Affine Invariant Covariance Estimation for Heavy-Tailed Distributions
Dmitrii Ostrovskii, Alessandro Rudi

To cite this version:
Dmitrii Ostrovskii, Alessandro Rudi. Affine Invariant Covariance Estimation for Heavy-Tailed Distributions. 2019. <hal-02011464>
Affine Invariant Covariance Estimation for Heavy-Tailed Distributions

Dmitrii M. Ostrovskii∗
dmitrii.ostrovskii@inria.fr
Alessandro Rudi∗
alessandro.rudi@inria.fr
February 8, 2019

Abstract
In this work we provide an estimator for the covariance matrix of a heavy-tailed random vector. We prove that the proposed estimator \(\hat{S} \) admits affine-invariant bounds of the form

\[
(1 - \varepsilon)S \preceq \hat{S} \preceq (1 + \varepsilon)S
\]

in high probability, where \(S \) is the unknown covariance matrix, and \(\preceq \) is the positive semidefinite order on symmetric matrices. The result only requires the existence of fourth-order moments, and allows for \(\varepsilon = O(\sqrt{\kappa^4 d/n}) \) where \(\kappa^4 \) is some measure of kurtosis of the distribution, \(d \) is the dimensionality of the space, and \(n \) is the sample size. More generally, we can allow for regularization with level \(\lambda \), then \(\varepsilon \) depends on the degrees of freedom number which is generally smaller than \(d \). The computational cost of the proposed estimator is essentially \(O(d^2 n + d^3) \), comparable to the computational cost of the sample covariance matrix in the statistically interesting regime \(n \gg d \). Its applications to eigenvalue estimation with relative error and to ridge regression with heavy-tailed random design are discussed.

1 Introduction
We are interested in estimating the covariance matrix \(S = \mathbb{E}[X \otimes X] \) of a zero-mean random vector \(X \in \mathbb{R}^d \) from \(n \) independent and identically distributed (i.i.d.) copies \(X_1, \ldots, X_n \) of \(X \). This task is crucial – and often arises as a subroutine – in some widely used statistical procedures, such as linear regression, principal component analysis, factor analysis, generalized methods of moments, and mean-variance portfolio selection, to name a few [FHT01, Jol02, Han82, Mar52]. In some of them, the control of \(\| \hat{S} - S \|_* \), where \(\hat{S} \) is a covariance estimator and \(\| \cdot \|_* \) is the spectral, Frobenius or trace norm, does not result in sharp theoretical guarantees. Instead, it might be necessary to estimate the eigenvalues of \(S \) in relative scale, ensuring that

\[
|\lambda_j(\hat{S}) - \lambda_j(S)| \leq \varepsilon \lambda_j(S), \quad j \in \{1, \ldots, d\},
\]

holds for \(\varepsilon > 0 \) (this task arises in the analysis of the noisy power method (see [HP14] and Sec. 6 for details). More generally, one may seek to provide affine-invariant bounds of the form

\[
(1 - \varepsilon)S \preceq \hat{S} \preceq (1 + \varepsilon)S,
\]

as in the analysis of linear regression with random design (see [HKZ12a] and Sec. 2.3 for more details), where \(\preceq \) is the positive semidefinite partial order for symmetric matrices. In fact, the

∗SIERRA Project-Team, INRIA and École Normale Supérieure, PSL Research University, Paris, France.
basic and very natural sample covariance estimator

\[\tilde{S} = \frac{1}{n} \sum_{i=1}^{n} X_i \otimes X_i \]

can be shown to satisfy Eq. (1) with probability at least \(1 - \delta\), \(\delta \in [0, 1)\), and accuracy \(\varepsilon\) satisfying

\[\varepsilon = O \left(\sqrt{\frac{\text{rank}(S) \log(d/\delta)}{n}} \right), \]

provided that \(X\) is sub-gaussian (see Sec. 2.1 for a detailed discussion). However, the assumption of sub-gaussianity might be too strong in the above applications. Going beyond it and similar assumptions is particularly important in mathematical finance, where it is widely accepted that the prices of assets might have heavy-tailed distributions [KJ14, BT03].

In this work we propose a simple variation of the sample covariance estimator (see Algorithm 1) in the form

\[\hat{S} = \frac{1}{n} \sum_{i=1}^{n} \alpha_i X_i \otimes X_i, \]

where the coefficients \(\alpha_1, \ldots, \alpha_n > 0\) are chosen in a data-driven manner. Our main result, stated informally below, shows that the proposed estimator enjoys high-probability bounds analogous to those known for the sample covariance estimator, under a weak assumption on the distribution:

Assumption 1.1 (Heavy-tailed distribution). \(X\) has a finite 4-th moment: \(E[\|X\|_4^4] < \infty\).

Note that Assumption 1.1 implies that \(X\) has bounded kurtosis \(\kappa\) in all directions: for some \(\kappa \geq 1\) it holds

\[E^{1/4}\langle X, u \rangle^4 \leq \kappa E^{1/2}\langle X, u \rangle^2, \quad \forall u \in \mathbb{R}^d. \] \[(HT)\]

Kurtosis is an affine-invariant and unitless quantity, and is uniformly bounded from above by a constant for many common families of multivariate distributions: for example, \(\kappa = \sqrt{3}\) for any Gaussian distribution, and \(\kappa \leq \sqrt{9}\) for the multivariate Student-t distribution with at least 5 degrees of freedom. Now we are ready to informally state our main result.

Theorem 1.1 (Simplified version of Thm. 4.1). Under Assumption 1.1, there exists an estimator \(\hat{S}\) that has computational cost \(O(d^2 n + d^3)\), and with probability at least \(1 - \delta\) satisfies (1) with accuracy

\[\varepsilon \leq 48 \kappa^2 \sqrt{\frac{\text{rank}(S) \log(4d/\delta)}{n}}. \] \[(2)\]

The above result shows that the proposed estimator is a valid alternative to the sample covariance estimator: it has comparable accuracy and the same computational complexity, while requiring only boundedness of the fourth moment of \(X\) instead of sub-gaussianity. More generally, by allowing a regularization level \(\lambda > 0\), i.e., using \(\hat{S}_\lambda := \hat{S} + \lambda I\) instead of \(\hat{S}\) to estimate \(S_\lambda := S + \lambda I\) instead of \(S\) (as required in ridge regression [HKZ12a], we can replace \(\text{rank}(S)\) with the degrees of freedom number

\[\text{df}_\lambda(S) := \text{Tr}(SS_\lambda^{-1}). \] \[(3)\]

This leads to a better bound, since \(\text{df}_\lambda(S)\) is never larger than \(\min\{\text{rank}(S), \text{Tr}(S)/\lambda\}\), and can be way smaller depending on the eigenvalue decay of \(S\) (for example, if \(\lambda_j(S) \leq j^{-b}\) with \(b \geq 1\), then \(\text{df}_\lambda(S) \leq \lambda^{-1/b}\)).

