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Generating realistic texture feelings on tactile displays using data-
driven methods has attracted a lot of interest in the last decade.
However, the need for large data storages and transmission rates
complicates the use of these methods for the future commercial
displays. In this paper, we propose a new texture rendering ap-
proach which can compress the texture data significantly for elec-
trostatic displays. Using three sample surfaces, we first explain
how to record, analyze and compress the texture data, and render
them on a touchscreen. Then, through psychophysical experiments
conductedwith nineteen participants, we show that the textures can
be reproduced by a significantly less number of frequency compo-
nents than the ones in the original signal without inducing percep-
tual degradation. Moreover, our results indicate that the possible
degree of compression is affected by the surface properties.

INTRODUCTION

Due to the popularity of touchscreens used in a wide variety of elec-tronic devices, surface haptics has recently gained significant interestby scientific and industrial communities. In particular, the developmentof new techniques for rendering realistic textures on touchscreens isone of the active research topics in the haptics field. Electrovibrationis one of the promising technologies which can be used to give varioustexture feelings on displays. This technology is based on the electro-static forces that modulate frictional forces between the fingertip andthe touchscreen. This phenomenon was first found by Mallinckrodt [16]and later implemented for generating tactile feedback on opaque elec-trodes by Strong and Troxel [27]. Recently, Bau et al. applied this methodon large transparent surfaces in combination with a visual feedback, andshowed the viability of using this method for texture rendering on com-mercial displays [1].
The first attempt to reproduce natural textures on electrostatic displayshas been made by Wu et al. [33]. They proposed an image-based render-ing method which establishes a mapping model based on gradients ofimage-textures using the Roberts filter. They used this mapping modelto synthesize frequency and amplitude information of the textures byelectrovibration. Later, Vardar et al. followed a different approach, andgenerated textures by modulating low-frequency unipolar pulse wavesin different waveforms and spacing with high-frequency carrier signalon an electrostatic display [31]. They showed that roughness percep-tion of virtual textures can be controlled by changing input waveformand spatial frequency. Ilkhani et al. followed another approach andpresented a data-driven texture rendering method [12]. They used thetexture models in the Penn Haptic Toolkit [6] as the input signals forthe electrostatic display. They conducted psychophysical experimentsand analyzed the results using multi-dimensional scaling method. They
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showed that virtual and real textures had similar perceptual dimension.Similarly, Jiao et al. proposed another data-driven rendering approachwhich uses the contact frictional forces [13]. Nonetheless, Osgouei etal. [20], proposed an inverse NARX neural network model to generatePRBS-like actuation signals to mimic real textures on an electrovibrationdisplay. They trained the networks based on the lateral forces collectedfrom the surface of the display as a result of applying a full band PRBS.Recently, Schultz et al. demonstrated the possibility of making audio-tactile displays bymodulating the recorded contact vibrationswith usinghigh carrier frequencies [24].
Although data-driven techniques are promising for displaying a wide va-riety of textures on future displays, their need for large data storagesand transmission rates hinder online streaming. Therefore, developingtactile codecs that use the properties and conceptual limitations of tac-tile information is essential for future applications [19, 25, 25]. For thatreason, several efforts have been made by different groups. The firsttactile compression method was suggested by Okamoto and Yamada[19]. They described a frequency-domain texture compression methodthat considers the human vibrotactile perceptual limitations. In theirwork, they recorded surface profiles using a laser scanner. Then, theytransformed these profiles to the frequency domain using the DiscreteCosine Transform (DCT). They set the DCT coefficients below humanperceptual detection thresholds to zero. Afterwards, they quantized theremaining coefficients with step-sizes determined from perceptual de-tection thresholds. Their subjective experimental results showed thatthis method can reduce the tactile data to 10-20% of their original sizewithout perceptual degradation. Later, Chaudhariu et al. proposed an-other approach by inspiring from speech signal coding techniques [4, 3].They reported that their method can compress texture data to 12.5 % ofits original size, and provide an output bit rate to as low as 2.3 kbps.Following an approach that is different from others, Culbertson et al.modeled data-driven textures using a low-order auto-regressive movingaverage (ARMA) [7]. Their method significantly reduced the model stor-age space requirements by more than 90% and lowered the computa-tional complexity of real-time texture synthesis compared to an earlierwork in which linear predictive coding was used for texture modeling[21].
In this paper, we introduced a texture rendering approach, which canreduce the homogeneous texture data significantly for electrostatic dis-plays. We first collected contact acceleration data from three differentsurfaces to obtain their tactile properties. Then, we analyzed these ac-celeration data in the frequency domain, compressed and re-synthesizedthem. Finally, we rendered them on an electrostatic display. This pa-per explains the recording, compression, re-synthesizing, and renderingmethodologies used in detail.
Our compression approach is somewhat similar to the one presented by[19]. They quantized and truncated the data beneath a shifted perceptionthreshold. However, in this study we quantize the spectrum with fre-quency bands determined from perceptual difference thresholds mea-sured by [1]. Also, we selectively display the main frequency compo-
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nents, not the entire spectrum. Therefore, the texture data can be com-pressed by a large amount (down to 9-10 frequency components in total)without inducing perceptual degradation.
METHODS

