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Abstract: In this paper, we revisit the Kalman filter theory. After giving the intuition on a
simplified financial markets example, we revisit the maths underlying it. We then show that
Kalman filter can be presented in a very different fashion using graphical models. This enables
us to establish the connection between Kalman filter and Hidden Markov Models. We then
look at their application in financial markets and provide various intuitions in terms of their
applicability for complex systems such as financial markets. Although this paper has been
written more like a self contained work connecting Kalman filter to Hidden Markov Models
and hence revisiting well known and establish results, it contains new results and brings
additional contributions to the field. First, leveraging on the link between Kalman filter and
HMM, it gives new algorithms for inference for extended Kalman filters. Second, it presents
an alternative to the traditional estimation of parameters using EM algorithm thanks to the
usage of CMA-ES optimization. Third, it examines the application of Kalman filter and its
Hidden Markov models version to financial markets, providing various dynamics assumptions
and tests. We conclude by connecting Kalman filter approach to trend following technical
analysis system and showing their superior performances for trend following detection.

Keywords and phrases: kalman filter, hidden markov models, graphical model, CMA ES,
trend detection, systematic trading.

1. Introduction

One of the most challenging question in finance is to be able from past observation to make some
meaningful guests. Obviously, as no one is God, no one would ultimately be able to predict with
one hundred percent accuracy where for instance the price of a stock will end. However, between
a pure blind quest and a perfect accuracy forecast, there is room for improvement and work. If
in addition, we are able somehow to model the dynamics of the stock price and factor in some
noise due to unpredictable human behavior, we can leverage this model information to make an
informed guess. It will not be 100 percent accurate but it is much better than a pure random
guess. Indeed, this scientific question of using a model and filtering noise has been extensively
examined in various fields: control theory leading to Kalman filter, markov processes leading to
hidden markov models and lately machine learning using bayesian probabilistic graphical models.
In this work, we revisit these three fields to give a didactic presentation of this three approaches and
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emphasizing the profound connection between Kalman filter and Hidden Markov Models (HMM)
thanks to Bayesian Probabilistic Graphical models. We show in particular that derivation of Kalman
filter equations are much easier once we use the more general framework of Bayesian Probabilistic
Graphical models. In particular, we show that Kalman filter equations are just a rewriting of the
sum product algorithm (also referred to as the Viterbi algorithm for HMM). We then provide various
dynamics assumptions for financial markets and comment their overall performance. We compare
these trading system with simpler moving average trend detection trading systems and show that
they provide better performances.

2. Intuition

In a nutshell, a Kalman filter is a method for predicting the future state of a system based on
previous ones.
It was discovered in the early 1960’s when Kalman introduced the method as a different approach
to statistical prediction and filtering (see Kalman (1960) and Kalman and Bucy (1961)). The idea
is to estimate the state of a noisy system. Historically, it was build to monitor the position and
the speed of an orbiting vehicle. However, this can be applied to non physical system like economic
system. In this particular settings, the state will be described by estimated equations rather than
exact physical laws. We will emphasize this point in the section 5 dealing with practical application
in finance.

To build an intuition, let us walk through a simple example - if you are given the data with
green dots (that represent, by the way, the predicted Kalman filtered predicted price of the S&P500
index on October 17, 2018), it seems reasonable to predict that the orange dot should follow, by
simply extrapolating the trend from previous samples and inferring some periodicity of the signal.
However, how assured would you be anticipating the dark red point on the right (that is just 10
minutes later)? Moreover, how certain would you be about predicting the orange point, if you were
given the black series (that represent the real prices) instead of the green one?

From this simple example, we can learn three important rules:

• Predicting far ahead in the future is less reliable than near ahead.
• The reliability of your data (the noise) influences the reliability of your forecast.
• It’s not good enough to give a prediction - you also want to provide a confidence interval.
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Fig 1: A simple example from financial markets to build an intuition of Kalman filter

From this simple presentation, we can conceptualize the approach and explain what a Kalman
filter is. First, we need a state. A state is a representation of all the parameters needed to describe
the current system and perform its prediction. In our previous example, we can define the state by
two numbers: the price of the S&P 500 at time t, denoted by p(t) and the slope of the price at time
t, s(t). In general, the state is a vector, commonly denoted x. Of course, you can include many
more parameters if you wish to accommodate more complex systems.

Second, we need a model. The model describes how the system behaves. It provides the under-
lying equations that rules our system. It may be an ideal representation or a simplified version of
our system. It may be justified by some physical laws (in the case for instance of a Kalman filter
for a GPS system), or by some empirical analysis (in the case of finance). In the standard Kalman
filter, the model is always a linear function of the state. In extended Kalman filter, it is a non linear
function of the state. In our previous example, our model could be:

• the price at time t, p(t), is obtained as the previous price p(t− 1) plus the slope at time t− 1:
s(t− 1)

p(t) = p(t− 1) + s(t− 1) (2.1)

• the slope is evolving over time with a periodic sinusoidal function ψ(t) = a sin(bt+ c)

s(t) = s(t− 1) + ψ(t) (2.2)

Usually, one expresses this model in matrix form to make it simple. We have(
p(t)
s(t)

)
︸ ︷︷ ︸

xt

=

(
1 1
0 1

)
︸ ︷︷ ︸

F

·
(
p(t− 1)
s(t− 1)

)
︸ ︷︷ ︸

xt−1

+

(
0 0
0 1

)
·
(

0
ψ(t)

)
︸ ︷︷ ︸

Bt·ut

(2.3)

In the above equation, following standard practice, we have denoted by xt = (p(t), s(t))
T

, the

state vector that combines the price p(t) and the slope s(t). We have denoted by ut = (0, ψ(t))
T

,
the control vector. The idea underlying the control vector is that it can control somehow the
dynamic of the state vector. The previous equation (2.3) is called the state equation and writes

xt = F · xt−1 + Bt · ut (2.4)
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Of course, our model is too simple, else we wouldn’t need a Kalman Filter! To make it more re-
alistic, we add an additional term - the noise process, wt that represents anything else that we
do not measure in our model. Although we don’t know the actual value of the noise, we assume
we can estimate how ”noisy” the noise is and can make assumptions about the noise distribution.
In standard Kalman modeling, we keep things simple and assumed this noise to be normally dis-
tributed. To measure how ”noisy” the noise is, we refer to the variance of the normal distribution
underpinning the noise wt−1. The state equation is modified into:

xt = Fxt−1 + Bt · ut + wt−1 (2.5)

Third, we need to use measurement to improve our model. When new data arrived, we would
like to change the value of our model parameters to reflect our improved understanding of the state
dynamic. We would proceed in two steps: make a prediction and then a correction based on what
has happened in time t. There is a subtleties here. What we measure does not have to be exactly
the states. It has to be related but not the same. For instance, in a Kalman filter system in a GPS,
the state could be the GPS’s acceleration, speed and position, while what we measure may be the
car’s position and the wheel velocity. In our financial example, we may only be able to observe
the price but not the slope. Our measure would therefore be limited to the price in this particular
setting. Hence, the measurement would be represented as follows:

measurement =
(

0 1
)
·
(
p(t)
s(t)

)
(2.6)

In general, the measurement should be a vector, denoted by z, as we may have more than one
number for our measurement. Measurements should also be noisy to reflect that we do not measure
perfectly. Hence, the equation specify measurement would write:

zt = Hxt + vt (2.7)

Where vt is the measurement noise, and H is a matrix with rows equal to the number of
measurement variables and columns equal to the number of state variables.

Fourth, we need to work on prediction as we have set up the scene in terms of modeling. This
is the key part in Kalman filter. To build intuition, let us assume, for the time being, noise is equal
to zero. This implies our model is perfect. How would you predict the state at time t, xt knowing
the previous state (at time t−1)? This is dammed simple. Just use the state equation and compute
our prediction of the state, denoted by x̂t as:

x̂t = Fxt−1 + Btut−1 (2.8)

Hold on! In the mean time, we do some measurements reflected by our measurement equation:

ẑt = Hx̂t (2.9)

These are measurements so what we measure might be slightly different. Intuitively, the mea-
surement error computed as zt− ẑt would be slightly different from 0. We would call this difference
y = zt − ẑt, the innovation. It represents the bias of our measurement estimation. Obviously, if
everything were perfect, the innovation should be zero, as we do not have any bias! To incorporate
the innovation in our model, we would add it to our state. But we would not add blindly in the state
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equation. We should multiply this innovation by a matrix factor that reflects somehow the correla-
tion between our measurement bias and our state bias. Hence, we would compute a correction to
our state equation as follows:

x̂t = Fxt−1 + Btut + Kty (2.10)

The matrix Kt is called the Kalman gain. We would see in section 3 how to determine it but
for the sake of intuition of Kalman filter, we skip this details. What really matters is to build an
intuition. We can easily understand the following rules of thumb:

1. The more noisy our measurement is, the less precise it is. Hence, the innovation that repre-
sents the bias in our measurement may not be real innovation but rather an artifact of the
measurement noise. Noise or uncertainty is directly captured by variance. Thus the larger the
measurement variance noise, the lower the Kalman gain should be.

2. The more noisy our process state is, the more important the innovation should be taken into
account. Hence, the larger the process state variance, the larger the Kalman gain should be.

Summarizing these two intuitions, we would expect the Kalman gain to be:

Kt ∼
Process Noise

Measurement Noise
(2.11)

Fifth, noise itself should be modeled as we have no clue about real noise. Noise in our model is
represented by variance, or more precisely by the covariance of our state. Traditionally, we denote
by Pt the covariance matrix of the state:

Pt = Cov(x̂t) (2.12)

Using the state equation, and using the fact that for any matrix A, Cov(A.X) = A Cov(X)A>,
we can derive Pt from its previous state:

Pt = Cov(x̂t) = Cov(Fxt−1) = F Cov(xt−1)F> = FPt−1F
> (2.13)

At this stage, we can make the model even more realistic. Previous equation (2.13) assumes that
our process model is perfect. But keep in mind that we temporarily assumed no noise. However,
real world is more complex and we should now use our real state equation (2.5). In particular, if
we assume that the state noise wt is independent from the state xt and if the state noise wt is
assumed to be distributed as a normal distribution with covariance matrix Qt, the prediction for
our state covariance matrix becomes:

Pt = FPt−1F> + Qt−1 (2.14)

Likewise, we could compute the covariance matrix for the measurement and model the evolution
of noise that we will denote by St. The last source of noise in our system is the measurement.
Following the same logic we obtain a covariance matrix for ẑt and denoting by vt the normally
distributed independent noise for our measurements, with covariance matrix given by Rt, we get

St = Cov(ẑt) = Cov(Hx̂t−1 + vt−1) = HPt−1H
> + Rt−1 (2.15)

Let us come back to our Kalman gain computation. Intuitively, we found that it should be larger
for larger process noise and lower for large measurement noise, leading to an equation of the type
Kt ∼ Process Noise

Measurement Noise . As process noise is measured Pt and measurement noise by St, we should
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get something like Kt = PtS
−1
t . We shall see in the next section that the real equation for the

Kalman gain is closely related to our intuition and given by

Kt = PtH
>S−1

t (2.16)

3. The maths

In this section, we will prove rigorously all the equations provided in section 2. To make notations
more robust and make the difference for a time dependent vector or matrix A between its value at
time t, knowing information up to time t − 1, and its value at time t, knowing information up to
time t, we will denote these two different value At|t−1 and At|t.