1We use a slightly non-standard definition of kurtosis, extracting the corresponding roots from the moments.
Paper Organization In Sec. 2 we recall the known results for the sample covariance matrix estimator in the case of a light-tailed distribution, together with some recent high-probability results for an alternative estimator applicable to heavy-tailed distributions. The novel estimator is presented in Sec. 3 and analyzed and discussed in detail in Sec. 4. In order to achieve the best statistical performance, it requires the knowledge of the distribution parameters κ and $\lambda(\mathbf{S})$ in advance; in Sec. 5 we extend the algorithm, via a variant of Lepskii’s method [Lep91], to be adaptive to these quantities. Applications to eigenvalue estimation and ridge regression are discussed in Sec. 6.

Notation and Conventions For $X \in \mathbb{R}^d$, we denote the outer product XX^\top by $X \otimes X$. W.l.o.g. we assume that $\mathbf{S} = \mathbb{E}[X \otimes X]$ is full-rank (otherwise we can work on its range). To reduce the clutter of parentheses, we convene that powers and multiplication have priority over the expectation, and we denote the $1/p$-th power of expectation, $p \geq 1$, with $\mathbb{E}^{1/p}[\cdot]$. We use $\|\cdot\|$ for the spectral norm of a matrix (unless specified otherwise), as well as for the ℓ_2-norm of a vector. We shorthand $\min(a, b)$ to $a \wedge b$. We use the $O(\cdot)$ notation in a conventional way, and occasionally replace generic constants with $O(1)$. We use the notation $A_\lambda := A + \lambda \mathbf{I}$, where $A \in \mathbb{R}^{d \times d}$ and \mathbf{I} is the identity matrix.

2 Background and Related Work

In this section we recall some relevant previous work on covariance estimators for light-tailed and heavy-tailed distributions, and provide more intuition about affine-invariant error bounds. Moreover, we introduce basic concepts that will be used later on in the theoretical analysis.

2.1 Relative Error Bounds for the Sample Covariance Estimator

When the estimation error is measured by $\|\tilde{S} - S\|$, where $\|\cdot\|$ is the spectral norm, the problem can be reduced, via the Chernoff bounding technique, to the control of the matrix moment generating function, for which one can apply some deep operator-theoretic results such as the Goldon-Thompson inequality [AW02, Oli10] or Lieb’s theorem [Tro12]. Due to this analysis being rather streamlined (albeit quite technical), most of the literature until recently has been focused on the sample covariance estimator and its direct extensions; see [Ver12, Tro12, Tro15]. To get a grasp of this line of work, consider the following result:

Theorem 2.1 (Matrix version of the Rosenthal-Pinelis inequality [CGT12, Thm. A.1]). For the sample covariance estimator \tilde{S} it holds

$$\mathbb{E}[\|\tilde{S} - S\|^2]^{1/2} \leq \sqrt{\frac{2eV \log(2d)}{n}} + \frac{4eM_n \log(2d)}{n},$$

(4)

where $V = \mathbb{E}[\|X\|^2 X \otimes X] - S^2$ is the matrix variance, and $M_n = \mathbb{E} \max_{1 \leq i \leq n} \|X_i \otimes X_i - S\|^2]^{1/2}$.

As shown in [LT13, Prop. 6.10], for the sample covariance estimator this result is nearly optimal: there exists a distribution of X for which Eq. (4) is reversed up to logarithmic factors. Another remarkable property of Eq. (4) is that it is dimension-free: apart from a logarithmic factor, the complexity of estimating \mathbf{S} is independent of the ambient space dimension d. Instead, it is controlled by the distribution-dependent quantities V and M_n, both of which can be much smaller than d when the distribution of X lies close to a low-dimensional linear subspace, and is sufficiently light-tailed. Indeed, one can show (see [WM17, Lem. 2.3 and Cor. 5.1]) that

$$V \leq \|\mathbb{E}[XX^\top]\| \leq \kappa^4\|\mathbf{S}\|^2 \mathbf{r}(\mathbf{S}),$$

(5)
where κ is the kurtosis parameter defined in Eq. (HT), and $r(S)$ is the effective rank, defined as

$$r(S) := \frac{\text{Tr}(S)}{\|S\|}. \quad (6)$$

Note that $r(S)$ is never larger than rank(S), and is way smaller when S is approximately low-rank, i.e., has only a few relatively large eigenvalues. Note also that Eq. (5) is tight when κ is treated as a constant, as we always have $V \geq \|S\|^2(r(S) - 1)$, see [WM17, Lem. 2.3].

On the other hand, the control of M_n in Eq. (4) requires stronger assumptions on the distribution of X than (HT). In particular, under the subgaussian moment growth assumption

$$E^{1/p}[(|X|, u)|^p] \leq \tilde{\kappa} \sqrt{p} E^{1/p}[(X, u)^2], \quad \forall u \in \mathbb{R}^d \text{ and } p \geq 2, \quad (SG)$$

which in particular implies (HT) with $\kappa = 2\tilde{\kappa}$, one can easily show (see Appendix E) the bound

$$M_n \leq O(1)\tilde{\kappa}^2 \text{Tr}(S) \log(n + 1). \quad (7)$$

Thus, combining (4), (5), and (7), we arrive at the following conclusion: whenever the sample size is large enough, namely $n \geq \tilde{O}(1)r(S)$, where $\tilde{O}(1)$ incorporates polylogarithmic factors in n and d, we control the mean-square spectral-norm error of the sample covariance estimator in relative scale:

$$[E\|\hat{S} - S\|^2]^{1/2} \leq O(1)\tilde{\kappa}^2\|S\|\sqrt{\frac{r(S)\log(2d)}{n}}. \quad (8)$$

Surprisingly, even the mean squared relative error bound requires X to be light-tailed in terms of its one-dimensional marginals as in (SG). To the best of our knowledge, the weakest requirement for high-probability results is the subexponential moment growth for the matrix $XX^\top - S$, see [Tro12, Thm 6.2].

2.2 Relative Error Bounds for Heavy-Tailed Distributions

It is possible to obtain relative error bounds of the form $\|\hat{S} - S\|$, including the ones in high probability, under weak moment assumptions such as (HT), considering other estimators than the sample covariance matrix. In particular, [WM17] propose an estimator based on the idea of clipping observations with large norm. Formally, they define the truncation map $\psi : \mathbb{R} \rightarrow \mathbb{R}$,

$$\psi_\theta(x) := (|x| \wedge \theta) \text{sign}(x), \quad (9)$$

parametrized by the threshold $\theta > 0$, and consider the estimator

$$\hat{S}^{WM} := \frac{1}{n} \sum_{i=1}^n \rho_\theta(\|X_i\|)^X_i \otimes X_i, \text{ where } \rho_\theta(x) := \psi_\theta(x^2) x^2. \quad (10)$$

In other words, one simply truncates observations with squared norm larger than θ prior to averaging. This estimator is a key ingredient in our Algorithm 1, and we now summarize its statistical properties.

Theorem 2.2 ([MW17, Lemmas 2.1 and 5.7]). Define the matrix second moment statistic $W := \|E[|X|^2 X \otimes X]\|$. Let $\bar{W} \geq W$, and $\delta \in (0, 1]$. Then estimator \hat{S}^{WM}, cf. (10), with $\theta = \sqrt{n\bar{W}/\log(2d/\delta)}$ with probability at least $1 - \delta$ satisfies

$$\|\hat{S}^{WM} - S\| \leq 2\sqrt{\bar{W} \log(2d/\delta)} \bigg/ n.$$
In contrast with Thm. 2.1, Theorem 2.2 claims subgaussian concentration for the spectral-norm loss under the weak moment assumption (HT). Moreover, it also implies a relative error bound (cf. (8)):
\[
\|\hat{S}_{\text{WM}} - S\| \leq 2\kappa^2 \|S\| \sqrt{\frac{x(S) \log(2d/\delta)}{n}},
\]
if we choose the appropriate truncation level \(\theta = \kappa^2 \|S\| \sqrt{n x(S)/\log(2d/\delta)} \geq nW/\log(2d/\delta) \).