TEXTURE DATA RECORDING

Previous studies provided evidence that contact acceleration data canstore surface properties [22, 26, 8, 17]. Inspired from these studies,we recorded accelerations which occur while sliding a thin steel tooltipover three surfaces: aluminumgrid, sandpaper 150, and paper cardboard(see Fig. 1). These surfaces were selected based on their varying peri-odicity. The accelerometer (ADXL335, Analog Devices) was mountedon a 3D-printed head which was connected directly to the handle of aforce feedback device (Falcon, Novint Technologies). The device wasprogrammed to scan surfaces horizontally with a constant velocity of80 mm/s and a normal force of 1 N with a duration of 1 second. Theacceleration data is collected with a data acquisition board (PCI-6221,NI) with a sampling frequency of 10 kHz. This recording system (Fig. 2)enabled to collect small topographical details in a controlled way.

1 cm

1 cm

1 cm

Figure 1: Surfaces that were scanned with the recording system. From
top to bottom: aluminium grid, then sandpaper 150, and cardboard.

Figure 2: The data recording system. An accelerometer on a tool tip that
is mounted on the force feedback device scans surfaces horizontally with
a constant velocity of 80 mm/s.

TEXTURE REPRODUCTION

The recorded acceleration signals in the normal direction were first fil-tered with a bandpass filter with cut-off frequencies 10 and 1000 Hz.Then, they were cut into a 0.2-second segment which represented theconstant sliding of the tooltip. Afterwards, the FFT (Fast Fourier Trans-form) of each signal was obtained. Then, the peak frequencies wereselected with a JND (just noticeable difference) of 12%. This value waschosen based on a previously reported experimental result conductedon an electrostatic display [1]. This procedure was applied to reduce

the number of peak frequencies without inducing perceptual deficien-cies. Then the signals were reproduced based on the following formula:
Vs(t)

∗ = A1sin(2πf1t) +A2sin(2πf2t) + ... (1)
A1 : Amplitude of the highest peak,
A2 : Amplitude of the second highest peak,
f1 : Frequency of the highest peak,
f2 : Frequency of the second highest peak.
Finally, each reproduced signal for the same surface, Vs(t)

∗, was nor-malized to the same signal power:
Vs(t) = K(A1sin(2πf1t) +A2sin(2πf2t) + ...), (2)

where Vs(t) is the final reproduced surface signal andK is an arbitraryconstant. The procedure of reproducing textures from acceleration datais summarized in Fig. 3.
In addition to these signals, we also weighted the FFT of the accelera-tion signals with the inverse human sensitivity curve using the methodpresented in [28, 29]. This procedure was tested to reduce the numberof necessary frequency components to represent surfaces on a touch-screen. Afterwards, the same peak analysis method described abovewas applied. Fig. 4 shows the collected acceleration signals from eachsurface, their synthesized signals using 10 frequency peaks with andwithout weighting with human sensitivity curve, and resultant FFT ofeach signal.
TEXTURE RENDERING ON ELECTROSTATIC DISPLAYS