3.1. Kalman filter modeling assumption

The Kalman filter model assumes the true state at time t is obtained from the state at the previous
time t− 1 by the following state equation

xt = Ftxt−1 + Btut + wt (3.1)

The noise process wt is assumed to follow a multi dimensional normal distribution with zero
mean and covariance matrix given by Qt: wt ∼ N (0,Qt).

At time t, we make a measurement (or an observation) zt of the true state xt according to our
measurement equation:

zt = Htxt + vt (3.2)

Like for the state equation, we assume that the observation noise vt follows a multi dimensional
normal distribution with zero mean and covariance matrix given by Rt: vt ∼ N (0,Rt). In addition,
the initial state, and noise vectors at each step x0,w1, . . . ,wt,v1, . . . ,vt are assumed to be all
mutually independent.

3.2. Properties

It is immediate to derive the prediction phase as the estimated value of the state x̂t|t−1 is simply
the expectation of the state equation (2.5). Similarly, it is trivial to derive the estimated value for
the error covariance. This provides the prediction phase that is summarized below

x̂t|t−1 = Ftx̂t−1|t−1 + Btut (Predicted state estimate) (3.3)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt (Predicted error covariance) (3.4)

The correction phase that consists in incorporating the measurements to correct our prediction
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is slightly more tricky. It consists in the following equations:

ỹt = zt −Htx̂t|t−1 (Measurement pre-fit residua) (3.5)

St = Rt + HtPt|t−1H
T
t (Innovation covariance) (3.6)

Kt = Pt|t−1H
T
t S−1

t (Optimal Kalman gain) (3.7)

x̂t|t = x̂t|t−1 + Ktỹt (Updated state estimate) (3.8)

Pt|t = (I−KtHt)Pt|t−1 (Updated estimate covariance) (3.9)

ỹt|t = zt −Htx̂t|t (Measurement post-fit residual) (3.10)

Proposition 1. Under the assumptions stated in subsection 3.1, the Kalman gain that minimizes
the expected squared error defined as the square of the Euclidean (or L2) norm of the error vector,
representing the error between the true state and our estimated state : xt − x̂t|t is given by

Kt = Pt|t−1H
T
t S−1

t (3.11)

It is referred to as the optimal Kalman gain. For any Kalman gain (and not necessarily the optimal
one), the estimate covariance updates as follows:

Pt|t = (I−KtHt)Pt|t−1(I−KtHt)
T + KtRtK

T
t (3.12)

For the optimal Kalman filter, this reduces to the usual Kalman filter Updated estimate covari-
ance as follows:

Pt|t = (I−KtHt)Pt|t−1 (3.13)

Proof. The derivation of all these formulae consists in three steps. First, we derive the posteriori
estimate of the covariance matrix. Then we compute the Kalman gain as the minimum square
error estimator. Third, we show that in the particular case of the optimal gain the equation for the
updated estimate, covariance reduces to the formula provided in equation (3.9). All these steps are
provided in appendix A to make the reading of this article smooth.

4. Kalman as Graphical model

Historically, Hidden Markov Model (HMM) and Kalman filter were developed in distinct and uncon-
nected research communities. Hence, their close relationship has not always been widely emphasized
and appreciated. Part of the explanation lies also to the fact that the general framework for unifying
these two approaches, namely graphical models came much later than HMM and Kalman filter.
Without Bayesian graphical framework, the two algorithms underlying the inference calculation
look rather different and unrelated. However, their difference is simply a consequence of the differ-
ences between discrete and continuous hidden variables and more specifically between multinomial
and normal distribution. These details, important as they may be in practice, should not obscure
us from the fundamental similarity between these two models. As we shall see in this section, the
inference procedure for the state space model (SSM) shall prove us shortly that HMM and Kalman
filter’s model are cousin and share the same underlying graphical model structure, namely a hiddent
state space variable and an observable variable. The interest of using Bayesian Probabilistic Graph-
ical model is multiple. First, it emphasizes the general graphical model architecture underpinning
both HMM and Kalman filter. Second, it provides modern computational tools used commonly in
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machine learning to do the inference calculation. It shows how to generalize Kalman filter in the
case of non Gaussian assumptions. It is interesting to realize that graphical models have been the
marriage between probability theory and graph theory.

They provide a natural tool for dealing with two problems that occur throughout applied math-
ematics and engineering – uncertainty and complexity – and in particular they are playing an
increasingly important role in the design and analysis of machine learning algorithms.

From a literature point of view, Hidden Markov models were discussed as early as Rabiner and
Juang (1986), and expanded on in Rabiner (1989). The first temporal extension of probabilistic
graphical models is due to Dean and Kanazawa (1989), who also coined the term dynamic Bayesian
network. Much work has been done on defining various representations that are based on hidden
Markov models or on dynamic Bayesian networks; these include generalizations of the basic frame-
work, or special cases that allow more tractable inference. Examples include mixed memory Markov
models (see Saul and Jordan (1999)); variable-duration HMMs (Rabiner (1989)) and their extension
segment models (Ostendorf et al. (1996)); factorial HMMs (Ghahramani and Jordan (1994)); and
hierarchical HMMs (Fine et al. (1998) and Bui et al. (2002)). Smyth et al. (1997) is a review paper
that was influential in providing a clear exposition of the connections between HMMs and DBNs.
Murphy and Paskin (2001) show how hierarchical HMMs can be reduced to DBNs, a connection
that provided a much faster inference algorithm than previously proposed for this representation.
Murphy (2002) (and lately the book Murphy (2013)) provides an excellent tutorial on the topics
of dynamic Bayesian networks and related representations as well as the non published book of
Jordan (2016)

4.1. State space model

The state space model as emphasized for instance in Murphy (2013) is described as follows:

• there is a continuous chain of states denoted by (xt)t=1,...,n that are non observable and
influenced by past states only through the last realization. In other words, xt is a Markov
process, meaning P(xt | x1,x2, . . . ,xt−1) = P(xt | xt−1) Using graphical model, this can also
be stated as given a state at one point in time, the states in the future are conditionally
independent of those in the past.
• for each state, we can observe a space variable denoted by zt that depends on the non ob-

servable space xt

Compared to the original presentation of the Kalman filter model, this is quite different. We now
assume that there is an hidden variable (our state) and we can only measure a space variable. Since
at each step, the space variable only depends on the non observable, there is only one arrow or edge
between two latent variables horizontal nodes. This model is represented as a graphical model in
figure 2.

Obviously, the graphical model provided in figure 2 can host both HMM and Kalman filter model.
To make our model tractable, we will need to make additional assumptions. We will emphasize the
ones that are common to HMM and Kalman filter models and the ones that differ. We impose the
following conditions:
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Latent x1 x2 x3 xt

z1 z2 z3 ztObserved

. . .

Fig 2: State Space model as a Bayesian Probabilistic Graphical model. Each vertical slice represents
a time step. Nodes in white represent unobservable or latent variables called the states and denoted
by xt while nodes in gray observable ones and are called the spaces and denoted by zt. Each
arrow indicates that there is a relationship between the arrow originating node and the arrow
targeting node. Dots indicate that there is many time steps. The central dot line is to emphasize
the fundamental difference between latent and observed variables

• The relationship between the state and the space is linear (this is our measurement equation
in the Kalman filter and this is common to Kalman filter and HMM models):

zt = Htxt + vt (4.1)

where the noise term vt is assumed to follow a multi dimensional normal distribution with
zero mean and covariance matrix given by Rt.
• We will make the simplest choice of dependency between the state at time t − 1 and t and

assume that this is linear (this is our state equation and this is common to Kalman filter and
HMM models)

xt = Ftxt−1 + Btut + wt (4.2)

where the noise term wt is assumed to follow a multi dimensional normal distribution with
zero mean and covariance matrix given by Qt and where Btut is an additional trend term
(that represents our control in Kalman filter). This control term is not common in HMM
model but can be added without any difficulty. This results in slightly extended formula
that we will signal. These formula are slight improvement of the common one found in the
literature. Although, from a theoretical point of view, this control term may seem a futility,
it is very important in practice and makes a big difference in numerical applications.
• We will assume as in the Kalman filter section that the initial state, and noise vectors at

each step x0,w1, . . . ,wt,v1, . . . ,vt are all mutually independent (this is common to HMM
and Kalman filter models).
• Last but not least, we assume that the distribution of the state variable xt follows a multi

dimensional normal distribution. This is Kalman filter specific. For HMM, the state is
assumed to follow a multinomial distribution.

The above assumptions restrict our initial state space model to a narrower class called the
Linear-Gaussian SSM (LG-SSM). This model has been extensively studied and more can be found
in Durbin and Koopman (2012) for instance.

Before embarking into the inference problem for the SSM, it is interesting to examine the un-
conditional distribution of the states xt. Using equation (4.2)
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The unconditional mean of xt is computed recursively

t∏
k=2

Fkx1 +

t∑
k=2

t∏
l=k+1

FlBk (4.3)

with the implicit assumption that empty product equals 1:

t∏
l=t+1

Fl = 1.

In the specific case of a null control term (Bt = 0), the latter equation simplifies into

t∏
k=2

Fkx1 (4.4)

The unconditional co-variance is computed as follows Pt = E[xtx
T
t ]. Using our assumptions on

independence as well as the state equation (4.2), we can compute it easily as:

Pt = FtPt−1F
T
t + Qt (4.5)

This last equation remains unchanged in case of a non zero control term as the control term is
deterministic. This last equation provides a dynamic equation for the unconditional variance and
is referred to as the Lyapunov equation. It is also easy to checked that the unconditional covariance
between neighboring states xt and xt+1 is given by Ft+1PtF

T
t+1.

4.2. Inference

The inference problem consists in calculating the posterior probability of the states given an output
sequence. This calculation can be done both forward and backward. By forward, we mean that the
inference information (called the evidence) at time t consists of the partial sequence of outputs up to
time t. The backward problem is similar except that the evidence consists of the partial sequence of
outputs after time t. Using standard graphical model terminology, we distinguish between filtering
and smoothing problem.

In filtering, the problem is to calculate an estimate of the state xt based on a partial output
sequence z0, . . . , zt. That is, we want to calculate P(xt | z0, . . . , zt). This is often referred to as the
alpha recursion in HMM models (see for instance Rabiner and Juang (1986) and Rabiner (1989)).

Using standard Kalman filter notations, we shall denote by

x̂t|t , E[xt | z0, . . . , zt] (4.6)

Pt|t , E[(xt − x̂t|t)(xt − x̂t|t)
T | z0, . . . , zt] (4.7)

Under this settings, it is fairly easy to derive the following property that provides the conditional
posterior distribution in the forward recursion. And to recover traditional results of Kalman filter,
we shall decompose our time propagation into two steps:

• time update: P[xt | z0, . . . , zt] → P[xt+1 | z0, . . . , zt]
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xt xt+1

zt zt+1

xt xt+1

zt zt+1

(a) (b)

Fig 3: (a) A portion of the State Space Model before a measurement and (b) after a measurement
update. White nodes are non observable variables while gray nodes are observed nodes.