Since this choice depends on the unknown \(W \), one can use a larger value, which will result in the inflation of the right-hand side of Eq. (11). An alternative is to adapt to the unknown \(W \) via Lepskiǐ’s method [Lep91] as described in [WM17, Thm 2.1]. To conclude, the estimator \(\hat{S}_{\text{WM}} \) enjoys subgaussian relative error bounds under the fourth moment assumption (HT), while having essentially the same complexity of computation as the sample covariance estimator.

2.3 Affine Invariant Bounds for the Sample Covariance Estimator

As we have seen previously, estimator \(\hat{S}_{\text{WM}} \) has favorable statistical properties compared to \(\hat{S} \) when the goal is to estimate \(S \) in relative spectral-norm error as in Eq. (11). However, one can instead be interested in providing affine invariant bounds in the form of Eq. (1). More generally, one may wish to estimate \(S \) only for the eigenvalues greater than some level \(\lambda \geq 0 \), that is, to guarantee that
\[
(1 - \varepsilon)S_{\lambda} \preceq \hat{S}_\lambda \preceq (1 + \varepsilon)S_{\lambda}.
\]

The need for such bounds arises, in particular, in random-design ridge regression, where the information about inferior eigenvalues is irrelevant, since it is anyway erased by regularization. Note that Eq. (12), for any \(\lambda > 0 \), can be reformulated in terms of the \(S_{\lambda}^{-1/2} \)-transformed spectral norm:
\[
\|S_{\lambda}^{-1/2}(\hat{S} - S)S_{\lambda}^{-1/2}\| \leq \varepsilon.
\]

The task of obtaining such bounds, with arbitrary regularization level \(0 \leq \lambda \leq \|S\| \), will be referred to as calibrated covariance estimation. Generally, this task is harder than proving relative-error bounds in the spectral norm such as Eq. (11): the latter is equivalent, up to a constant factor loss of accuracy, to proving Eq. (13) with \(\lambda = \|S\| \). On the other hand, calibrated covariance estimation also subsumes Eq. (1) by taking \(\lambda = O(\lambda_{\text{min}}(S)) \), where \(\lambda_{\text{min}}(S) \) is the smallest eigenvalue of \(S \).

Now, one can make the simple observation that for the sample covariance estimator \(\hat{S} \), calibrated bounds of the form (13) “automatically” follow from the dimension-free spectral-norm bounds akin to (8) or (11) due to its affine equivariance. Indeed, \(J := S_{\lambda}^{-1/2}SS_{\lambda}^{-1/2} \) is precisely the covariance matrix of the “\(\lambda \)-decorrelated” observations \(Z_i = S_{\lambda}^{-1/2}X_i, \) for which the sample covariance estimator is given by \(\hat{J} := \frac{1}{n} \sum_{i=1}^n Z_i \otimes Z_i = S_{\lambda}^{-1/2}\hat{S}S_{\lambda}^{-1/2} \). Hence, we can apply the spectral-norm bound (8), replacing \(S \) and \(S \) with \(J \) and \(\hat{J} \). Using the fact that \(\|J\| \leq 1 \) for any \(\lambda \geq 0 \), and that assumptions (HT), (SG) are themselves invariant under (non-singular) linear transforms, we obtain
\[
E^{1/2} \left[\|S_{\lambda}^{-1/2}(\hat{S} - S)S_{\lambda}^{-1/2}\|^2 \right] \leq O(1)\kappa^2 \sqrt{\frac{df_{\lambda}(S) \log(2d)}{n}}
\]

once \(n \geq \tilde{O}(1)df_{\lambda}(S), \) where \(df_{\lambda}(\cdot) \) is defined in Eq. (3) and ranges from \(O(x(S)) \) to \(\text{rank}(S) \leq d \) as \(\lambda \) decreases from \(\|S\| \) to zero. In fact, when \(\kappa \) is a constant, this rate is known to be asymptotically minimax-optimal over certain natural classes of covariance matrices, e.g., Toeplitz matrices with spectra discretizing those of Hölder-smooth functions [BL08, CZZ10]. It is thus reasonable
to ask whether one can extend Eq. (14) in the same manner as Eq. (11) extends Eq. (8). In other words, can one provide a high-probability guarantee for the calibrated error (cf. Eq. (13)) of the estimator \hat{S}^{WM} (cf. Eq. (10)) under assumption (HT)? The immediate difficulty we face when trying to answer that question is that \hat{S}^{WM} – in fact, the only estimator for which finite-sample high-probability guarantees under fourth moment assumptions are known to us – does not allow for the same reasoning as \hat{S} because of the non-linearity introduced by the truncation map.\footnote{Some robust covariance estimators, such as MCD or MVE \cite{Cam80, LR91, RD99}, are affine equivariant, but to the best of our knowledge, the desired bounds are not known for them.}

On the other hand, the desired bounds are achieved by the “oracle” estimator that truncates the “λ-decorrelated” vectors $Z_i = S^{-1/2}_\lambda X_i$ with accordingly adjusted θ (cf. Eq. (10)):

$$
\hat{S}^\theta := \frac{1}{n} \sum_{i=1}^n \rho_\theta(\|S^{-1/2}_\lambda X_i\|) X_i \otimes X_i = S^{1/2}_\lambda \left[\frac{1}{n} \sum_{i=1}^n \rho_\theta(\|Z_i\|) Z_i \otimes Z_i \right] S^{-1/2}_\lambda.
$$

Unfortunately, this estimator is unavailable since Z_i’s are not observable. In what follows, we present our main methodological contribution: an estimator that achieves the stated goal, and moreover, has a similar complexity of computation and storage as the sample covariance matrix.

3 Proposed Estimator

Our goal can be summarized as follows: given $\delta \in (0, 1]$, and $\lambda \geq 0$, provide an estimate \hat{S} satisfying

$$
\|S^{-1/2}_\lambda (\hat{S} - S) S^{-1/2}_\lambda \| \leq O(1) \kappa^2 \sqrt{\frac{\text{df}_\lambda(S) \log(2d/\delta)}{n}},
$$

where κ is the kurtosis parameter of X (cf. (HT)). Moreover, we can restrict ourselves to the case $\lambda \leq \|S\|$, since otherwise the task is resolved by the estimator \hat{S}^{WM} as can be seen from Eq. (11).

As we have seen before, the oracle estimator \hat{S}^θ introduced in the previous section (cf. Eq. (15)) achieves the stated goal, but is unavailable since it depends explicitly on S. The key idea of our construction is to approximate \hat{S}^θ in an iterative fashion – roughly, to start with $S^{(0)} = \hat{S}^{WM}$, which is already a good estimate for S_λ with the crudest regularization level $\lambda = \|S\|$ due to Eq. (11), and then iteratively refine the estimate by computing

$$
\hat{S}^{(t+1)} = \frac{1}{n} \sum_{i=1}^n \rho_\theta(\|S^{-1/2}_\lambda X_i\|) X_i \otimes X_i.
$$

To make this simple idea work, we need to adjust it in two ways.