On electrostatic displays, the friction forces are modulated using elec-trostatic actuation. If an alternating voltage is applied to the conductivelayer of a touch screen, an attraction force is generated between thefinger and its surface. This force changes the friction between the sur-face and the skin of the finger moving on it, and induces different tactilesensations. The relationship between input voltage signal, V (t), andthe resultant electrostatic force, Fe(t), is nonlinear (Fe(t) ∝ V (t)2)[14, 18]. Due to this relationship, when a voltage input containing a sin-gle frequency component is applied to a touchscreen, the frequency ofoutput force is doubled [29, 30, 28]. To eliminate the distortions on theoutput electrostatic force due to this doubling effect, we shifted the re-produced signal to the positive axis by adding proper DC voltage [15],and then took the square root of it:
V (t) =

√
Vs(t) +min(Vs(t)). (3)

The input voltage signals obtained from original acceleration signals ofeach surface and their FFT can be found in Fig. 5.
PSYCHOPHYSICAL EXPERIMENTS

To evaluate the feasibility of our rendering method, we conducted psy-chophysical experiments. In particular, we wanted to determine the min-imumnumber of frequency peaks needed to render a texture signal usingour method. Nineteen (ten female and nine male) participants havingan average age of 29 (SD:2) participated in the experiments. None ofthe participants had previous experience with electrostatic displays. Allprocedures were approved by Koç University Ethical Council.
During the experiments, the participants sat in front of a touchscreen(3M Microtouch). The touchscreen was placed on a LCD display for vi-sual feedback. On top of the touchscreen, an IR frame was placed totrack the participants’ finger position and speed. The voltage signalswere generated by a data acquisition board (PCI-6221, NI), and amplifiedby an amplifier (E413 PZT, PI Inc.) before sending to the touchscreen.The participants were grounded with a wristband. They were asked to
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Figure 3: The procedure of reproducing textures from the acceleration data. In the first step, the acceleration data is filtered, and cut as a 0.2 second
segment. Then, the peak frequency components with JND of 12% are extracted from its FFT. With these components sinusoidal signals are added
to reproduce the new signal. In the last step, the signals are adapted using Eq. 2 to obtain the necessary input voltage signal.
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Figure 4: The recorded acceleration signal of three surfaces and their frequency spectrum. The second row shows the reproduced spectrum with
ten frequencies. At the bottom, the original frequency spectrum was fitted to the human sensitivity and then ten highest peaks were extracted to
reproduce a texture signal. All signals’ power were equalized to the same level.
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Figure 5: The input voltage signals sent to the electrostatic display repre-
senting three surfaces and their FFTs. Each voltage signal was obtained
by processing the original acceleration signals based on Eq. 3.

