

flows like control flows, data flows, and physical flows (Weichhart, Stary and Vernadat 2018). 

The need for these different types of flows increases the complexity of the models. In the fol-

lowing one exemplary sub-type of enterprise model is discussed to highlight the key aspects of 

this challenge.   

Collaborative robotics is a particular important research domain that requires to emphasis in-

teroperability. Here two independent agents are executing a common process. These intelligent 

agents are interacting on physical and on cognitive level (Jones, Romero, Wuest 2018). The 

representation of physical and cognitive tasks is different for the human and the artificial agent, 

but needs to be shared (Weichhart, Pichler and Wögerer 2018). Process models are the im-

portant elements used to articulate and synchronize the execution of tasks between the agents 

in a loosely coupled SoSs. Different levels of automation and different levels of how tight these 

systems collaborate, inform the degree of task synchronization required (Fast-Berglund et al 

2018, Weichhart et. al 2018).  

A number of technologies and organisational measures on “how to support collaboration of 

human and artificial agents” have been elaborated using the term Operator 4.0 (Romero et al 

2016). Modern technologies are used to enhance the cognitive and physical possibilities of the 

worker, and make the execution of process more effective. For this collaboration of loosely 

coupled systems, interoperability of the execution of tasks by humans and by artificial agents 

needs to be assured (Åkerman and Fast-Berglund 2018). The interoperability aspect includes 



cognitive and physical processes (Jones, Romero, Wuest 2018). Models are required that sup-

port the articulation of cognitive and physical tasks and cognitive, physical flows between 

agents. 

New approaches are required to model and represent SoSs. This includes in particular the flow 

perspective where physical and cognitive processes involve multiple systems. These ap-

proaches need to assure that human and artificial agents understand their tasks and the tasks of 

the others in order to have a smooth running work process. A misinterpretation of the next step 

a robot is going to execute may even put the human operator in danger. 

In addition to understanding the collaborator’s task, different levels of automation have to be 

possible during process execution, in order to address the physical and cognitive load of work-

ers that are actually executing their parts of the processes (Fast-Berglund et al 2018). This in 

turn, requires processes and systems to be adapted. The process models and the used thechnol-

ogies must support dynamic re-planning of physical and cognitive flows (Weichhart et. al 2018, 

Weichhart, Pichler and Wögerer 2018).  

In addition to the first challenge addressed in this section (enterprise models for knowledge 

management and collaboration), technologies for process interoperability require a dynamic 

infrastructure addressing the adaptability needs of the enterprise system-of-systems. 

 

5. Interdependent networked systems and data analytics for Decision-Support 

Large-Scale Systems (LSS) engineering as a branch of control and systems engineering can be 

traced back to half a century ago (Jamshidi, 1983). Large-scale complex systems have been 

traditionally characterised by a large number of variables, nonlinearities and uncertainties. 

Their decomposition into smaller, more manageable subsystems, possibly organised in a hier-

archical form, has been associated with intense and time-critical information exchange and with 

the need for efficient decentralisation and coordination mechanisms. 

Over the last decades, the world has witnessed an exponential growth in the level of complexity 

and interconnection among industrial and non-industrial systems, mainly fuelled by advances 

in computing, sensing, communication and control technologies. Physical and digital worlds 

are becoming increasingly intertwined, giving rise to systems such as CPS and IoT with emer-

gent complex interactions. Firms of the present time operate in a highly complex networked 

environment and there is an ever more increased concern for integration of various technologies 

and economic, environmental and social aspects. Consequently, analysis and design of control 

must take into account more aspects and needs new skills and tools. At the same time, rapid 

advances in technologies provide effective tools and adequate technical infrastructures to sup-

port the design and implementation of control for large-scale complex system applications at 

present and in the future. 

 

Challenge 4.1 Towards an integrated theory of complex interdependent networked sys-

tems. 

There are more and more complex networks in manufacturing, including product design net-

works, manufacturing process networks, supply chain networks, logistics networks, sensor net-

works, resource services networks, social networks, etc. Furthermore, technology advances 



have been accelerating interactions among these networks, which may have a significant influ-

ence on the behaviour and performance of the whole system. Therefore, interdependent net-

works (also called ‘Network of Networks (NoN)’) has recently been viewed as a plausible 

model of many engineering complex systems (D'Agostino and Scala, 2014; Zuev and Beer, 

2017) (). For example, node failures in one network may cause the failure of dependent nodes 

in other networks. This recursive process may lead to a cascade of failures throughout the whole 

network of networks. A dramatic real-world example is the electrical blackout in Italy on 28 

September 2003: the shutdown of power stations led to the failure of nodes in the Internet, 

which in turn caused further breakdown of power stations. Over the years, there has been a 

stream of research on the resilience of different complex systems, including supply chain net-

works (Levalle and Nof, 2017). On the other hand, there has also been some research progresses 

on the cascading failures on network of networks, which have shown that some properties of a 

network of networks differ greatly from those of single isolated networks (Buldyrev et al., 

2010).  

It can be appreciated now that several traditional subfields of large-scale systems theory remain 

of significant interest, such as decentralised and hierarchical control, model reduction and op-

timisation (Mohammadpour and Grigoriadis, 2010). Traditional applications, such as power, 

gas, transportation, manufacturing, water systems agriculture, process industry, robotics and 

communication networks are still of interest. However, these application systems have been 

continuously developing and new challenges have emerged. In particular, we need to have an 

integrated theory for the analysis and control of complex interdependent networked systems.  