- First, $\hat{S}^{(t)}$ depends on the observations X_i, hence the random vectors $[\hat{S}^{(t)}^{-1/2}_\lambda X_i]$ are not independent. To simplify the analysis, we split the sample into batches corresponding to different iterations, and at each iteration use observations of the new batch instead of X_i’s in Eq. (16). Since $\hat{S}^{(t)}$ is independent from the new observations, we can apply Thm. 2.2 conditionally at each step.

- Second, as discussed before, the estimator \hat{S}^{WM} given by (10) already solves the problem for $\lambda = \|S\|$. To achieve Eq. (13) for a given λ, the idea is to start with $\lambda_0 = \|S\|$, and reduce λ_t by a constant factor at each iteration, so that the error $\|S^{-1/2}_\lambda (\hat{S}^{(t)} - S) S^{-1/2}_\lambda\|$ remains controlled for $\lambda = \lambda_t$ at each step. This way we also ensure that the total number of iterations is logarithmic in $\|S\|/\lambda$, and, in particular, logarithmic in the condition number $\|S\|/\lambda_{\text{min}}(S)$ when $\lambda \geq \lambda_{\text{min}}(S)$.
Algorithm 1 presented below implements these ideas. Note that the final batch of observations takes a half of the overall sample: this is needed to achieve the best possible accuracy (up to a constant factor) for the final regularization level, while at the previous levels it suffices to maintain the accuracy $\varepsilon = 1/2$ for which one can use smaller batches that take up a half of the sample in total, see Lem. 4.1 in Sec. 4 for details. Once the coefficients $\alpha_i(t)$ at the given step have been computed, the new estimate $\hat{S}^{(t+1)}$ reduces to the sample covariance matrix of the weighted observations, which can be computed in time $O(d^2m)$ where m is the size of the batch. The total cost of these computations in the course of the algorithm is thus $O(d^2n)$. As for $\alpha_i(t)$, they are obtained by first performing the Cholesky decomposition $[GVL12]$ of $\hat{S}^{(t)}_{\lambda t}$, i.e., finding the unique lower-triangular matrix R_t such that $R_tR_t^\top = \hat{S}^{(t)}_{\lambda t}$ which requires $O(d^3)$ in time and $O(d^2)$ in space, and then computing each product $R_t^{-1}X_i^{(t+1)}$ by solving the corresponding linear system in $O(d^2)$. The total complexity of Algorithm 1 is thus

$$O\left(d^2n + d^3\log(L/\lambda)\right) \text{ in time, } O(d^2) \text{ in space.}$$

Moreover, the time complexity becomes $O(d^2n)$ when $n \gg d \log(L/\lambda)$; as we show next, this is anyway required to obtain a statistical performance guarantee. Note moreover that it is possible to obtain the non-regularized version of Eq. (1) by choosing $\lambda = O(\lambda_{\min}(S))$, in time $O(d^2n + d^3\log(\text{cond}(S)))$, where $\text{cond}(S) = \|S\|/\lambda_{\min}$ is the condition number of S.

Next we present a statistical guarantee for Algorithm 1, and suggest a way to select the parameters.

Algorithm 1 Robust Calibrated Covariance Estimation

Input: $X_1, \ldots, X_n \in \mathbb{R}^d$, $\delta \in (0, 1]$, regularization level $\lambda \leq \|S\|$, $L \geq \|S\|$, truncation level $\theta > 0$

1. $\lambda_0 = L$, $T = \lfloor \log_2(L/\lambda) \rfloor$, $m = \lfloor n/(2(T+1)) \rfloor$
2. $\alpha_1(0) = L\rho_\theta(\|X_i\|/\sqrt{L})$, for $i \in \{1, \ldots, m\}$, with $\rho_\theta(x) = \psi_\theta(x^2)/x^2$ and $\psi_\theta(\cdot)$ as in Eq. (9)
3. $\hat{S}^{(0)} = \frac{1}{n} \sum_{i=1}^n \alpha_i(0) X_i \otimes X_i$
4. for $t = 0$ to $T - 1$ do
5. $(X_1^{(t+1)} : X_m^{(t+1)}) = (X_{m(t+1)} : X_{m(t+1)+m})$ # Obtain a new batch
6. $R_t = \text{Cholesky}(\hat{S}^{(t)}_{\lambda t})$
7. $\alpha_i^{(t+1)} = \rho_\theta(\|R_t^{-1}X_i^{(t+1)}\|)$, for $i \in \{1, \ldots, m\}$
8. $\hat{S}^{(t+1)} = \frac{1}{m} \sum_{i=1}^m \alpha_i^{(t+1)} X_i^{(t+1)} \otimes X_i^{(t+1)}$
9. $\lambda_{t+1} = \lambda_{t}/2$
10. end for
11. $r = n - m(T+1)$ # Size of the remaining sample, roughly $n/2$
12. $\theta_T = 2\theta(T+1)^{1/2}(1+\log(T+1)/\log(4d/\delta))^{1/2}$ # Final truncation level
13. $(X_1^* : X_m^*) = (X_{mT+1} : X_n)$ # Remaining sample
14. $R_T = \text{Cholesky}(\hat{S}^{(T)}_{\lambda_T})$
15. $\alpha_i^* = \rho_\theta(\|R_T^{-1}X_i^*\|)$, for $i \in \{1, \ldots, m\}$
16. $\hat{S}^* = \frac{1}{m} \sum_{i=1}^m \alpha_i^* X_i^* \otimes X_i^*$ # Final estimate

Output: \hat{S}^*

4 Statistical Guarantee

In Theorem 4.1 below, we show that the estimator produced by Algorithm 1 achieves a high-probability bound of the type (13) requiring only the existence of the fourth-order moments.
of X, and the correct choice of the truncation level θ. We begin with the lemma that justifies the proposed update rule.

Lemma 4.1. Let \hat{S} be a symmetric estimate of S such that, for some $\lambda > 0$,

$$\|S_{\lambda}^{-1/2}(\hat{S} - S)S_{\lambda}^{-1/2}\| \leq 1/2. \quad (17)$$

Conditioned on \hat{S}, let X_1, \ldots, X_m be i.i.d., have zero mean, covariance S, and finite fourth-order moments. Let κ be the associated (conditional) kurtosis as in Eq. (HT). Define $S^{(+)}$ as

$$\hat{S}^{(+)} := \frac{1}{m} \sum_{j=1}^{m} \rho_\theta(\|S_{\lambda}^{-1/2}X_j\|)X_j \otimes X_j, \quad (18)$$

with ρ_θ defined in Eqs. (9)–(10). Choose $\theta \geq 2\sqrt{2}\kappa^2 \sqrt{mdf_\lambda(S)/\log(2d/\delta)}$, where $df_\lambda(S)$ is defined by Eq. (3). Then with conditional probability at least $1 - \delta$ over (X_1, \ldots, X_m) it holds

$$\|S_{\lambda/2}^{-1/2}(\hat{S}^{(+)} - S)S_{\lambda/2}^{-1/2}\| \leq 6\theta \log(2d/\delta)/m. \quad (19)$$

Lemma 4.1 is proved in Appendix B. Its role is to guarantee the stability of the iterative process in Algorithm 1 when we pass to the next regularization level by $\lambda(t) \leftarrow \lambda(t-1)/2$. Indeed, if the size m of the new batch is large enough, the right-hand side of Eq. (19) can be made smaller than $1/2$, which allows to apply Lemma 4.1 sequentially. We are now ready to present the guarantee for Algorithm 1.