• measurement update: P[xt+1 | z0, . . . , zt]→ P[xt+1 | z0, . . . , zt+1]

This can be represented nicely in terms of graphical models by the figure 3 below.

Proposition 2. Conditioned on past outputs z0, . . . , zt, the variables xt+1 and zt+1 have a joint
Gaussian distribution with mean and covariance matrix given by:[

x̂t+1|t
Ht+1x̂t+1|t

]
and

[
Pt+1|t Pt+1|tH

T
t+1

Ht+1Pt+1|t Ht+1Pt+1|tH
T
t+1 + Rt+1

]
(4.8)

Proof. This is trivial as the considered state space model is the Linear Gauss State Space Model
(LGSSM).

As simple as it may seem, the previous proposition makes our graphical model a full powerhouse
as it provides the building block to start the inference. Indeed, knowing the conditional posterior
distribution at step (a) of figure 3 gives us the first bullet to conclude for the step (b). Moreover, using
results from simpler graphical models like the factor analysis graphical model, we can immediately
conclude that the second step is given as follows

Proposition 3. Conditioned on past outputs z0, . . . , zt+1, we have the following relationship

x̂t+1|t+1 = x̂t+1|t + Pt+1|tH
T
t+1

(
Ht+1Pt+1|tH

T
t+1 + Rt+1

)−1

(zt+1 −Ht+1x̂t+1|t) (4.9)

Pt+1|t+1 = Pt+1|t −Pt+1|tH
T
t+1

(
Ht+1Pt+1|tH

T
t+1 + Rt+1

)−1
Ht+1Pt+1|t (4.10)

Proof. This is a direct consequence of the spatial model and can be found for instance in Murphy
(2013) or Jordan (2016). We provide a self contained proof in appendix B

Summarizing all these results leads to the seminal recursions of the Kalman filter as provided in
the section 3 and given by the following proposition.
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Proposition 4. Kalman filter consists in the following recursive equations:

x̂t|t−1 = Ftx̂t−1|t−1 + Btut (4.11)

Pt|t−1 = FtPt−1|t−1F
T
t + Qt (4.12)

x̂t+1|t+1 = x̂t+1|t + Pt+1|tH
T
t+1

(
Ht+1Pt+1|tH

T
t+1 + Rt+1

)−1

(zt+1 −Ht+1x̂t+1|t) (4.13)

Pt+1|t+1 = Pt+1|t −Pt+1|tH
T
t+1

(
Ht+1Pt+1|tH

T
t+1 + Rt+1

)−1
Ht+1Pt+1|t (4.14)

Proof. This is a trivial consequence of proposition 3. Equation (4.11) (resp. (4.12)) is the same as
the one provided in (3.3) (resp. (3.4)) but using graphical models induction.

Remark 4.1. If we introduce the following intermediate variables already provided in section 3:

ỹt+1 = zt+1 −Ht+1x̂t+1|t (4.15)

St+1 = Rt+1 + Ht+1Pt+1|tH
T
t+1 (4.16)

Kt+1 = Pt+1|tH
T
t+1S

−1
t+1 (4.17)

The equations (4.13) and (4.14) transform into equations

x̂t+1|t+1 = x̂t+1|t + Kt+1ỹt+1 (4.18)

Pt+1|t+1 = (I−Kt+1Ht+1) Pt+1|t (4.19)

which are equations (3.8) and (3.9). This proves that the derivation using graphical models and
control theory are mathematically equivalent!

Remark 4.2. There is nothing new to fancy at this stage except that we have shown with graphical
models the Kalman filter recursion. And we can check this is way faster, easier and more intu-
itive. It is worth noticing that we have also multiple ways to write the gain matrix. Using the
Sherman–Morrison–Woodbury formula, we can also derive various forms for the gain matrix as
follows:

Kt+1 = Pt+1|tH
T
t+1

(
Ht+1Pt+1|tH

T
t+1 +Rt+1

)−1

(4.20)

=
(
P−1
t+1|t +HT

t+1Rt+1Ht+1

)−1

HT
t+1R

−1
t+1 (4.21)

=
(
Pt+1|t −Pt+1|tH

T
t+1(Ht+1Pt+1|tH

T
t+1 +Rt+1)

−1Ht+1Pt+1|t

)
HT
t+1R

−1
t+1 (4.22)

= Pt+1|t+1H
T
t+1R

−1
t+1 (4.23)

These forms may be useful whenever the reduced form (which is the last equation) is numerically
unstable. Equation (4.23) is useful as it relates Kt+1 to Pt+1|t+1. It is interesting to notice the two
form of the Kalman gain

Kt+1 = Pt+1|tH
T
t+1S

−1
t+1 = Pt+1|t+1H

T
t+1R

−1
t+1
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Remark 4.3. The Kalman filter appeals some remarks. We can first note that Kalman filtering
equations can be interpreted differently. Combining equations (3.8) and (3.3), we retrieve an error
correcting algorithm as follows:

x̂t|t = Ftx̂t−1|t−1 + Btut + Kt

(
zt −Ht(Ftx̂t−1|t−1 + Btut)

)
or equivalently, regrouping the term x̂t−1|t−1

x̂t|t = (Ft −KtHtFt) x̂t−1|t−1 + (Btut + Kt (zt −HtBtut))

This shows us two things:

• Kalman filter can be seen as the discrete version of an Ornstein Uhlenbeck process
• Kalman filter can be seen as Auto Regressive process in discrete times

Since, recursive equation do appear similarly in Recursive Least Square (RLS) estimates, we also
see here a connection with RLS. It is striking that these connections are not often made, mostly
because Kalman filter was originally a control problem and not a statistician one.

As nice as the Kalman filter equation may look like, they have one major problem. It is the
numerical stability of the filter. If the process noise covariance Qt is small, round-off error would
lead to obtain numerically a negative number for small positive eigenvalues of this matrix. As the
scheme will propagate round off errors, the state covariance matrix Pt will progressively become
only positive semi-definite (and hence indefinite) while it is theoretically a true positive definite
matrix fully invertible.

In order to keep the positive definite property, we can slightly modify the recursive equation
to find recursive equations that preserve the positive definite feature of the two covariance matri-
ces. Since any positive definite matrix Sd can be represented and also reconstructed by its upper
triangular square root matrix R with Sd = RtRT, with the strong property that representing in
this form will guarantee that the resulting matrix will never get a negative eigen value, it is worth
using a square root scheme with square root representation. Alternatively, we can also represent our
covariance matrix using the so called unit diagonal (U-D) decomposition form, with Sd = UDUT

where U’ is a unit triangular matrix (with unit diagonal), and D’ is a diagonal matrix. This form
avoids in particular many of the square root operations required by the matrix square root repre-
sentation. Moreover, when comparing the two approaches, the U-D form has the elegant property
to need same amount of storage, and somewhat less computation. This explains while the U-D
factorization is often preferred Thornton (1976). A slight variation is the LDL decomposition of the
innovation covariance matrix. The LDL decomposition relies on decomposing the covariance matrix
Sd with two matrices: a lower unit triangular (unitriangular) matrix L, and D a diagonal matrix.
The algorithm starts with the LU decomposition as implemented in the Linear Algebra PACKage
(LAPACK) and further it factors into the LDL form. Any singular covariance matrix is pivoted so
that the first diagonal partition is always non-singular and well-conditioned (for further details see
Bar-Shalom et al. (2002)).

4.3. Connection to information filter

It is worth showing the close connection with particle and information filter. This is a direct con-
sequence of the fact that a multivariate Gaussian belongs to the exponential family and as such
admits canonical parameters. Hence, we can rewrite the filter in terms of the later instead of the
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initial usage of moment parameters. This is an interesting rewriting of the Kalman filter as it makes
it numerically more stable. The canonical parameters of a multi variate Gaussian distribution, de-
noted by Λ and η, are obtained from the moment parameters Σ and µ as follows: Λ = Σ−1 and
η = Σ−1µ. We are interested in deriving the canonical parameters of xt first, at the prediction
phase, conditioned on z1, . . . , zt−1.

In the Kalman filter settings, the covariance Σ is denoted by P while the moment is given by x
with the relationship η = P−1x. Hence, we will write the precision matrix as Λ with the relationship
with the covariance matrix given by Λ = P−1. We shall write our new variables to be consistent
with previous development as Λt|t−1 and ηt|t−1. At the correction or measurement phase, we are
interested in the same parameters but now conditioned on z1, . . . , zt. We shall write them Λt|t and
ηt|t. We can easily derive the following recursive scheme that is given by the proposition below:

Proposition 5. The filter equations are given by the following recursive scheme:

η̂t|t−1 = Q−1
t Ft(Λt−1|t−1 + FT

t Q−1
t Ft)

−1η̂t−1|t−1

+(Q−1
t −Q−1

t Ft(Λt−1|t−1+FT
t Q−1

t Ft)
−1FT

t Q−1
t )Btut (4.24)

η̂t|t = η̂t|t−1 + HT
t R−1

t zt (4.25)

Λt|t−1 = Q−1
t −Q−1

t Ft(Λt−1|t−1 + FT
t Q−1

t Ft)
−1FT

t Q−1
t (4.26)

Λt|t = Λt|t−1 + HT
t R−1

t Ht (4.27)

Proof. The derivation is easy and given in section B.3

Remark 4.4. The recursive equation for the information filter are very general. They include the
control term Btut that is often neglected in literature introduced as early as 1979 in Anderson and
Moore (1979). It is worth noticing that we can simplify computation by pre-computing a term Mt

as follows:

Mt = Q−1
t Ft(Λt−1|t−1 + FT

t Q−1
t Ft)

−1 (4.28)

Λt|t−1 = Q−1
t −MtF

T
t Q−1

t (4.29)

η̂t|t−1 = Mtη̂t−1|t−1 + Λt|t−1Btut (4.30)

η̂t|t = η̂t|t−1 + HT
t R−1

t zt (4.31)

Λt|t = Λt|t−1 + HT
t R−1

t Ht (4.32)

These equations are more efficient than the ones provided in proposition 5. As for the initialization
of this recursion, we define the initial value as follows η̂1|0 = η̂1 and Λ1|0 = Λ1. It is interesting
to note that the Kalman filter and the information filter are mathematically equivalent. They both
share the same assumptions. However, they do not use the same parameters. Kalman filter (KF)
uses moment parameters while particle or information filter (IF) relies on canonical parameters,
which makes the later numerically more stable in case of poor conditioning of the covariance matrix.
This is easy to understand as a small eigen value of the covariance translates into a large eigen value
of the precision matrix as the precision matrix is the inverse of the covariance matrix. Reciprocally,
a poor conditioning of the information filter should convert to a more stable scheme for the Kalman
filter as the he condition number of a matrix is the reciprocal of the condition number of its inverse.
Likewise, for initial condition as they are inverse, a small initial state in KF should translate to a
large state in IF.

imsart-generic ver. 2014/10/16 file: article_KalmanFilterDemystified.tex date: December 21, 2018



E. Benhamou/Kalman filter demystified 15

4.4. Smoothing

Another task we can do on dynamic Bayesian network is smoothing. It consists in obtaining esti-
mates of the state at time t based on information from t on-wards (we are using future information
in a sense). Like for HMM, the computation of this state estimate requires combining forward
and backward recursion, either by starting by a backward-filtered estimates and then a forward-
filtered estimates (an ’alpha-beta algorithm”), or by doing an algorithm that iterates directly on
the filtered-and-smoothed estimates (an ”alpha-gamma algorithm”). Both kinds of algorithm are
available in the literature on state-space models (see for instance Koller and Friedman (2009) and
Cappe et al. (2010) for more details), but the latter approach appears to dominate (as opposed
to the HMM literature, where the former approach dominates) . The ”alpha-gamma” approach is
referred to as the ”Rauch-Tung-Striebel (RTS) smoothing algorithm” (although it was developed
using very different tool, namely control theory as early as 1965: see Rauch et al. (1965)) while the
other approach is just the ”alpha-beta” recursion.