Headphones

Tactile Display
Wristband

Figure 6: Setup with participants conducting the experiment. The setup
is composed of an electrostatic display, an IR touch panel and an LCD
display. The subject is wearing a wristband to be grounded to the system
and headphones playing white noise to suppress noises.
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wear headphones displaying white noise during the experiments for iso-lation of the background noises (see Fig. 6).
Before the experiments, each participant washed her/his hands with wa-ter and soap. Also, the touchscreen was cleaned with alcohol beforeeach experiment. Before starting the experiment, the participants weregiven instructions about the experiment and asked to complete a train-ing session. This training session enabled subjects to get familiar withthe electrostatic actuation.
The stimuli for the experiments were the original and reproduced signalsof the surfaces. Before each experiment, participants adjusted the volt-age amplitude to a comfortable level for each original surface signal.Due to the security reasons, the maximum selectable input voltage levelwas 150 V peak to peak.
The experimental procedure was based on the three-interval forced-choice method. The stimuli were displayed in three temporal intervals,which were signaled to participants as yellow, blue, and green using agraphical user interface (GUI) designed in Matlab. Each interval lastedfor two seconds. Between each time interval, there was a gap of threeseconds. Participants were instructed to hold their finger at an initialpoint when the yellow signal appeared on the screen. They were askedto move their fingers in tangential direction while synchronizing their fin-germovements with themotion of amoving cursor for two seconds. Thespeed of the cursor was 80 mm/s. When they finished one stroke, theywere asked to raise their finger and bring it back to the initial point. Then,they repeated the same procedure for the blue and green intervals. Afterthe green interval ended, participants were asked to make their choicesas YELLOW, BLUE, or GREEN [30]. In these experiments, the task wasto decide whether which stimulus was different than the others. In twoof these intervals, the original surface signal was displayed. However,in one of them, its reproduced signal was shown. The location of eachsignal was randomized in each trial.
The number of frequency peaks contained in the reproduced signal wasadapted based on the answer of the participant with two-up-one-downstaircase procedure [1, 29]. If the participant gave the correct responsetwice in a row, the number of frequency components is increased by5 frequencies. If the participant gave the wrong response, the numberof frequency components was decreased by 5 frequencies. A changefrom increasing number of frequency components to decreasing andvice versa was called reversal. After the first three reversals, the stepsize was decreased from 5 to 1 frequency, that guaranteed faster conver-gence. The procedure was carried out until 12 reversals. The discrimina-tion threshold for the number of frequency components was determinedby the average of the last 12 reversals. An illustration of the method ispresented in Fig. 7.
Each participant conducted the experiment for at least one surface for 2approacheswith andwithout weightingwith the human sensitivity curve.In total, the experiments were completed in 60 sessions (3 surfaces x 2approaches x 10 repetitions). The duration of each session was about15-20 minutes.
RESULTS

The average discrimination thresholds for the number of frequency com-ponents of reproduced signals for each surface (aluminum grid, sandpa-per 150, cardboard) and twomethods (unweighted, weighted) are shownin Fig. 8. Pairwise t-test results showed that, for each surface type andmethod, the average number of frequency components needed to repro-duce a texture was significantly lower than the ones in the original signal(p<0.01).
The results were analyzed using a two-way analysis of variance (ANOVA)with repeated measures. The surface type was statically significanton the discrimination thresholds (p<0.05). However, weighing the FFTbased on human sensitivity curve did not affect the number of frequency

0 5 10 15 20 25 30 35 40 45 50
Trial

0

5

10

15

20

25

30

35

N
um

be
r o

f F
re

qu
en

cy
 C

om
po

ne
nt

s

Figure 7: An example data set collected by one up-two down adaptive
staircase method. The x-axis shows the number of trials and the y-axis
shows the number of frequency components from which the texture sig-
nal is reproduced. When the user can distinguish original an reproduced
signal, further frequency components are added to the reproduced signal.

components compared to unweighted one. Moreover, Bonferroni cor-rected paired-t-test results showed that cardboard and sandpaper werestatistically different (p<0.05).
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Figure 8: Box-whisker plot of the experimental results. The data show
the discrimination threshold for the number of frequency components
needed so that the original and the reproduced signal were still discrim-
inable. ANOVA analysis showed that the texture type was significant for
the number of frequency components. However, the type of the method
(weighted or unweighed) had no significant influence.