Theorem 4.1. Let $X_1, \ldots, X_n \in \mathbb{R}^d$ be i.i.d. zero-mean random vectors satisfying $\mathbb{E}[X_i \otimes X_i] = S$ and the kurtosis assumption (HT). Let Algorithm 1 be run with $\delta \in (0, 1]$, $0 < \lambda \leq \|S\| \leq L$, and

$$\theta \geq \theta_* := 2\kappa^2 \sqrt{\frac{ndf_\lambda(S)}{q\log(4qd/\delta)}}, \quad \text{where} \quad q := \lceil \log_2(L/\lambda) \rceil + 1. \quad (20)$$

Whenever the sample size satisfies

$$n \geq 48q\theta \log(4qd/\delta), \quad (21)$$

the resulting estimator \hat{S} with probability at least $1 - \delta$ satisfies

$$\|S_{\lambda}^{-1/2}(\hat{S} - S)S_{\lambda}^{-1/2}\| \leq \frac{24\sqrt{q\log(4qd/\delta)} \log(4d/\delta)}{n}. \quad (22)$$

The above theorem shows that when the conditions on θ and n are met, the proposed estimator satisfies an affine-invariant error bound with accuracy of the same order as the one available for the sample covariance estimator (cf. Eq. (14)) under the more stringent sub-gaussian assumption. This is made explicit in the next corollary, where we simply put $\theta = \theta_*$, as suggested by Eq. (20), obtaining the bound (cf. Eq. (24)) that matches Eq. (14) up to a constant factor and the replacement of κ with κ.

Corollary 4.1. Under the premise of Theorem 4.1, assume that

$$n \geq 96q^4df_\lambda(S)\log(4qd/\delta), \quad (23)$$

and choose $\theta = \theta_*$, cf. Eq. (20). Then the estimator produced by Algorithm 1 with probability at least $1 - \delta$ satisfies

$$\|S_{\lambda}^{-1/2}(\hat{S} - S)S_{\lambda}^{-1/2}\| \leq 48\kappa^2 \sqrt{\frac{df_\lambda(S)\log(4d/\delta)}{n}}. \quad (24)$$
We conclude with a remark on choosing L, while in Sec. 5 we will provide an adaptive version of the estimator based on a version of Lepskii’s method [Lep91] in which θ is tuned automatically.

Remark 4.1 (Choosing L). One can simply put $L = 2\|\hat{S}^{WM}\|$, requiring that $\lambda \leq \frac{2}{n}\|\hat{S}^{WM}\|$, with \hat{S}^{WM} defined in Eq. (10) and using an independent subsample of size $n/(T + 1)$. Indeed, under Eq. (21) the result of Theorem 2.2 ensures that $\frac{2}{n}\|\hat{S}^{WM}\| \leq \|S\| \leq 2\|\hat{S}^{WM}\|$ w.p. $\geq 1 - \delta$.

4.1 Proof of Theorem 4.1

Note that $q = T + 1$ is the number of batches processed by the end of the for-loop in Algorithm 1. Thus, using that $m = \lceil n/(2q) \rceil$ and $n \geq 4q$ (see Eq. (20)–(21) and use that $\kappa \geq 1$ and $df\lambda \geq 1$), we have

$$\frac{n}{4q} \leq m \leq \frac{n}{2q} \tag{25}$$

We will proceed by induction over the steps $0 \leq t \leq T$, showing that

$$\left\|S_{\lambda_t}^{-1/2}(\hat{S}^{(t)} - S)S_{\lambda_t}^{-1/2}\right\| \leq \frac{1}{2} \tag{26}$$

holds for $t = 0, \ldots, T$ with probability $\geq (1 - \delta/(2q))^{t+1}$. Then we will derive Eq. (22) as a corollary.

1°. For the base, we can apply Thm. 2.2, exploiting that $\hat{S}^{(0)} = L\hat{S}^{WM}$ for the (renormalized) initial batch $\sqrt{L}(X_1, \ldots, X_m)$. Thus, with probability at least $1 - \delta/(2q)$ over this batch, it holds

$$\frac{1}{L}\|\hat{S}^{(0)} - S\| \leq 2\theta \log(4qd/\delta) \frac{2q\theta \log(4qd/\delta)}{n}, \tag{27}$$

provided that (recall the condition $\theta \geq \sqrt{nW/\log(2d/\delta)}$ in Thm. 2.2 and combine it with Eq. (5)): $$\theta \geq \frac{\kappa^2 \|S\|}{L\sqrt{\log(4qd/\delta)}}.$$ But this follows from Eq. (20), since $\|S\| \leq L$, $m \leq n/(2q)$, and $r(S) \leq 2d\|S\|(S) \leq 2df\lambda(S)$.

Noting that $\|S_L^{-1}\| \leq 1/L$, from Eqs. (21) and (27) we get

$$\left\|S_L^{-1/2}(\hat{S}^{(0)} - S)S_L^{-1/2}\right\| \leq \frac{8q\theta \log(4qd/\delta)}{n} \leq \frac{1}{2}.$$ Since $\lambda_0 = L$, the induction base is proved. Note that when $T = 0$, this already gives Eq. (26).

2°. Let $T \geq 1$, and $0 \leq t \leq T - 1$. For the induction step, we apply Lemma 4.1 conditionally to the first t iterations, with $\hat{S}^{(t)}$ in the role of the current estimate, λ_t in the role of the current regularization level, and $(X_1^{(t+1)}, \ldots, X_m^{(t+1)})$ as the new batch (which is independent from $\hat{S}^{(t)}$ by construction). By the induction hypothesis, with conditional probability at least $(1 - \delta/(2q))^{t+1}$ it holds

$$\left\|S_{\lambda_t}^{-1/2}(\hat{S}^{(t)} - S)S_{\lambda_t}^{-1/2}\right\| \leq \frac{1}{2}.$$ By Lemma 4.1, since $\lambda_t \geq \lambda$ (and thus $df_{\lambda_t}(S) \leq df_{\lambda}(S)$), Eq. (20), when combined with the upper bound in Eq. (25), guarantees that with conditional probability at least $1 - \delta/(2q)$ over the new batch,

$$\left\|S_{\lambda_{t+1}}^{-1/2}(\hat{S}^{(t+1)} - S)S_{\lambda_{t+1}}^{-1/2}\right\| \leq \frac{6\theta \log(4qd/\delta)}{m} \leq \frac{24q\theta \log(4qd/\delta)}{n} \leq \frac{1}{2}.$$
Here in the second transition we used the lower bound of Eq. \((25)\), and in the last transition we used Eq. \((21)\). Thus, the induction claim is proved. In particular, we have obtained that the bound
\[
\left\| \mathbf{S}_{\lambda_T}^{-1/2} (\hat{\mathbf{S}}^{(T)} - \mathbf{S}) \mathbf{S}_{\lambda_T}^{-1/2} \right\| \leq \frac{1}{2}
\]
holds with probability at least \((1 - \delta/(2q))^3 \geq 1 - \delta/2\) over the first \(q = T + 1\) batches.