4.4.1. Rauch-Tung-Striebel (RTS) smoother

The Rauch-Tung-Striebel (RTS) smoother developed in Rauch et al. (1965) relies precisely on the
idea of of doing first a backward estimate and then a forward filter. Smoothing should not be con-
fused with smoothing in times series analysis that is more or less a convolution. Smoothing for a
Bayesian network means infering the distribution of a node conditioned on future information. It
is the reciprocal of filtering that has also two meanings. Filtering for time series means doing a
convolution to filter some noise. But filtering for Bayesian network means infering the distribution
of a node conditioned on past information.

We can work out the RTS smoother and find the recursive equations provided by the following
proposition

Proposition 6. The RTS smoothing algorithm works as follows:

x̂t|T = x̂t|t + Lt(xt+1|T − x̂t+1|t) (4.33)

P̂t|T = Pt|t + Lt(Pt+1|T −Pt+1|t)L
T
t (4.34)

where Lt = Pt|tF
T
t+1P

−1
t+1|t (4.35)

with an initial condition given by

x̂T |T = x̂T (4.36)

P̂T |T = P̂T (4.37)

Proof. The proof consists in writing rigorously the various equations and is given in section B.4

4.4.2. Alternative to RTS filter

It is worth noting that we can develop an alternative approach to the RTS filter that relies on the
alpha beta approach without any observation. This approach is quite standard for HMM models (see
for instance Rabiner and Juang (1986) or Russell and Norvig (2009)). Following Kitagawa (1987),
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this approach has been called in the literature the two-filter algorithm. It consists in combining
the forward conditional probability P(xt | z1, . . . , zt) with the backward conditional probability
P(xt | zt+1, . . . , zT ). The intuition is illustrated by the figure 4.

. . .
xt xt+1 . . .

zt zt+1

Ft+1

Fig 4: SSM with no observations

The graphical model provided by figure 4 can be easily characterized. The joint probability
distribution of (xt,xt+1) is a multi variate normal whose Lyapunov equation (equation of the
covariance matrix) is given by

Pt+1 = Ft+1PtF
T
t+1 + Qt+1 (4.38)

Hence the covariance matrix of (xt,xt+1) is given by[
Pt PtF

T
t+1

Ft+1Pt Ft+1PtF
T
t+1 + Qt+1

]
(4.39)

The underlying idea in this approach is to invert the arrows in the graphical model leading to a
new graphical model given by

. . .
xt xt+1 . . .

zt zt+1

F−1
t+1

Fig 5: Inverted arrows for the SSM with no observations

Mathematically, this imply to change the relationship and now solve for Pt in terms of Pt+1

using equation (4.38). We get:

Pt = F−1
t+1(Pt+1 −Qt+1)F−T

t+1 (4.40)

where we have assumed that Ft+1 is invertible. As a matter of fact, if it is not the case, we can
rewrite everything with an approaching matrix to Ft+1 (in the sense of the Frobenius norm) that
is invertible, whose distance is less than ε, derive all the relationship below and then take the limit
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as ε tends to zero. We will therefore assume in the following that Ft+1 is invertible as this is not a
strict condition for our derivation. Hence we can rewrite the covariance matrix now as follows:[

F−1
t+1(Pt+1 −Qt+1)F−T

t+1 F−1
t+1(Pt+1 −Qt+1)

(Pt+1 −Qt+1)F−Tt+1 Pt+1

]
(4.41)

If we define the new matrix F̃t+1 as:

F̃t+1 = F−1
t+1(I−Qt+1P

−1
t+1) (4.42)

we can simplify the covariance matrix as follows:[
F̃t+1Pt+1F

−T
t+1 F̃t+1Pt+1

Pt+1F̃
T
t+1 Pt+1

]
(4.43)

As this looks like a forward covariance matrix. Recall that the forward dynamics is defined by:

xt+1 = Ft+1xt + Bt+1ut+1 + wt+1 (4.44)

The following proposition gives the inverse dynamics:

Proposition 7. The inverse dynamics is given by:

xt = F̃t+1xt+1 + B̃t+1ut+1 + w̃t+1 (4.45)

with w̃t+1 = −F−1
t+1(wt+1 −Qt+1P

−1
t+1xt+1) (4.46)

B̃t+1 = −F−1
t+1Bt+1 (4.47)

and with w̃t+1 independent of the past information xt+1, . . . ,xT and with the covariance matrix
of w̃t+1 given by

Q̃t+1 , E[w̃t+1w̃
T
t+1] = F−1

t+1Qt+1(I−P−1
t+1Qt+1)F−T

t+1, (4.48)

and with the forward Lyapunov equation given by:

Pt = F̃tPt+1F̃
T
t + Q̃t+1 (4.49)

Proof. The proof is straightforward and given in B.5.

The reasoning followed here gives us a new way to generate an information filter but now back-
ward. We should note that the conversion between the state space and the observable variable is
unchanged and given by

zt = Hxt + vt

We can now apply the information filter developed previously to get the new filtering equations
using canonical instead of moment parameterization. We get the following new information filter :
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Proposition 8. The modified Bryson–Frazier as presented in Bierman (2006) is given by:

M̃t = FTt Q−1
t (Λt+1|t+1 + Q−1

t −P−1
t )−1 (4.50)

Λt|t+1 = FTt (Qt −QtP
−1
t Qt)

−1Ft − M̃tQ
−1
t Ft (4.51)

η̂t|t+1 = M̃tη̂t+1|t+1 −Λt|t+1FtBtut (4.52)

η̂t|t = η̂t|t+1 + HT
t R−1

t zt (4.53)

Λt|t = Λt|t+1 + HT
t R−1

t Ht (4.54)

Proof. The proof consists in combining all previous results and is given in B.6.

Remark 4.5. If we want to convert to to the moment representation, we can use the inverse transform
given by x̂t|t+1 = S−1

t|t+1η̂t|t+1 and Pt|t+1 = S−1
t|t+1

4.5. Inferring final posterior distribution

This problem consists in inferring the final posterior distribution P(xt | z1, . . . , zT ). We can easily
derive

x̂t|T = Pt|T (P−1
t|t x̂t|t + P−1

t|t+1x̂t|t+1) (4.55)

and

Pt|T =
(
P−1
t|t + P−1

t|t+1 − Σ−1
t

)−1

(4.56)

4.6. Parameter estimation

4.6.1. Intuition

Since the connection between HMM and Kalman filter, it has been established that the best way
to estimate the initial parameters of a Kalman filter and any of its extension is to rely on EM
estimation.

The expectation–maximization (EM) algorithm is an iterative method to find the maximum
likelihood or maximum a posteriori (MAP) estimates of the parameters of a statistical model. This
approach relies on the fact that the model depends on non observable (also called latent) variables.
The EM algorithm alternates between performing an expectation (E) step, which provides the
expectation of the conditional log-likelihood evaluated using the current estimate for the parameters,
and a maximization (M) step, which computes parameters maximizing the expected log-likelihood
found on the E step. These parameter-estimates are then used to determine the distribution of the
latent variables in the next E step.

The EM algorithm was explained and given its name in a classic 1977 paper by Dempster
et al. (1977). The intuition is to find a way to solve the maximum likelihood solution for a model
with latent variables. Since variables are hidden, solving the maximum likelihood solution typically
requires taking the derivatives of the likelihood function with respect to all the unknown values and
then solving the resulting equations. Because of latent variables, this function is unknown and the
problem can not be solved. Instead, we compute the expected maximum likelihood with respect to
the latent variables. We can then solve this explicit maximum likelihood function with respect to
the observable variables.
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4.6.2. EM Algorithm

We assume that our statistical model has a set X of observed data and a set of unobserved latent Z
that depend on unknown parameters θ that we want to determine thanks to maximum likelihood.
We obviously know the likelihood function L(θ; X,Z) = p(X,Z|θ) given by

L(θ; X) = p(X|θ) =

∫
p(X,Z|θ)dZ

The later is often intractable as the number of values for Z is vary large making the computation
of the expectation (the integral) extremely difficult. In order to avoid the exact computation, we
can work as follows:

First compute the expectation explicitly (called the E step) by taking the expected value of the

log likelihood function of θ with respect to latent variables Z, denoted by Q(θ|θ(t):

Q(θ|θ(t)) = EZ|X,θ(t) [logL(θ; X,Z)]

We then maximize the resulted function with respect to the parameters θ:

θ(t+1) = arg max
θ

Q(θ|θ(t))

The EM method works both for discrete or continuous random latent variables. It takes advantage
of algoirthm like the Viterbi algorithm for hidden Markov models or recursive equation fo Kalman
filter. The various steps are the following:

Algorithm 1 EM algorithm:

init: Set θ to some random values.
while Not Converged do

Compute the probability of each possible value of Z, given θ (E-step)
Use the computed values of Z to find the argmax values for θ (M-Step).

end while

The convergence of this algorithm is given by the following proposition.

Proposition 9. The EM algorithm converges monotonically to a local minimum for the marginal
log likelihood.

Proof. There are at least two ways of proving this results that are provided in D.1 and D.2.

4.7. Application to Kalman filter

The EM algorithm was initially developed for mixture models in particular Gaussian mixtures but
also other natural laws from the exponential family such as Poisson, binomial, multinomial and
exponential distributions as early as in Hartley (958). It was only once the link between latent
variable and Kalman filter models was made that it became obvious that this could also be applied
to Kalman and extended Kalman filter (see Cappe et al. (2010) or Einicke et al. (2010)). The EM
method works as folllows:
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Algorithm 2 EM algorithm for Kalman filter

init: Set the Kalman filter parameters to some random values.
while Not Converged do

Use Kalman filter recursive equations to obtained updated state estimates (E-step)
Use the filtered or smoothed state estimates within maximum-likelihood calculations to obtain updated pa-

rameter estimates. For instance for the standard Kalman filter, the distributions are assumed to be normal. The
corresponding maximum likehood estimate for the updated measurement noise variance estimate leads to a variance
given by

σ̂2
v =

1

N

N∑
k=1

(zk − x̂k)2

where x̂k are the output estimates calculated by the Kalman filter for the measurements zk. Likewise, the the
updated process noise variance estimate is calculated as

σ̂2
w =

1

N

N∑
k=1

(x̂k+1 − F̂ x̂k)
2

where x̂k and x̂k+1 are scalar state estimates calculated by a filter or a smoother. The updated model coefficient
estimate is obtained via

F̂ =

∑N
k=1(x̂k+1 − F̂ x̂k)∑N

k=1 x̂
2
k

.
end while

4.7.1. CMA-ES estimation

Another radically difference approach is to minimize some cost function depending on the Kalman
filter parameters. As opposed to the maximum likelihood approach that tries to find the best suitable
distribution that fits the data, this approach can somehow factor in some noise and directly target
a cost function that is our final result. Because our model is an approximation of the reality, this
noise introduction may leads to a better overall cost function but a worse distribution in terms of
fit to the data.