DISCUSSION

The experimental results showed that our method can compress thetexture data significantly without perceptual loss. The mean numberof needed frequency components in the reconstructed signal was lessthan 10 for each surface and method, whereas the original signals con-tain at least 50 (compare Fig. 4 and Fig. 8). This result indicates thatthe texture data is reduced to less than 20% of the original signal. Thiscompression amount is similar to the prior studies [19, 4]. To reach this
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high compression amount, we used the human inability to distinguishmulti-frequencies. Previous literature also supports this methodology.Cholewiak et al. [5] analyzed the detection and discrimination thresh-old of haptic gratings in the frequency domain. They found that higherspatial frequencies were indistinguishable from the corresponding fun-damental components until the third harmonics was added. Recently,Friesen et al. found that a sinusoidal texture with two frequency compo-nents can be perceived as one single pitch. Depending on the amplituderatio, the pitch lied in-between both frequencies [10]. The results of bothstudies suggest that complex textures can be reduced to simpler repre-sentations.
We observed that the obtained compression amount is affected by thesurface properties. Specifically, the number of frequency componentsneeded to reproduce sandpaper were significantly less than those re-quired for the cardboard. This is mainly because each texture-elicitedvibration is texture-specific and dependent on the surface microgeome-try [17]. As shown in Fig. 4 cardboard and sandpaper have different fre-quency spectrum: the first one has mainly low-frequency components,whereas the latter has components at much higher frequencies. As in-dicated in [32], the information about most natural textures is conveyedthrough precise temporal spiking patterns in afferent responses, drivenby skin vibrations elicited during scanning. When these vibrations varytemporally, they will generate temporal spiking patterns which activatedifferent mechanoreceptor populations in a varying manner [32, 2].
Our results indicated that weighting the frequency spectrum with theinverse of the human sensitivity curve did not affect the compressionamount significantly. This might be caused by the fact that human sen-sitivity curve is only valid for the stimuli at the threshold levels [11].In fact, most natural (supra-threshold) stimuli excite all afferents andmost tactile percepts are shaped by multiple submodalities [32, 23].The weighting function augmented the high-frequency components be-tween 100-300 Hz while suppressing the low-frequency ones. For finetextures such as sandpaper, this can be an effective method to increasecompression amount, not for textures that have mainly low-frequencycomponents in their frequency spectrum like cardboard (see Fig. 4).

CONCLUSION

In this study, we proposed a new texture rendering approach which cancompress tactile data significantly for electrostatic displays. For thisapproach, we firstly collected acceleration signals from three surfaces,and then analyzed them in the frequency domain. The frequency spec-trum of these signals was simplified based on previously measured fre-quency discrimination thresholds (JND) [1]. Then, the texture signalswere reproduced by adding each frequency component in this simpli-fied spectrum and then rendered on an electrostatic display. Throughpsychophysical experiments conducted by nineteen participants, weshowed that the number of frequency components required to reproducea texture signal is much lower than the total number of frequencies con-tained in the original signal. Moreover, the texture type had a significanteffect on the compression amount.
To the best of our knowledge, this is the first detailed texture renderingstudy for electrostatic displays which also considers the compressionof tactile data. Engineers and designers can benefit from our methodto generate realistic texture feelings on commercial displays. For thecases, in which finger scan speed is pre-determined, our method canprovide small data storage and high data transmission rate by storingand rendering the reduced temporal spectrum of a texture. However, ifthe finger speed is not known beforehand, the spatial spectrum of thetexture should be stored, and its reduced temporal spectrum should becalculated based on the finger scan speed in real time. In this case, ourmethod still reduces the transmission rates, but it may not benefit fromreduced data storages.

Although our method can provide high compression rates for the tactiledata, it is only effective for homogeneous textures since it is based onthe temporal aspects of reconstructed waveforms. However, for inho-mogeneous textures, spatial information is also necessary [23]. Theposition of the finger should be observed in real-time and the input sig-nal should be adjusted based on this information. During this process,themacro-details should be kept as original, but themicro-details can becompressed. The temporal information coming from the micro-detailsshould be modulated by the spatial information [9].
Another limitation of our study is that we tested our method by explor-ing only three different textures by the same horizontal motion. In thefuture, we plan to extend our work by exploringmore textures andmotionpatterns.
ACKNOWLEDGMENTS