3°. Finally, to obtain Eq. \((22)\), we apply Lemma 4.1 once again, this time conditioning on \(\hat{\mathbf{S}}^{(T)}\), and using the last batch \((X_{n-r+1}, ..., X_n)\) with the final estimator \(\hat{\mathbf{S}}\) in the role of \(\mathbf{S}^{(r)}\). Note that the first condition Eq. \((17)\) of Lemma 4.1 follows from the just proved induction claim. On the other hand, by Eq. \((20)\) the final truncation level \(\theta_T\), cf. line 12 of Algorithm 1, satisfies
\[
\theta_T = 2\theta \sqrt{\frac{q \log(4qd/\delta)}{\log(4d/\delta)}} \geq 4\kappa^2 \frac{\sqrt{n \text{df}_\lambda(S)}}{\log(4d/\delta)}.
\]
The number of degrees of freedom is a stable quantity: we can easily prove (see Lem. A.1 in Appendix) that \(\text{df}_{\lambda/2}(\mathbf{S}) \leq 2\text{df}_\lambda(\mathbf{S})\). On the other hand, \(\text{df}_{\lambda_T} \leq \text{df}_{\lambda_T} \) since \(\lambda_T \geq \lambda/2\). Using that, we have
\[
\theta_T \geq 2\sqrt{2\kappa^2 \frac{n \text{df}_{\lambda_T}(\mathbf{S})}{\log(4d/\delta)}} \geq 2\sqrt{2\kappa^2 \frac{\text{rdf}_{\lambda_T}(\mathbf{S})}{\log(4d/\delta)}},
\]
meeting the requirement on the truncation level imposed in Lemma 4.1. Applying the lemma, and using that \(r \geq n/2\), we get that with conditional probability \(\geq 1 - \delta/2 \) over the last batch \((X_{n-r+1}, ..., X_n)\),
\[
\left\| \mathbf{S}_{\lambda_T}^{-1/2} (\hat{\mathbf{S}} - \mathbf{S}) \mathbf{S}_{\lambda_T}^{-1/2} \right\| \leq \frac{6\theta_T \log(4d/\delta)}{r} \leq \frac{24\theta \sqrt{q \log(4qd/\delta)} \log(4d/\delta)}{n}.
\]
Since \(\lambda_T \leq \lambda\) implies \(\left\| \mathbf{S}_{\lambda_T}^{-1/2} \mathbf{S}_{\lambda_T}^{-1/2} \right\| \leq 1\), by the union bound we arrive at Eq. \((22)\).

\[\square\]

5 Adaptive Estimator

One limitation of Algorithm 1 is that the truncation level \(\theta\) has to be chosen in advance in order to obtain the optimal statistical performance (see Theorem 4.1), and the optimal choice \(\theta_\star\) (see Eq. \((20)\)) depends on \(\kappa\), \(\text{df}_\lambda(\mathbf{S})\) that are usually unknown. To address this, we propose an adaptive estimator (see Algorithm 2) in which Algorithm 1 is combined with a Lepskii-type procedure [Lep91], resulting in a near-optimal guarantee without the knowledge of \(\theta_\star\). Namely, let us be given a range \(0 < \theta_{\min} \leq \theta_{\max}\) known to contain \(\theta_\star\) but possibly very loose, and define the logarithmic grid
\[
\theta_j = 2^j \theta_{\min}, \text{ where } j \in \mathcal{J} := \{j \in \mathbb{Z} : \theta_{\min} \leq \theta_j \leq 2\theta_{\max}\}.
\]
Define also
\[
\varepsilon_j := \frac{24\theta_j \sqrt{q \cdot \log(4qd|\mathcal{J}|/\delta) \cdot \log(4d|\mathcal{J}|/\delta)}}{n}.
\]
Later on we will show (see Thm. 4.1) that \(\varepsilon_j\) is the error bound, with probability at least \(1 - \delta\), for the estimator produced by Algorithm 1 with truncation level \(\theta = \theta_j\). In Algorithm 2, we first compute \(\varepsilon_j\) and the basic estimators \(\hat{\mathbf{S}}_j := \hat{\mathbf{S}}_j[\theta_j]\) for all truncation levels \(\theta_j\), then select
\[
\hat{j} = \min \left\{j \in \mathcal{J} : \forall j' \geq j \text{ s.t. } j' \in \mathcal{J} \text{ it holds } \left\| \mathbf{S}_{\lambda_T}^{-1/2} (\hat{\mathbf{S}}_{j'} - \hat{\mathbf{S}}_j) \mathbf{S}_{\lambda_T}^{-1/2} \right\| \leq 2(\varepsilon_j + \varepsilon_j) \right\},
\]
\[
\text{Algorithm 2}
\]

\begin{algorithm}
\caption{Adaptive estimator}
\begin{algorithmic}
\State \(\theta = \theta_{\min}\)
\For {\(j \in \mathcal{J}\)}
\State Compute \(\varepsilon_j\) and \(\hat{\mathbf{S}}_j[\theta_j]\)
\EndFor
\State Select \(\hat{j}\) as in Eq. (30)
\State \(\hat{\mathbf{S}}_\star := \hat{\mathbf{S}}[\theta]_j\)
\end{algorithmic}
\end{algorithm}

\[\tag{30}\]
Algorithm 2 Robust Calibrated Covariance Estimation with Adaptive Truncation Level

Input: $X_1, \ldots, X_n \in \mathbb{R}^d$, $\delta \in (0, 1]$, regularization level $\lambda \leq \|S\|$, $L \geq \|S\|$, range $[\theta_{\min}, \theta_{\max}]$

1: Form the grid $\mathcal{J} := \{ j \in \mathbb{Z} : \theta_{\min} \leq j \leq 2\theta_{\max}\}$
2: for $j \in \mathcal{J}$ do
3: Compute the output \hat{S}_j of Algorithm 1 with truncation level $\theta_j = 2^j \theta_{\min}$
4: Compute ε_j by (29)
5: end for
6: Select $\hat{\theta} \in \mathcal{J}$ according to (30)

Output: $\hat{S}_{\hat{\theta}}$

and output $\hat{S}_{\hat{\theta}}$ as the final estimator. In Thm. 5.1 below, we show that this estimator admits essentially the same statistical guarantee (in the sense of Eq. (13)) as the “ideal” estimator which uses $\theta = \theta^*$.

Next we present a statistical performance guarantee for Algorithm 2. Its proof, given in Appendix C, hinges upon the observation that the matrix $\hat{S}_{\hat{\theta}, \lambda}$ in the error bound of Eq. (30) can essentially be replaced with its unobservable counterpart S_{λ}; this makes the analyzed errors additive, so that the usual argument for Lepskii’s method could be applied.