Let us first introduce the CMA-ES algorithm. Its name stands for covariance matrix adaptation
evolution strategy. As it points out, it is an evolution strategy optimization method, meaning
that it is a derivative free method that can accomodate non convex optimization problem. The
terminology covariance matrix alludes to the fact that the exploration of new points is based on
a multinomial distribution whose covariance matrix is progressively determined at each iteration.
Hence the covariance matrix adapts in a sense to the sampling space, contracts in dimension that
are useless and expands in dimension where natural gradient is steep. This algorithm has led to
a large number of papers and articles and we refer to Varelas et al. (2018), Ollivier et al. (2017),
Akimoto et al. (2016), Akimoto et al. (2015), Hansen and Auger (2014), Auger and Hansen (2012),
Hansen and Auger (2011), Auger and Hansen (2009), Igel et al. (2007), Auger et al. (2004) to cite
a few of the numerous articles around CMA-ES. We also refer the reader to the excellent wikipedia
page Wikipedia (2018).

CMA-ES relies on two main principles in the exploration of admissible solution for our optimiza-
tion problem. First, it relies on a multi variate normal distribution as this is the maximum entropy
distribution given the first two moments. The mean of the multi variate distribution is updated at
each step in order to maximize the likelihood of finding a successful candidate. The second moment,
the covariance matrix of the distribution is also updated at each step to increase the likelihood of
successful search steps. These updates can be interpreted as a natural gradient descent. Intuitively,
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the CMA ES algorithim conducts an iterated principal components analysis of successful search
steps while retaining all principal axes.

Second, we retain two paths of the successive distribution mean, called search or evolution paths.
The underlying idea is keep significant information about the correlation between consecutive steps.
If consecutive steps are taken in a similar direction, the evolution paths become long. The evolution
paths are exploited in two ways. We use the first path is to compute the covariance matrix to
increase variance in favorable directions and hence increase convergence speed. The second path is
used to control step size and to make consecutive movements of the distribution mean orthogonal
in expectation. The goal of this step-size control is to prevent premature convergence yet obtaining
fast convergence to a local optimum.

In order to make it practical, we assume that we have a general cost function that depends on
our Bayesian graphical model denoted by Φ(θ) where θ are the parameters of our Kalman filter. Our
cost function is for instance the Sharpe ratio corresponding to a generic trend detection strategy
whose signal is generated by our Bayesian graphical model that is underneath a Kalman filter.
This approach is more developed in a companion paper Benhamou (2018) but we will give here the
general idea. Instead of computing the parameter of our Bayesian graphical model using the EM
approach, we would like to find the parameters θmax that maximize our cost function Φ(θ). Because
our cost function is to enter a long trade with a predetermined target level and a given stop loss
whenever our Bayesian graphical model anticipates a price risen and similarly to enter a short trade
whenever our prediction based on Bayesian graphical model is a downside movement, our trading
strategy is not convex neither smooth. It is a full binary function and generates spike whenever
there is a trade. Moreover, our final criterium is to use the Sharpe ratio of the resulting trading
strategy to compare the efficiency of our parameters. This is way too complicated for traditional
optimization method, and we need to rely on Balck box optimization techniques like CMA-ES.
Before presenting results, we will also discuss in the following section computational issues and the
choice of the State space model dynamics.

We will describe below the most commonly used CMA -ES algorithm referred to as the µ/µw, λ
version. It is the version in which at each iteration step, we take a weighted combination of the
µ best out of λ new candidate solutions to update the distribution parameters. The algorith has
three main loops: first, it samples new solutions, second, it reorders the sampled solutions based
on their fitness and third it updates the state variables. A pseudocode of the algorithm is provided
just below:
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Algorithm 3 CMA ES algorithm

Set λ . number of samples / iteration
Initialize m,σ,C = In, pσ = 0, pc = 0 . initialize state variables

while (not terminated) do
for i = 1 to λ do . samples λ new solutions and evaluate them

xi ∼ N (m,σ2C) . samples multi variate normal
fi = f(xi) . evaluates

end for

x1...λ = xs(1)...s(λ) with s(i) = argsort(f1...λ, i) . reorders samples
m′ = m . stores current value of m

m = update mean(x1, ..., xλ) . udpates mean to better solutions
pσ = update ps(pσ , σ−1C−1/2(m−m′)) . updates isotropic evolution path
pc = update pc(pc, σ−1(m−m′), ||pσ ||) . updates anisotropic evolution path
C = update C(C, pc, (x1 −m′)/σ, ..., (xλ −m′)/σ) . updates covariance matrix
σ = update sigma(σ, ||pσ ||) . updates step-size using isotropic path length

not terminated = iteration ≤ iteration max and ||m−m′|| ≥ ε . stop condition
end while

return m or x1 . returns solution

In this algorithm, for an n dimensional optimization program, the five state variables at iteration
step k are:

1. mk ∈ Rn, the distribution mean and current best solution,
2. σk > 0, the variance step-size,
3. Ck, a symmetric positive-definite n× n covariance matrix initialized to In,
4. pσ ∈ Rn, the isotropic evolution path, initially set to null,
5. pc ∈ Rn, the anisotropic evolution path, initially set to null.

It is worth noting that the order of the five update is important. The iteration starts with
sampling λ > 1 candidate solutions xi ∈ Rn from a multivariate normal distribution N (mk, σ

2
kCk),

that is xi ∼ mk + σkN (0, Ck) for i = 1, ..., λ.
We then evaluate candidate solutions xi for the objective function f : Rn → R of our optimiza-

tion.
We then sort candidate solution according to their objective function value: {xi:λ | i = 1 . . . λ} with f(x1:λ) ≤

. . . ≤ f(xµ:λ) ≤ . . . ≤ f(xλ:λ). It is worth noticing that we do not even need to know the value.
Only the ranking is important for this algorithm.

The new mean value is updated as a weighted mean of our new candidate solutions

mk+1 =

µ∑
i=1

wi xi:λ = mk +

µ∑
i=1

wi (xi:λ −mk) (4.57)

where the positive (recombination) weights w1 ≥ w2 ≥ · · · ≥ wµ > 0 sum to one. Typically,
µ ≤ λ/2 and the weights are chosen such that µw := 1/

∑µ
i=1 w

2
i ≈ λ/4.

The step-size σk is updated using cumulative step-size adaptation (CSA), sometimes also denoted
as path length control. The evolution path pσ is updated first as it is used in the update of the
step-size σk:
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pσ = (1− cσ)︸ ︷︷ ︸
discount factor

pσ +

complements for discounted variance︷ ︸︸ ︷√
1− (1− cσ)2

√
µw C

−1/2
k

displacement of m︷ ︸︸ ︷
mk+1 −mk

σk︸ ︷︷ ︸
distributed as N (0,I) under neutral selection

(4.58)

σk+1 = σk × exp

(
cσ
dσ

(
‖pσ‖

E‖N (0, I)‖
− 1

)
︸ ︷︷ ︸

unbiased about 0 under neutral selection

)
(4.59)

where

• c−1
σ ≈ n/3 is the backward time horizon for the evolution path pσ and larger than one (cσ � 1

is reminiscent of an exponential decay constant as (1 − cσ)k ≈ exp(−cσk) where c−1
σ is the

associated lifetime and c−1
σ ln(2) ≈ 0.7c−1

σ the half-life),

• µw =
(∑µ

i=1 w
2
i

)−1
is the variance effective selection mass and 1 ≤ µw ≤ µ by definition of

wi,

• C −1/2
k =

√
Ck
−1

=
√
C −1
k is the unique symmetric square root of the inverse of Ck, and

• dσ is the damping parameter usually close to one. For dσ =∞ or cσ = 0 the step-size remains
unchanged.

The step-size σk is increased if and only if ‖pσ‖ is larger than
√
n (1− 1/(4n) + 1/(21n2)) and

decreased if it is smaller (see Hansen (2006) for more details).
Finally, the covariance matrix is updated, where again the respective evolution path is updated

first.

pc ← (1− cc)︸ ︷︷ ︸
discount factor

pc + 1[0,α
√
n](‖pσ‖)︸ ︷︷ ︸

indicator function

complements for discounted variance︷ ︸︸ ︷√
1− (1− cc)2

√
µw

mk+1 −mk

σk︸ ︷︷ ︸
distributed as N (0,Ck) under neutral selection

(4.60)

Ck+1 = (1− c1 − cµ + cs)︸ ︷︷ ︸
discount factor

Ck + c1 pcp
T
c︸︷︷︸

rank one matrix

+ cµ

µ∑
i=1

wi
xi:λ −mk

σk

(
xi:λ −mk

σk

)T
︸ ︷︷ ︸

rank min(µ,n) matrix

(4.61)

where T denotes the transpose and
c−1
c ≈ n/4 is the backward time horizon for the evolution path pc and larger than one,
α ≈ 1.5 and the indicator function 1[0,α

√
n](‖pσ‖) evaluates to one if and only if ‖pσ‖ ∈ [0, α

√
n]

or, in other words, ‖pσ‖ ≤ α
√
n, which is usually the case,

cs = (1 − 1[0,α
√
n](‖pσ‖)2) c1cc(2 − cc) makes partly up for the small variance loss in case the

indicator is zero,
c1 ≈ 2/n2 is the learning rate for the rank-one update of the covariance matrix and
cµ ≈ µw/n

2 is the learning rate for the rank-µ update of the covariance matrix and must not
exceed 1− c1.

The covariance matrix update tends to increase the likelihood function for pc and for (xi:λ −
mk)/σk to be sampled from N (0, Ck+1). This completes the iteration step. The stop condition is
quite standard and makes sure we stop if the best solution does not move or if we reached the
maximum iterations number.
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Remark 4.6. The number of candidate samples per iteration, λ, is an important and influential
parameter. It highly depends on the objective function and can be tricky to be determined. Smaller
values, like 10, tends to do more local search. Larger values, like 10 times the dimension n makes the
search more global. A potential solution to the determination of the number of candidate samples
per iteration is to repeatedly restart the algorithm with increasing λ by a factor of two at each
restart (see Auger and Hansen (2005))

Besides of setting λ (or possibly µ instead, if for example λ is predetermined by the number
of available processors), the above introduced parameters are not specific to the given objective
function. This makes this algorithm quite powerful as the end user has relatively few parameters
to set to do an efficient optimization search.

4.8. Computational issues

Although the computational cost of Kalman filter is very small and its complexity dammed simple,
there are room for improvements. The two dominant costs in the Kalman filter are the matrix
inversion to compute the Kalman gain matrix, Kt, which takes O(|xt|3) time where |xt| stands
for the dimension of xt; and the matrix-matrix multiplication to compute the estimated covariance
matrix which takes O(|zt|2) time.