The authorswould like to thank Prof. Dr. Cagatay Basdogan andProf. Dr.Eckehard Steinbach for providing necessary lab equipment and supportduring the project. Also, we thank Matti Strese and Johannes Acker-mann for their comments. This work has been supported by the Techni-cal University of Munich and The Scientific and Technological ResearchCouncil of Turkey (TUBITAK).
REFERENCES

[1] O. Bau, I. Poupyrev, A. Israr, and C. Harrison. TeslaTouch: elec-trovibration for touch surfaces. Proceedings of UIST 2010, pages283–292, 2010.
[2] S. J. Bensmaïa and M. Hollins. The vibrations of texture. So-

matosens Mot Res, 20:33–43, 2003.
[3] R. Chaudhari, B. Çizmeci, K. J. Kuchenbecker, S. Choi, and E. Stein-bach. Low bitrate source-filter model based compression of vibro-tactile texture signals in haptic teleoperation. In Proc. ACM Multi-

media, pages 409–418, Nara, Japan, 2012.
[4] R. Chaudhariu, C. Schuwerk, M. Danaei, and E. Steinbach. Percep-tual and bitrate-scalable coding of haptic surface texture signals.

IEEE Journal on Selected Topics in Signal Processing, 9(3):462–473,2015.
[5] S. A. Cholewiak, K. Kim, H. Z. Tan, and B. D. Adelstein. A frequency-domain analysis of haptic gratings. IEEE Transactions on Haptics,3(1):3–14, 2010.
[6] H. Culbertson, J. J. López Delgado, and K. J. Kuchenbecker. Onehundred data-driven haptic texture models and open-source meth-ods for rendering on 3d objects. In 2014 IEEE Haptics Symposium

(HAPTICS), pages 319–325, 2014.
[7] H. Culbertson, J. M. Romano, P. Castillo, M. Mintz, and K. J.Kuchenbecker. Refined methods for creating realistic haptic vir-tual textures from tool-mediated contact acceleration data. InProc.

IEEE Haptics Symposium, pages 385–391, Vancouver, Canada, Mar.2012.
[8] H. Culbertson, J. Unwin, and K. J. Kuchenbecker. Modeling andrendering realistic textures from unconstrained tool-surface inter-actions. IEEE Transactions on Haptics, 7(3):381–393, 2014.
[9] T. Fiedler, Y. Vardar, M. Strese, E. Steinbach, and C. Basdogan. Re-production of textures based on electrovibration. Hands-onDemon-stration in IEEE World Haptics, 2017.



HAID 2019, Lille, France

[10] R. F. Friesen, R. L. Klatzky, M. A. Peshkin, and J. E. Colgate. Singlepitch perception of multi-frequency textures. IEEE Haptics Sympo-
sium, HAPTICS, 2018-March:290–295, 2018.

[11] G. A. Gescheider. Psychophysics: The fundamentals. Taylor andFrancis Group, 1997.
[12] G. Ilkhani, M. Aziziaghdam, and E. Samur. Data-driven texture ren-dering on an electrostatic tactile display. International Journal of

Human Computer Interaction, 33(9):756–770, 2017.
[13] J. Jiao, Y. Zhang, D. Wang, Y. Wisell, D. Cao, X. Guo, and X. Sun.Data-driven rendering of fabric textures on electrostatic tactile dis-plays. In 2018 IEEE Haptics Symposium (HAPTICS), pages 169–174,2018.
[14] K. Kaczmarek, K. Nammi, A. K. Agarwal, M. E. Tyler, S. J. Haase,and D. J. Beebe. Polarity effect in electrovibration for tactile dis-play. IEEE Transactions on Biomedical Engineering, 53(10):2047–2054, 2006.
[15] J. Kang, H. Kim, S. Choi, K.-D. Kim, and J. Ryu. Investigation on LowVoltage Operation of Electrovibration Display. IEEE Transactions on