Theorem 5.1. Assume (HT), and let Algorithm 2 be run with $\lambda \leq \|S\| \leq L$, $\delta \in (0, 1]$, and a range $[\theta_{\min}, \theta_{\max}]$ containing the optimal truncation level θ^* given by Eq. (20). Moreover, let

$$n \geq 96q \theta_{\max} \log(4qd|\mathcal{J}|/\delta),$$

(31)

where q is defined in Eq. (20), and $|\mathcal{J}| \leq 1 + \log_2(\theta_{\max}/\theta_{\min})$ is the cardinality of the grid defined in Eq. (28). Then the estimator \hat{S}_J produced by Algorithm 2 with probability at least $1 - \delta$ satisfies

$$\left\| S_{\lambda}^{-1/2} (\hat{S}_J - S) S_{\lambda}^{-1/2} \right\| \leq 720 \kappa^2 \sqrt{(1 + \rho) df(S) \log(4d|\mathcal{J}|/\delta) \frac{\log(4q dJ/\delta)}{n}},$$

where $\rho := \frac{\log |\mathcal{J}|}{\log(4qd/\delta)}$.

From the result of Thm. 5.1, we see that the adaptive estimator nearly attains the best possible statistical guarantee that corresponds to the optimal value of the truncation level, up to the iterated logarithm of the ratio $\theta_{\max}/\theta_{\min}$. However, it should be noted that the premise of Thm. 5.1 requires θ_{\max} to be bounded both from above and below (cf. Eq. (20) and Eq. (31)), and the two bounds are compatible only starting from some minimal sample size. Next we state a corollary of Thm. 5.1 that explicitly specifies the required sample size (the requirement is similar to Eq. (23)), and provides a reasonable choice of $[\theta_{\min}, \theta_{\max}]$.

Corollary 5.1. Assume that the sample size satisfies $n \geq 96q$ and

$$n \geq 192^2(1 + \rho_J) \kappa^4 qdf(S) \log(4qdJ/\delta),$$

(32)

where

$$J := 1 + \left\lceil \frac{1}{2} \log_2 \left(\frac{n}{96q} \right) \right\rceil \quad \text{and} \quad \rho_J := \frac{\log J}{\log(4qd/\delta)}.$$

Then the premise of Theorem 5.1 holds for the grid \mathcal{J} with cardinality $|\mathcal{J}| = J$ defined by

$$\theta_{\max} = \frac{n}{96q \log(4qdJ/\delta)}, \quad \theta_{\min} = 2^{1-J} \theta_{\max}.$$
6 Applications

6.1 Relative-Scale Bounds for Eigenvalues

Recall that the bounds obtained in Thms. 4.1 and 5.1 for the estimators produced by Algorithms 1 and 2 read

\[(1 - \varepsilon)\mathbf{S}_\lambda \preceq \hat{\mathbf{S}}_\lambda \preceq (1 + \varepsilon)\mathbf{S}_\lambda \]
\[(34) \]

for certain accuracy \(\varepsilon < 1/2 \) and regularization level \(\lambda \geq 0 \), provided that the sample size is large enough. Using the fact that the positive-semidefinite order preserves the order of eigenvalues, we obtain the corollary of Thm. 4.1 for eigenvalue estimation (a similar corollary can be stated for Thm. 5.1; we omit it).

Corollary 6.1. Assume that \(n \) satisfies Eq. (23), and let \(\hat{\mathbf{S}} \) be given by Algorithm 1 with the optimal choice of the truncation level \(\theta = \theta_* \), cf. Eq. (20). Let also \(\|\mathbf{S}\| = \lambda_1 \geq \ldots \geq \lambda_d = \lambda_{\min} \) be the ordered eigenvalues of \(\mathbf{S} \), and \(\hat{\lambda}_1 \geq \ldots \geq \hat{\lambda}_d \) those of \(\hat{\mathbf{S}} \). Finally, assume that the regularization level in Algorithm 1 satisfies \(\lambda \leq \lambda_k \) for some \(1 \leq k \leq d \). Then, with probability at least \(1 - \delta \) it holds

\[(1 - 2\varepsilon)\lambda_i \leq \hat{\lambda}_i \leq (1 + 2\varepsilon)\lambda_i, \text{ for any } 1 \leq i \leq k, \]
\[(35) \]

with \(\varepsilon \) given by (24). As a consequence, we have a bound for the ratios of eigenvalues:

\[(1 - 2\varepsilon)^2 \cdot \lambda_i/\lambda_k \leq \hat{\lambda}_i/\hat{\lambda}_k \leq (1 - 2\varepsilon)^{-2} \cdot \lambda_i/\lambda_k. \]

The result for the ratio of eigenvalues is useful in connection with noisy principal component analysis. A common way of performing it is the noisy power method [MCJ13, HP14, BDWY16] in which one choses a random \(U^{(0)} \in \mathbb{R}^{d \times k} \), and then iteratively multiplies \(U^{(t)} \) by \(\hat{\mathbf{S}} \) and orthonormalizes the result until convergence; this results in estimating the subspace corresponding to the top \(k \) eigenvalues of \(\mathbf{S} \). This method converges (in terms of the tangent of the angle between the target subspace of \(\hat{\mathbf{S}} \) and its approximation) with the rate controlled by the ratio \(\hat{\lambda}_k/\hat{\lambda}_{k+1} \), see [HP14, Lem. 2.2]. Hence, if we use the estimate \(\hat{\mathbf{S}} \) produced by Algorithm 1 or Algorithm 2, and if \(n \) is sufficient to guarantee that \(\varepsilon < 1/2 \), the convergence rate of the noisy power method to the corresponding subspace of \(\hat{\mathbf{S}} \) will provably be the same, up to a constant factor, as for the exact method that converges to the target subspace of \(\mathbf{S} \).

6.2 Ridge Regression with Heavy-Tailed Data

In random design linear regression [HKZ12a], the goal is to fit the linear model \(\mathbf{Y} = \mathbf{X}^\top \mathbf{w} \) from i.i.d. observations \((\mathbf{X}_i, \mathbf{Y}_i) \in \mathbb{R}^d \times \mathbb{R}, 1 \leq i \leq n \). More precisely, the goal is to find a minimizer \(\mathbf{w}^* \in \mathbb{R}^d \) of the quadratic risk \(L(\theta) := \mathbb{E}(\mathbf{Y} - \mathbf{X}^\top \mathbf{w})^2 \), where the expectation is over the test pair \((\mathbf{X}, \mathbf{Y}) \) independent of the sample and coming from the same distribution. In ordinary ridge regression, one fixes the regularization level \(\lambda \geq 0 \), and estimates \(\mathbf{w}^* \) by the minimizer of the regularized empirical risk \(\hat{L}_\lambda(\mathbf{w}) := \frac{1}{n} \sum_{i=1}^{n} (\mathbf{Y}_i - \mathbf{X}_i^\top \mathbf{w})^2 + \lambda \|\mathbf{w}\|^2 \). The case \(\lambda = 0 \) corresponds to the ordinary least-squares estimator, while \(\lambda > 0 \) allows for some bias.