In some applications (e.g., robotic mapping), we have |zt � |xt|, so the latter cost dominates.
However, in such cases, we can sometimes use sparse approximations (see for instance Thrun et al.
(2005)). In the opposite cases where |xt| � |zt, we can precompute the Kalman filter gain Kt,
since, it does not depend on the actual observations (z1, . . . , zt). This is a an unusual property that
is specific to linear Gaussian systems.

The iterative equations for updating the estimate covariance in equation (3.9) or in (A.6) are Ric-
cati equations as they are first order ordinary differential recursive equations quadratic in Kalman
gain. Standard theory state that for time invariant systems, they converge to a fixed point. Hence,
it may be wised to use this steady state solution instead of using a time-specific gain matrix in
our filtering. In practice however, this does not provide better results. More sophisticated imple-
mentations of the Kalman filter should be used, for reasons of numerical stability. One approach is
the information filter also called particle filter, which recursively updates the canonical parameters
of the underlying Gaussian distribution, namely the precision matrix defined as the inverse of the
covariance matrix Λt|t = Pt|t and the first order canonical parameter given by ηt|t = Λt|txt|t. These
parameters instead of the traditional moment parameters makes the inference stronger.

Another approach is the square root filter, which works with the Cholesky decomposition or
the UDU factorization of the estimated error covariance: Pt|t. This is much more numerically
stable than directly updating the estimated error covariance Pt|t. Further details can be found at
the reference site http://www.cs.unc.edu/ welch/kalman/ and the reference book for Kalman filter
Simon (2006).

5. In practice

Financial markets are complex dynamics models. Notoriously, one does not know the exact dynamics
as opposed to a noise filtering problem for a GPS. We are doomed to make assumptions about the
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dynamics of financial systems. This can seriously degrade the filter performance as we are left
with some un-modeled dynamics. As opposed to noise that the filter can accommodate (it has
been designed for it), non modeled dynamics depends on the input. They can bring the estimation
algorithm to instability and divergence. It is a tricky and more experimental issue to distinguish
between measurement noise and non modeled dynamics.

Kalman filter has been applied by many authors (see Javaheri et al. (2003), Lautier (2004),
Bierman (2006), Bruder et al. (2011), Dao. (2011) Chan (2013) and Benhamou (2017)).

The following linear dynamics have been suggested:

xt+1 = Φxt + ct + wt (5.1)

zt = Hxt + dt + vt (5.2)

with the following choice for the various parameters:

Model Φ H Q R Pt=0 ct

1

[
1 dt
0 1

] [
1
0

] [
p21 p1p2
p1p2 p23

] [
p4
] [

p5 0
0 p5

]
0

2

[
1 dt
0 1

] [
1
0

] [
p21 p1p2
p1p2 p23

] [
p4
] [

p5 0
0 p6

]
0

3

[
p1 p2
0 p3

] [
p4
p5

] [
p26 p6p7
p7p6 p28

] [
p9
] [

p10 0
0 p11

]
0

4

[
p1 p2
0 p3

] [
p4
p5

] [
p26 p6p7
p7p6 p28

] [
p9
] [

p10 0
0 p11

] [
p12(p13 −Kt)
p14(p15 −Kt)

]

Table 1
Various Kalman filter model specifications

6. Numerical experiments

In order to test our results, we look at the following trend following algorithm based on our Kalman
filter algorithm where we enter a long trade if the prediction of our kalman filter is above the close
of the previous day and a short trade if the same prediction is below the close of the previous day.
For each comparison, we add an offset µ to avoid triggering false alarm signals. We set for each
trade a pre-determined profit and stop loss target in ticks. These parameters are optimized in order
to provide the best sharpe ratio over the train period together with the Kalman filter parameters.
The pseudo code of our algorithm is listed below
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Algorithm 4 Kalman filter Trend following algorithm

Initialize common trade details
SetProfitTarget( target) . fixed profit target in ticks
SetStopLoss( stop loss ) . fixed stop loss in ticks

while Not In Position do . look for new trade
if KF( p1, . . . , pn).Predict[0] ≥ Close[0] + µ then . up trend signal

EnterLong() . market order for the open
else if KF( p1, . . . , pn).Predict[0] ≤ Close[0] + µ then . down trend signal

EnterShort() . market order for the open
end if

end while

Our resulting algorithm depends on the following parameters p1, . . . , pn the Kalman filter al-
gorithm, the profit target, the stop loss and the signal offset µ. We could estimate the Kalman
filter parameters with the EM procedure, then optimize the profit target, the stop loss and the
signal offset µ. However, if by any chance the dynamics of the Kalman filter is incorrectly specified,
the noise generated by this wrong specification will only be factored in the three parameters: the
profit target, the stop loss and the signal offset µ. We prefer to do a combined optimization of all
the parameters. We use daily data of the S&P 500 index futures (whose CQG code is EP) from
01Jan2017 to 01Jan2018. We train our model on the first 6 months and test it on the next six
months. Deliberately, our algorithm is unsophisticated to keep thing simple and concentrate on
the parameter estimation method. The overall idea is for a given set of parameter to compute the
resulting sharpe ratio over the train period and find the optimal parameters combination. For a
model like the fourth one in the table 1, the optimization encompasses 18 parameters: p1, . . . , p15,
the profit target, the stop loss and the signal offset µ, making it non trivial. We use the CMA-
ES algorithm to find the optimal solution. In our optimization, we add some penalty condition to
force non meaningful Kalman filter parameters to be zero, namely, we add a L1 penalty on this
parameters.

Results are given below
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Table 2
Optimal parameters

Parameters p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 offset stop target

Value 24.8 0 11.8 46.2 77.5 67 100 0 0 0 0 100 0 0 0 5 80 150

Table 3
Train test statistics 1/4

Performance Net Profit Gross Profit Gross Loss # of Trades # of Contracts Avg. Trade Tot. Net Profit (%) Ann. Net Profit (%)

Train 5,086 e 11,845 e -6,759 e 15 15 339.05 e 5.09% 10.59%

Test 4,266 e 11,122 e -6,857 e 15 15 284.38 e 4.27% 8.69%

Table 4
Train test statistics 2/4

Performance Vol Sharpe Ratio Trades per Day Avg. Time in Market Max. Drawdown Recovery Factor Daily Ann. Vol Monthly Ann. Vol

Train 6.54% 1.62 0.10 8d14h -2,941 e 3.510 6.54% 5.72%

Test 6.20% 1.40 0.10 8d19h -1,721 e 4.948 6.20% 5.32%

Table 5
Train test statistics 3/4

Performance Daily Sharpe Ratio Daily Sortino Ratio Commission Percent Profitable Profit Factor # of Winning Trades Avg. Winning Trade Max. conseq. Winners

Train 1.62 2.35 49 e 46.67% 1.75 e 7 1,692.09 e 3

Test 1.40 2.05 46 e 46.67% 1.62 e 7 1,588.92 e 2

Table 6
Train test statistics 4/4

Performance Largest Winning Trade # of Losing Trades Avg. Losing Trade Max. conseq. Losers Largest Losing Trade Avg. Win/Avg. Loss Avg. Bars in Trade Time to Recover

Train 1,776.11 e 8 -844.85 e 3 -1,011.82 e 2.00 6.1 77.00 days

Test 1,609.32 e 8 -857.1 e 2 -860.26 e 1.85 6.2 70.00 days
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Fig 6: Kalman filter algorithm on train data set

Fig 7: Kalman filter algorithm on test data set

We compare our algorithm with a traditional moving average crossover algorithm to test the
efficiency of Kalman filter for trend detection. The moving average cross over algorithm generates a
buy signal when the fast moving average crosses over the long moving average and a sell signal when
the former crosses below the latter. A d period moving average is defined as the arithmetic average
of the daily close over a d period, denoted by SMA(d). Our algorithm is given by the following
pseudo code
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Algorithm 5 Moving Average Trend following algorithm

Initialize common trade details
SetProfitTarget( target) . fixed profit target in ticks
SetStopLoss( stop loss ) . fixed stop loss in ticks

while Not In Position do . look for new trade
if SMA(Short)[0] > SMA(Long)[0] + offset then . up trend signal

EnterLong() . market order for the open
else if SMA(Short)[0] < SMA(Long)[0] + offset then . down trend signal

EnterShort() . market order for the open
end if

end while

We can now compare moving average cross over versus Kalman filter algorith. The table 7
compares the two algorithms. We can see that on the train period, the two algorithms have similar
performances : 5, 260 vs 5, 086. However on the test period, moving average performs very badly
with a net profit of 935 versus 4, 266 for the bayesian graphical model (the kalman filter) algorithm.

Table 7
Moving average cross over versus Kalman filter

Algo Total Net Profit Recovery Factor Profit Factor Max. Drawdown Sharpe Ratio Total # of Trades Percent Profitable Train: Total Net Profit

MA Cross over 935 e 0.32 1.13 -e2,889 0.41 26 0.54 5,260.00

Kalman filter 4,266 e 2.48 1.62 -e1,721 1.40 30 0.47 5,085.79

Fig 8: Moving Average Crossover algorithm on train data set
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Fig 9: Moving Average Crossover algorithm on test data set

7. Conclusion

In this paper, we have revisited the Kalman filter theory and showed the strong connection be-
tween Kalman filter and Hidden Markov Models. After discussing various recursive scheme for the
underlying Bayesian graphical model, we provided various insight on the parameter estimation.
The traditional method is to use the expectation maximization (EM) method. This method aims
to find the best fit distribution according to our modeling assumptions. This may work well when
the state space model is ruled by physical law. However, in finance, there is no such a thing as the
physical law of markets. One makes assumptions about the price dynamics that may be completely
wrong. Hence, we present a new method based on CMA-ES optimization that does not decouple
the Bayesian graphical model parameters from the other parameters of the financial strategy. We
show on a numerical example on the S&P 500 index futures over one year of data (from Jan 1st
2017 to Jan 1st 2018) that the combined estimation of the Bayesian graphical model works well
and that there is no much performance deterioration between train and test. This suggests little
over fitting. We also show that the traditional moving average cross over method does not perform
that well compared to our method and show strong over fitting bias as the net performance over
the test data set is dramatically lower than the one on the train, suggesting over fitting.
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Appendix A: Kalman filter proof

The proof is widely known and presented in various books (see for instance Gelb (1974) or Brown
and Hwang (1997)). We present it here for the sake of completeness. It consists in three steps:

• Derive the posteriori estimate covariance matrix
• Compute the Kalman gain
• Simplify the posteriori error covariance formula

A.1. Step 1: A posteriori estimate covariance matrix

Proof. The error covariance Pt|t is defined as the covariance between xt and xt+1: Pt|t = Cov
(
xt − x̂t|t

)
.