Haptics, 10(3):371–381, 2017.
[16] E. Mallinckrodt, A. L. Hughes, and W. Sleator. Perception by theSkin of Electrically Induced Vibrations. Science, 118(3062):277–278, 1953.
[17] L. R. Manfredi, H. P. Saal, K. J. Brown, M. C. Zielinski, J. F.Dammann, V. S. Polashock, and S. J. Bensmaia. Natural scenesin tactile texture. Journal of Neurophysiology, 111(9):1792–1802,2014.
[18] D. Mayer, M. Peshkin, and E. Colgate. Fingertip electrostatic mod-ulation due to electrostatic attraction. In Proc. IEEE World Haptics

Conference (WHC’13), pages 43–48, Daejeon, South Korea, 2013.
[19] S. Okamoto and Y. Yamada. Lossy data compression of vibrotactilematerial-like textures. IEEE Transactions on Haptics, 6(1):69–80,2013.
[20] R. H. Osgouei, S. Shin, J. R. Kim, and S. Choi. An inverse neuralnetworkmodel for data-driven texture rendering on electrovibrationdisplay. In 2018 IEEE Haptics Symposium (HAPTICS), pages 270–277, 2018.
[21] J. M. Romano and K. J. Kuchenbecker. Creating realistic virtual tex-tures from contact acceleration data. IEEE Transactions on Haptics,5(2):109–119, Apr. 2012.
[22] J. M. Romano and K. J. Kuchenbecker. Creating Realistic VirtualTextures from Contact Acceleration Data. Mechanical Engineering,5(2):109–119, 2012.
[23] H. P. Saal and S. J. Bensmaia. Touch is a team effort: interplay ofsubmodalities in cutaneous sensibility. Trends in Neurosciences,37(12):689 – 697, 2014.
[24] C. Shultz, M. Peshkin, and J. E. Colgate. The application of tac-tile, audible, and ultrasonic forces to human fingertips using broad-band electroadhesion. IEEE Transactions on Haptics, 11(2):279–290, 2018.
[25] E. Steinbach, M. Strese, M. Eid, X. Liu, A. Bhardwaj, Q. Liu, M. Al-Ja’afreh, T. Mahmoodi, R. Hassen, A. E. Saddik, and O. Holland.Haptic codecs for the tactile internet. Proceedings of the IEEE,pages 1–24, 2018.

[26] M. Strese, C. Schuwerk, A. Iepure, and E. Steinbach. Multimodalfeature-based surface material classification. IEEE Transactions
on Haptics, 10(2):226–239, 2017.

[27] R. M. Strong and D. E. Troxel. An Electrotactile Display. IEEE Trans-
actions on Man-Machine Systems, 11(1):72–79, 1970.

[28] Y. Vardar, B. Güçlü, and C. Basdogan. Effect of Waveform in Hap-tic Perception of Electrovibration on Touchscreens. 9775:190–203,2016.
[29] Y. Vardar, B. Güçlü, and C. Basdogan. Effect of waveform on tactileperception by electrovibration displayed on touch screens. IEEE

Transactions on Haptics, 10(4):488–499, 2017.
[30] Y. Vardar, B. Güçlü, and C. Basdogan. Tactile masking by electrovi-bration. IEEE Transactions on Haptics, 2018.
[31] Y. Vardar, A. İşleyen, M. Saleem, and C. Basdogan. Roughness per-ception of virtual textures displayed by electrovibration on touchscreens. In Proc. of IEEE World Haptics Conference, pages 263–268, 2017.
[32] A. I. Weber, H. P. Saal, J. D. Lieber, J.-W. Cheng, L. R. Manfredi,J. F. Dammann, and S. J. Bensmaia. Spatial and temporal codesmediate the tactile perception of natural textures. Proceedings of

the National Academy of Sciences, 110(42):17107–17112, 2013.
[33] S.Wu, X. Sun, Q.Wang, and J. Chen. Tactilemodeling and renderingimage-textures based on electrovibration. Visual Computer, pages1–10, 2016.