Interdisciplinary collaboration is the key to achieve the goal. In recent years, there has been 

some efforts in exploring the links between network science and control engineering (Wang 

and Su, 2014; Wang 2014; Chankova, Hüttb and Bendul, 2018), although the starting points 

and objectives of a complex-network theoretician and a control engineer might be reversed 

(Abdallah and Tanner, 2007). On the other hand, Fig. 8 gives a framework for solving complex 

system problems by integrating data science, network science and domain science (Brugere, 

Gallagher, Berger-Wolf, 2018). However, new means to unify and integrate different models 

and methods that now exists in different fields such as control theory, network science, data 

science, mathematics and physics are needed to provide effective modelling, analysis and con-

trol of those emerging complex systems, including large-scale manufacturing systems. 

 

 

 



 

Fig. 8. A data-driven framework for solving complex questions (Brugere, Gallagher, Berger-

Wolf, 2018). 

 

Challenge 4.2 Towards AI and Data-driven modelling, analysis and control of manufac-

turing systems with multi-level, multi-scale and multi-temporal features. 

We are entering an age of AI and Big-Data. A question attracting great interest is how to take 

advantage of the increasing availability of large amounts of data in modelling and control of 

complex systems (Åström and Kumar, 2014; Wang, 2014). For example, we may now make 

full use of those on-line and/or off-line process data to directly design controllers, predict sys-

tem states, evaluate performance, make decisions, perform real-time optimisation and conduct 

fault diagnosis (Hou, Gao, Lewis, 2017). Advances in AI and related technologies will result in 

widespread use of smart systems in industry. Smart manufacturing systems can automatically 

adapt supply chains as circumstances evolve. Data-driven models and simulations may provide 

a predictive capability to anticipate system changes and also provide aids to manage these 

emerging complex systems. However, key foundational and systems research questions must 

be addressed to realize all these capabilities.  

A modern manufacturing system should consider the whole lifecycle of product, the coopera-

tion and integration of labour, process and resources within a single enterprise and among en-

terprises (Li et al., 2017c), which can be viewed as an interdependent network of networks (Fig. 

9). We could expect that such kind of network interdependencies would be more and more 

ubiquitous. Furthermore, different levels (subnetworks) may have different scales and different 

temporal features. We need to have effective models to predict how the whole system responds 

to changes, failures or attacks. Theoretically, we need to have a better understanding and control 

of the dynamics of the processes that take place on network of networks. Interestingly, although 

temporality increases complexity, it also ensures a degree of flexibility which may enhance our 

ability to control them (Li et al., 2017d). 



 

Fig. 9. A network framework model of manufacturing systems (Li et al., 2017c). 

 

5. Conclusions 

In continuation of the works already done on plant control with regards to IiM and IMS, which 

consider, respectively, architecture and systemics’, cognitics’ and kinetics’ modelling para-

digm, the global future trends require the investigation of the following question:  How could 

manufacturing control in terms of architecture and paradigm modelling be impacted or extended 

by taking into account advanced CPPS and Biologicalisation principles as advocated by Indus-

try 4.0? An answer to this might lead to the identification of new scientific control orientations, 

mainly that of cyber-physical-biological solutions robustness on new control system; self-aware 

and self-maintained control, machines and components; and the reliability, integrity, robustness 

and security of the CPPS data. While Industry 4.0 technology has enabled new production strat-

egies that require highly customised supply network control (Ivanov et al. 2016), another trend 

is the creation of resilient supply chains to cope with risks (Olson and Wu 2015, Dolgui et al. 

2018, Ivanov 2018). The ultimate objective of plans and future developments is therefore to 

facilitate developments in management DSSs for the design, scheduling and control of resilient 

and digital manufacturing networks and production systems (Frazzon et al. 2017, Amodeo et 

al. 2018).  The vision of the overall contribution from the research community in manufacturing 

and logistics systems, over the next few years is to bring together researchers and practitioners 

presenting and discussing topics in modern manufacturing modelling, management and control 

in the emerging field of Industry 4.0-based resilient and innovative production SoS and supply 

networks (Battaïa et al. 2018). Human characteristics, such as age, gender, cultural background, 

and personality of operators are often neglected in traditional decision-making models used in 

the design and management of production and logistic systems. At the same time, new technol-

ogies are currently being developed that assist operators in their manual tasks and interact with 

these human characteristics (Battini et al. 2017). A specific focus is directed on collaborative 

control theory that opens the doors to decentralized, agent-based and bio-inspired coordination 

and control, adaptation and learning (Nof 2007). Cobots, augmented reality and adaptable 

workstations are a few examples of how production and logistic systems are changing support-

ing the operator 4.0 (Romero et al. 2016). Sustainable manufacturing techniques, such closed-



loop supply chains, is another trend in this area. Due to increasing number of elements and 

systems, complex and heterogeneous enterprise systems need to be considered (e.g., for deci-

sion-making). These systems are heterogeneous and build by different stakeholders. To make 

use of these, an environment is needed that allows the integration of the systems forming a SoS. 

The changing environment requires models which adapt over time. Some of the adaptation is 

due to learning, other mechanisms include self-organisation by intelligent agents. In general, 

models and systems need to be modular and support modification and (self-)adaptation (Pan-

etto, et al. 2016). An infrastructure is needed that supports loose coupling and evolving systems 

of systems.  

The vision is to further investigate these new systems and study how they can be designed and 

managed with a human-oriented approach and with consideration of sustainable resource utili-

zation in manufacturing and supply chains. The integration between practitioners and academ-

ics, thanks to case studies and experimental analysis, will guide the next steps of research to 

reach real and applicable results. 
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