We can substitute in this equation the definition of x̂t|t given by equation (3.8) to get:

Pt|t = Cov
[
xt −

(
x̂t|t−1 + Ktỹt

)]
(A.1)

Using the definition of ỹt from equation (3.5), we get:

Pt|t = Cov
(
xt −

[
x̂t|t−1 + Kt

(
zt −Htx̂t|t−1

)])
(A.2)

Using the measurement equation for zt (equation (3.2)), this transforms into:

Pt|t = Cov
(
xt −

[
x̂t|t−1 + Kt

(
Htxt + vt −Htx̂t|t−1

)])
(A.3)

By collecting the error vectors, this results in:

Pt|t = Cov
[(

I−KtHt)(xt − x̂t|t−1

)
−Ktvt

]
(A.4)

Since the measurement error vk is not correlated with the other terms, this simplifies into:

Pt|t = Cov
[
(I−KtHk)

(
xt − x̂t|t−1

)]
+ Cov [Ktvt] (A.5)

By property of covariance for matrix: Cov(Axt) = ACov(xt)A
T and using the definition for

Pt|t−1 and Rt = Cov (vt), we get the final result:

Pt|t = (I−KtHt)Pt|t−1(I−KtHt)
T + KtRtK

T
t (A.6)

This last equation is referred to as the Joseph form of the covariance update equation. It is true
for any value of Kalman gain Kt no matter if it is optimal or not. In the special case of optimal
Kalman gain, this further reduces to equation (3.9) which we will prove in A.3

A.2. Step 2: Kalman gain

Proof. The goal of the Kalman filter is to find the minimum mean-square error estimator. It is ob-
tained by minimizing the error of the a posteriori state given by xt − x̂t|t. This error is stochastic,
hence we are left with minimizing the expected value of the square of the L2 norm of this vector

given by E
[∥∥xt − x̂t|t

∥∥2
]
. Since the error of the a posteriori state follows a normal distribution

with zero mean and covariance given by Pt|t, the optimization program is equivalent to minimizing
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the matrix trace of the a posteriori estimate covariance matrix Pt|t.

Expanding out and collecting the terms in equation (A.6), we find:

Pt|t = Pt|t−1 −KtHtPt|t−1 −Pt|t−1H
T
t KT

t + KtStK
T
t (A.7)

This minimization program is very simple. It is quadratic in the Kalman gain, Kt. The optimum
is obtained when the derivative with respect to Kt is null. The equation for the critical point writes
as:

∂ tr(Pt|t)

∂ Kt
= −2(HtPt|t−1)T + 2KtSt = 0. (A.8)

We can solving for Kt to find the optimal Kalman gain as follows:

Kt = Pt|t−1H
T
t S−1

t (A.9)

A.3. Step 3: Simplification of the posteriori error covariance formula

Proof. We can work on our formula further to simplify equation (A.6) as follows. A trick is to
remark that in equation (A.9), multiplying on the right both sides by StK

T
t , we find that:

KtStK
T
t = Pt|t−1H

T
t KT

t (A.10)

Injecting this equality in equation (A.7) and noticing that the last two terms cancel out, we get:

Pt|t = (I−KtHt)Pt|t−1. (A.11)

This last formula appeals some remarks. It makes Kalman filter dammed simple. It is computa-
tionally cheap and much cheaper than the equation (A.7). Thus it is nearly always used in practice.
However, this equation is only correct for the optimal gain. If by back luck, arithmetic precision is
unusually low due to numerical instability, or if the Kalman filter gain is non-optimal (intentionally
or not), equation A.11 does not hold any more. Using it would lead to inaccurate results and can
be troublesome. In this particular case, the complete formula given by equation (A.7) must be
used.

Appendix B: Factor Analysis model

B.1. Model Presentation and proof

We are interested in the following very simple graphical model called the Gaussian Factor analysis
model. It is represented by a two nodes graphical models in figure 10

We assume that X follows a multi dimensional normal distribution X ∼ N (0,Σ). We assume
that X is a latent variable and that only Z is observed. We also assume that there is a direct linear
relationship between X and Z given by
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X

Z

Fig 10: Factor analysis model as a graphical model

Z = µ+ ΛX +W

where W is also distributed as a a multi dimensional normal distribution W ∼ N (0,Ψ) independent
of X. This is obviously a simplified version of our Linear Gaussian State Space Model and can
provide building blocks for deriving the Kalman filter. Trivially, we can compute the unconditional
distribution of Z as a normal distribution whose mean is E[Z] = E[µ+ ΛX +W ] = µ. Likewise, it
is immediate to compute the unconditional covariance matrix of Z as

Var(Z) = E[(µ+ ΛX +W )(µ+ ΛX +W )T] (B.1)

= ΛΣΛT + Ψ (B.2)

The covariance between X and Z is also easy to compute and given by

Cov(X,Z) = E[X(µ+ ΛX +W )T] (B.3)

= ΣΛT (B.4)

Hence, collecting all our results, we have shown that the joint distribution of X and Z is a
Gaussian given by

N
([

0
µ

]
,

[
Σ ΣΛT

ΛΣ ΛΣΛT + Ψ

])
.

We shall be interested in computing the conditional distribution of X given Z. Using lemma
provided in B.2, we obtained that X | Z is a multi dimensional Gaussian whose mean is:

E(X | z) = ΣΛT(ΛΣΛT + Ψ)−1(z − µ) (B.5)

Using the Woodbury matrix inversion formula (see formula (158) in Petersen and Pedersen
(2012)), this is also

E(X | z) = (Σ−1 + ΛTΨ−1Λ−1)ΛTΨ−1(z − µ) (B.6)

The two formula are equivalent and one should use the one that is easier to compute depending
on the dimension of X and Z. Our partitioned Gaussian lemma B.2 gives us also the conditional
variance of X:

Var(X | z) = Σ− ΣΛT(ΛΣΛT + Ψ)−1ΛΣ (B.7)

= (Σ−1 + ΛTΨ−1Λ)−1 (B.8)

imsart-generic ver. 2014/10/16 file: article_KalmanFilterDemystified.tex date: December 21, 2018



E. Benhamou/Kalman filter demystified 34

where in the last equation, we have used again the Woodbury matrix inversion formula (Wood-
bury variant formula (157) in Petersen and Pedersen (2012)).

B.2. A quick lemma about partitioned Gaussian

Lemma B.1. Let Y be a multivariate normal vector Y ∼ N (µ,Σ). Consider partitioning Y , µ, Σ
into

µ =

[
µ1

µ2

]
Y =

[
y1

y2

]
Σ =

[
Σ11 Σ12

Σ21 Σ22

]
Then, (y1|y2 = a), the conditional distribution of the first partition given the second, is N (µ,Σ),

with mean
µ1|2 = µ1 + Σ12Σ22

−1(a− µ2)

and covariance matrix
Σ1|2 = Σ11 − Σ12Σ22

−1Σ21

Proof. Let y1 be the first partition and y2 the second. Now define z = y1 + Ay2 where A =
−Σ12Σ−1

22 . We can easily compute the covariance between z and y as follows:

cov(z,y2) = cov(y1,y2) + cov(Ay2,y2)

= Σ12 + A Var(y2)

= 0

Since z and y2 are jointly normal and uncorrelated, they are independent. The expectation of z
is trivially computed as E(z) = µ1 + Aµ2. Using this, we compute the conditional expectation of
y1 given y2 as follows:

E(y1|y2) = E(z−Ay2|y2)

= E(z|y2)− E(Ay2|y2)

= E(z)−Ay2

= µ1 + Σ12Σ−1
22 (y2 − µ2)

which proves the first part. The second part is as simple. Note that

Var(y1|y2) = Var(z−Ay2|y2)

= Var(z|y2)

= Var(z)

since z and y2 are independent. We can trivially conclude using the following last computation:

Var(y1|y2) = Var(z) = Var(y1 + Ay2)

= Var(y1) + A Var(y2)AT + Acov(y1,y2) + cov(y2,y1)AT

= Σ11 + Σ12Σ−1
22 Σ22Σ−1

22 Σ21 − 2Σ12Σ−1
22 Σ21

= Σ11 − Σ12Σ−1
22 Σ21
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B.3. Derivation of the filter equations

Proof. It is easy to start with the precision matrix (the inverse of the covariance matrix). We have

Λt|t−1 = P−1
t|t−1 (B.9)

= (FtPt−1|t−1F
T
t + Qt)

−1 (B.10)

= Q−1
t −Q−1

t Ft(P
−1
t−1|t−1 + FT

t Q−1
t Ft)

−1FT
t Q−1

t (B.11)

= Q−1
t −Q−1

t Ft(Λt−1|t−1 + FT
t Q−1

t Ft)
−1FT

t Q−1
t (B.12)

where in the previous equation, we have used extensively matrix inversion formula. Similarly,
applying matrix inversion but for Λt|t (conditioned on t now)

Λt|t = P−1
t|t (B.13)

= (Pt|t−1 −Pt|t−1H
T
t (HtPt|t−1H

T
t + Rt)

−1HtPt|t−1)−1 (B.14)

= P−1
t|t−1 + HT

t R−1
t Ht (B.15)

= Λt|t−1 + HT
t R−1

t Ht (B.16)

We can now handle the parameter η. We have

η̂t|t−1 = P−1
t|t−1x̂t|t−1 (B.17)

= P−1
t|t−1

(
Ftx̂t−1|t−1 + Btut

)
(B.18)

= P−1
t|t−1

(
FtPt−1|t−1η̂t−1|t−1 + Btut

)
(B.19)

= (FtPt−1|t−1F
T
t + Qt)

−1
(
FtPt−1|t−1η̂t−1|t−1 + Btut

)
= Q−1

t Ft(P
−1
t−1|t−1 + FT

t Q−1
t Ft)

−1η̂t−1|t−1 (B.20)

+(FtPt−1|t−1F
T
t + Qt)

−1Btut (B.21)

= Q−1
t Ft(Λt−1|t−1 + FT

t Q−1
t Ft)

−1η̂t−1|t−1

+(Q−1
t −Q−1

t Ft(Λt−1|t−1+FT
t Q−1

t Ft)
−1FT

t Q−1
t )Btut (B.22)

Likewise, we derive the same type of equations for η but conditioned on t as follows:

η̂t|t = P−1
t|t x̂t|t (B.23)

= P−1
t|t (x̂t|t−1 + Pt|tH

T
t R−1

t (zt −Htx̂t|t−1)) (B.24)

= (P−1
t|t −HT

t R−1
t Ht)Pt|t−1η̂t|t−1 + HT

t R−1
t zt (B.25)

= (P−1
t|t−1 + HT

t R−1
t Ht −HT

t R−1
t Ht)Pt|t−1η̂t|t−1

+HT
t R−1

t zt (B.26)

= η̂t|t−1 + HT
t R−1

t zt (B.27)
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Summarizing all these equation leads to the so called filter equations:

η̂t|t−1 = Q−1
t Ft(Λt−1|t−1 + FT

t Q−1
t Ft)

−1η̂t−1|t−1

+(Q−1
t −Q−1

t Ft(Λt−1|t−1+FT
t Q−1

t Ft)
−1FT

t Q−1
t )Btut (B.28)

η̂t|t = η̂t|t−1 + HT
t R−1

t zt (B.29)

Λt|t−1 = Q−1
t −Q−1

t Ft(Λt−1|t−1 + FT
t Q−1

t Ft)
−1FT

t Q−1
t (B.30)

Λt|t = Λt|t−1 + HT
t R−1

t Ht (B.31)

which concludes the proof.

B.4. Proof of RTS recursive equations

Proof. We start by writing down the distribution of xt and xt+1 conditioned on z1, . . . , zt. As
x̂t+1|t = Ft+1xt + Bt+1ut+1 and using the fact that the control term Bt+1ut+1 is deterministic, we
have

E[(xt − x̂t|t)(xt+1 − x̂t+1|t)
T | z1, . . . , zt] = Pt|tF

T
t+1 (B.32)

Thus the vector distribution of

[
xt|t

xt+1|t

]
has its mean given by

[
x̂t|t

x̂t+1|t

]
and its covariance

matrix given by

[
Pt|t Pt|tF

T
t+1

Ft+1Pt|t Pt+1|t

]
Let us now work on the backward recursion. We are interested in computing the distribution of

xt, conditioned on xt+1 and z1, . . . , zt. Using the Factor analysis model, it is easy to see that

E[xt | xt+1, z1, . . . , zt] = x̂t|t + Pt|tF
T
t+1P

−1
t+1|t(xt+1 − x̂t+1|t) (B.33)

Similarly, we have

Var [xt | xt+1, z1, . . . , zt] = Pt|t −Pt|tF
T
t+1P

−1
t+1|tFt+1Pt|t (B.34)

But using the Markov property that states that

E[xt | xt+1, z1, . . . , zT ] = E[xt | xt+1, z1, . . . , zt] (B.35)

and

Var[xt | xt+1, z1, . . . , zt] = Var(xt | xt+1, z1, . . . , zT ] (B.36)

We have

E[xt | xt+1, z1, . . . , zT ] = x̂t|t + Pt|tF
T
t+1P

−1
t+1|t(xt+1 − x̂t+1|t) (B.37)

Similarly, we have

Var[xt | xt+1, z1, . . . , zT ] = Pt|t −Pt|tF
T
t+1P

−1
t+1|tFt+1P

−1
t|t (B.38)
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Using conditional properties states in appendix section C.2, we can work the recursion as follows:

x̂t|T , E[xt | z1, . . . , zT ] (B.39)

= E[E[xt | xt+1, z1, . . . , zT ] | z1, . . . , zT ] (B.40)

= E[x̂t|t + Pt|tF
T
t+1P

−1
t+1|t(xt+1 − x̂t+1|t) | z1, . . . , zT ] (B.41)

= x̂t|t + Pt|tF
T
t+1P

−1
t+1|t(xt+1|T − x̂t+1|t) (B.42)

= x̂t|t + Lt(xt+1|T − x̂t+1|t) (B.43)

where

Lt = Pt|tF
T
t+1P

−1
t+1|t (B.44)

The latter equation is the basic update equation in the RTS smoothing algorithm. This equation
provides an estimate of xt based on the filtered estimate x̂t|t corrected by the convolution of Lt
with the error term xt+1|T − x̂t+1|t that represents the difference between the smoothed estimate of
xT and the filtered estimate x̂t+1|t. The matrix Lt can be interpreted as a gain matrix that depends
only on forward information. and can be computed in the forward pass.

As for the conditional variance, we have

P̂t|T , Var[xt | z1, . . . , zT ] (B.45)

= Var[E[xt | xt+1, z1, . . . , zT ] | z1, . . . , zT ] (B.46)

+E[Var[xt | xt+1, z1, . . . , zT ] | z1, . . . , zT ] (B.47)

= Var[xt|t + Lt(xt+1|T − x̂t+1|t) | z1, . . . , zT ] (B.48)

+E[Pt|t − LtPt+1|tL
T
t | z1, . . . , zT ] (B.49)

= Lt Var[xt|t | z1, . . . , zT ]LT
t + Pt|t − LtPt+1|tL

T
t (B.50)

= LtPt+1|TLT
t + Pt|t − LtPt+1|tL

T
t (B.51)

= Pt|t + Lt(Pt+1|T −Pt+1|t)L
T
t (B.52)

We can summarize the RTS smoothing algorithm as follows:

x̂t|T = x̂t|t + Lt(xt+1|T − x̂t+1|t) (B.53)

P̂t|T = Pt|t + Lt(Pt+1|T −Pt+1|t)L
T
t (B.54)

with an initial condition given by

x̂T |T = x̂T (B.55)

P̂T |T = P̂T (B.56)
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B.5. Proof of the inverse dynamics

Proof. We have

xt = F−1
t+1 (xt+1 −Bt+1ut+1 − wt+1) (B.57)

= F̃t+1xt+1 + F−1
t+1

(
(I− Ft+1F̃t+1)xt+1 −Bt+1ut+1 − wt+1

)
(B.58)

= F̃t+1xt+1 + F−1
t+1

(
Qt+1P

−1
t+1xt+1 −Bt+1ut+1 − wt+1

)
(B.59)

= F̃t+1xt+1 − F−1
t+1Bt+1ut+1 − F−1

t+1

(
wt+1 −Qt+1P

−1
t+1xt+1

)
(B.60)

which provides the first result 4.45.
Using the forward dynamics (equation (4.44)) that relates xt+1 and wt+1, we get that

E[w̃t+1w̃
T
t+1] = F−1

t+1Qt+1(I−P−1
t+1Qt+1)F−T

t+1, (B.61)

which proves 4.48.
The independence between w̃t+1 and the past information xt+1, . . . ,xT is obvious for xt+2, . . . ,xT

and inferred from the fact that the two processes are Gaussian with zero correlation: E[w̃t+1xt+1] =
−F−1

t+1(Qt+1 −Qt+1) = 0.
Last but not least, using the independence, the forward Lyapunov equation is trivially derived,

which concludes the proof.

B.6. Proof of modified Bryson–Frazier equations

Proof. Applying the information filter given in proposition 5 with the forward dynamics equation
4.45 gives:

M̃t = Q̃−1
t F̃t(Λt+1|t+1 + F̃T

t Q̃−1
t F̃t)

−1 (B.62)

Λt|t+1 = Q̃−1
t − M̃tF̃

T
t Q̃−1

t (B.63)

η̂t|t+1 = M̃tη̂t+1|t+1 + Λt|t+1B̃tut (B.64)

η̂t|t = η̂t|t+1 + HT
t R−1

t zt (B.65)

Λt|t = Λt|t+1 + HT
t R−1

t Ht (B.66)

We can notice that

Q̃−1
t F̃t = FTt Q−1

t (B.67)

F̃T
t Q̃−1

t F̃t = Q−1
t −P−1

t (B.68)

F̃T
t Q̃−1

t = Q−1
t Ft (B.69)

(B.70)
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Hence, if we rewrite everything in terms of the initial variables, we get

M̃t = FTt Q−1
t (Λt+1|t+1 + Q−1

t −P−1
t )−1 (B.71)

Λt|t+1 = FTt (Qt −QtP
−1
t Qt)

−1Ft − M̃tQ
−1
t Ft (B.72)

η̂t|t+1 = M̃tη̂t+1|t+1 −Λt|t+1FtBtut (B.73)

η̂t|t = η̂t|t+1 + HT
t R−1

t zt (B.74)

Λt|t = Λt|t+1 + HT
t R−1

t Ht (B.75)

which concludes the proof.

Appendix C: A few formula

C.1. Inversion matrix

We state here without proof the various variant of the Woodbury identity as its proof is ubiquous
in for instance Petersen and Pedersen (2012) or in Wikipedia (2016)

(A + CBCT)−1 = A−1 −A−1C(B−1 + CTA−1C)−1CTA−1 (C.1)

If P,R are positive definite, we have

(P−1 + BTR−1B)−1BTR−1 = PBT(BPBT + R)−1 (C.2)

C.2. Conditional Formula

We have the following easy formulae for conditional expectation and variance (referred to as the
tower equalities)

E [X | Z] = E [E [X | Y,Z] | Z] (C.3)

Var [X | Z] = Var [E [X | Y,Z] | Z] + E [Var [X | Y, Z] | Z] (C.4)

Proof. The conditional expectation E[X | W = w, Y = y] is a function of w and y and can be
denoted by g(w, y). We can now calculate as follows:
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E[E[X |W,Y ] | Y = y] = E[g(W,Y ) | Y = y]

=
∑
w,y′

g (w, y′) Pr [W = w, Y = y′|Y = y]

=
∑
w

g(w, y) Pr[W = w | Y = y]

=
∑
w

E[X |W = w, Y = y] Pr[W = w | Y = y]

=
∑
w

[∑
x

xPr[X = x |W = w, Y = y]

]
Pr[W = w | Y = y]

=
∑
w,x

xPr[X = x,W = w | Y = y]

=
∑
x

xPr[X = x | Y = y]

= E[X | Y = y]

where in our series of equation, the third equality follows from the fact that the conditional
probability given by Pr [W = w, Y = y′|Y = y] is Pr[W = w | Y = y] for y′ = y and 0 otherwise
and the sixth equality comes from Bayes’ rule.

The second equality is trivial and is a consequence of the first and the law of total variance.

Appendix D: EM Algorithm convergence proofs

D.1. First Proof

Proof. Expectation-maximization improves the expected complete log likelihood: Q(θ|θ(t)) rather
than the complete log likehood: log p(X|θ). We have for any Z with non-zero probability p(Z|X,θ)
that the log likehood conditional to the parameters θ can be split into two parts:

log p(X|θ) = log p(X,Z|θ)− log p(Z|X,θ) .

Taking the expectation over possible values for the latent variables Z under the current parameter
estimate θ(t), multiplying both sides by p(Z|X,θ(t)) and summing (or integrating) over Z, we get:

log p(X|θ) =
∑
Z

p(Z|X,θ(t)) log p(X,Z|θ)−
∑
Z

p(Z|X,θ(t)) log p(Z|X,θ)

= Q(θ|θ(t)) +H(θ|θ(t)) ,

(D.1)

where H(θ|θ(t)) denotes the negated sum it is replacing. As this last equation holds for any value

of θ including θ = θ(t), we have:

log p(X|θ(t)) = Q(θ(t)|θ(t)) +H(θ(t)|θ(t)) , (D.2)
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We can now subtract D.2 to D.1 to get:

log p(X|θ)− log p(X|θ(t)) = Q(θ|θ(t))−Q(θ(t)|θ(t)) +H(θ|θ(t))−H(θ(t)|θ(t)) ,

It is easy to conclude using Gibbs’ inequality that tells us that H(θ|θ(t)) ≥ H(θ(t)|θ(t)) and get:

log p(X|θ)− log p(X|θ(t)) ≥ Q(θ|θ(t))−Q(θ(t)|θ(t)) .

which states that the marginal likelihood at each step is non-decreasing, and hence concludes the
proof.

D.2. Second Proof

Proof. Another proof relies on the fact that the EM algorithm can be viewed as a coordinate
ascent method, which is proved to converges monotonically to a local minimum of the function we
maximize (see for instance Hastie et al. (2009) or Neal and Hinton (1999)). This works as follows.
Let us consider the function:

F (q, θ) := Eq[logL(θ;x, Z)] +H(q),

where q is an arbitrary probability distribution over latent data Z and H(q) is the Entropy of the
distribution q. This can also be written as:

F (q, θ) = −DivKL

(
q
∥∥pZ|X(·|x; θ)

)
+ logL(θ;x),

where pZ|X(·|x; θ) is the conditional distribution of the latent data given the observed data X and
DivKL is the Kullback–Leibler divergence.

In the EM algorithm, the expectation step is to choose q to maximize F :

q(t) = arg maxq F (q, θ(t))

The maximization step is to choose the parameter θ to maximize F :

θ(t+1) = arg maxθ F (q(t), θ)

which concludes the proof by showing that the EM algorithm is a coordinate ascent method.
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