Here we propose a couterpart of this estimator with a favorable statistical guarantee under fourth-moment assumptions on the design and response. Given the sample \(\mathbf{X}_1, \ldots, \mathbf{X}_n \), we first compute the covariance estimator \(\hat{\mathbf{S}} \) by feeding the hold-out sample \(\mathbf{X}_{n+1}, \ldots, \mathbf{X}_{2n} \) to Algorithm 1

3One can use \(U^{(t)} \in \mathbb{R}^{d \times r}, r \geq k \); the convergence rate is then controlled by the ratio of non-sequential eigenvalues.
with \(\theta = \theta_* \) (one could also use Algorithm 2). Then, using the first half of the sample, we construct the “pseudo-decorrelated” observations \((\hat{Z}_1, ..., \hat{Z}_n) \) with \(\hat{Z}_i = \hat{S}_\lambda^{-1/2} X_i Y_i \), and compute the estimator
\[
\tilde{w}_\lambda = \hat{S}_\lambda^{-1/2} \tilde{Z}, \quad \text{where} \quad \tilde{Z} = \frac{1}{n} \sum_{i=1}^{n} \psi_\theta(\|\hat{Z}_i\|) \hat{Z}_i.
\]
(36)

Here, \(\psi(\cdot) \) is the truncation map given by (9) with the level \(\tilde{\theta} \) to be defined later. For such estimator we obtain the following result (see Appendix D for the proof).

Theorem 6.1. In the above setting, assume that \(X \) satisfies \(\mathbb{E}[X] = 0, \mathbb{E}[X \otimes X] = S \), and assumption (HT), and that \(Y \) has finite second and fourth moments: \(\mathbb{E}[Y^2] \leq v^2, \mathbb{E}[Y^4] \leq \kappa^4 v^4 \). Assume also that \(n \) satisfies Eq. (23) from the premise of Thm. 4.1. Then, the estimator \(\tilde{w}_\lambda \) given by Eq. (36) with \(\tilde{\theta} = \sqrt{n\kappa^2 \kappa^2 \kappa^2} \lambda / \log(1/\delta) \) with probability at least \(1 - \delta \) satisfies
\[
L(\tilde{w}_\lambda) - L(w^*) \leq O(1) \left[(\kappa^4 + \kappa^2 \kappa^2) \frac{v^2 \lambda \log(2d/\delta)}{n} + \lambda^2 \left\| \hat{S}_\lambda^{-1/2} w^* \right\|^2 \right].
\]
(37)

In this result, the bias term is correct (leading to the minimax-optimal rates in the fixed design setting), and the stochastic term has the asymptotically optimal scaling \(O(\lambda \log(1/\delta)/n) \), see, e.g., [CDV07, LRRC18]. However, the obtained bound depends on the second moment \(v^2 \) of the response instead of its variance. Resolving this issue, and obtaining the fully optimal result under weak moment assumptions, is an interesting direction for future work.

7 Conclusion

In this work, we have provided an estimator of the covariance matrix of a heavy-tailed multivariate distribution that admits a high-probability bound of the type
\[
(1 - \varepsilon) S \preceq \hat{S} \preceq (1 + \varepsilon) S.
\]
The novel estimator is computationally efficient, and has applications in principal component analysis, and in ridge regression with heavy-tailed random design. Let us now point out possible directions for future work.

First, one could investigate even weaker moment assumptions than (HT), for example, assuming the existence of the \(2 + \varepsilon \) moment of the one-dimensional marginals of \(X \). We envision no principal obstacles in extending our work in this direction.

Second, it would be interesting to reach full optimality in ridge regression with heavy-tailed design, replacing the second moment \(v^2 \) of the response with its variance \(\sigma^2 \) (see Eq. (37)). By all appearances, we need a somewhat different expansion of the excess risk to achieve this; however, we believe that all tools needed to prove such a result are already in place, and it only remains to combine them in a right way.

Acknowledgments

DO is being supported by the ERCIM Alain Bensoussan Fellowship. AR acknowledges support from the European Research Council (grant SEQUOIA 724063). Both authors thank Anatoli Juditsky for helpful discussion.
A Degrees of Freedom Lemma

Lemma A.1. For any $S \succ 0$ and $\lambda \geq 0$, define $df_{\lambda}(S) := \text{Tr}(SS_{\lambda}^{-1})$. Then, $df_{\lambda/2}(S) \leq 2df_{\lambda}(S)$.

Proof. We have

$$|df_{\lambda/2}(S) - df_{\lambda}(S)| = |\text{Tr} \left[S \left(S_{\lambda}^{-1} - S_{\lambda/2}^{-1} \right) \right]|$$

$$= |\text{Tr} \left[S_{\lambda}^{-1/2}SS_{\lambda}^{-1/2} \left(I - S_{\lambda}^{1/2}S_{\lambda/2}S_{\lambda}^{-1/2} \right) \right]|$$

$$\leq df_{\lambda}(S) \left\| I - S_{\lambda}^{1/2}S_{\lambda/2}S_{\lambda}^{-1/2} \right\| \leq df_{\lambda}(S),$$

where we first used commutativity of the trace, and then the fact (following from the trace Hölder inequality) that $|\text{Tr}(AB)| \leq \|B\|\text{Tr}(A)$ for $A \succ 0$ and B with compatible dimensions. The claim follows. \qed

B Proof of Lemma 4.1

1°. We start by deriving the consequences of (17). First, note that

$$S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2}S_{\lambda}^{1/2} = S_{\lambda}^{1/2} \left[S_{\lambda} - (\hat{S} - \hat{S}) \right]^{-1} S_{\lambda}^{1/2} = \left[I - S_{\lambda}^{-1/2}(\hat{S} - \hat{S})S_{\lambda}^{-1/2} \right]^{-1}.$$

Whence, using (17) and the similarity rules,

$$\frac{2}{3}I \approx S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2}S_{\lambda} \approx 2I. \quad (38)$$

By the properties of the spectral norm, this implies

$$\left\| S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2} \right\|^2 = \left\| \hat{S}_{\lambda}^{-1/2}S_{\lambda}^{-1/2} \right\|^2 \leq 2;$$

$$\left\| S_{\lambda}^{-1/2}\hat{S}_{\lambda} \right\|^2 = \left\| \hat{S}_{\lambda}^{1/2}S_{\lambda}^{-1/2} \right\|^2 \leq \frac{3}{2}. \quad (39)$$

Using that, and proceeding as in the proof of Lemma A.1, we can bound the degrees of freedom surrogate $\text{Tr}(SS_{\lambda}^{-1})$ in terms of the true quantity $df_{\lambda}(S) = \text{Tr}(SS_{\lambda}^{-1})$:

$$\text{Tr}(SS_{\lambda}^{-1}) - df_{\lambda}(S) = \text{Tr} \left[S(S_{\lambda}^{-1} - \hat{S}_{\lambda}^{-1}) \right]$$

$$= \text{Tr} \left[SS_{\lambda}^{-1/2} \left(I - S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2}S_{\lambda}^{-1/2} \right) S_{\lambda}^{-1/2} \right]$$

$$= \text{Tr} \left[S_{\lambda}^{-1/2}SS_{\lambda}^{-1/2} \left(I - S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2}S_{\lambda}^{1/2} \right) \right],$$

where in the third line we used commutativity of the trace. Applying the trace Hölder inequality as in the proof of Lemma A.1, we obtain

$$\left| \text{Tr}(SS_{\lambda}^{-1}) - df_{\lambda}(S) \right| \leq \left\| I - S_{\lambda}^{1/2}\hat{S}_{\lambda}^{-1/2}S_{\lambda} \right\| df_{\lambda}(S) \leq 3df_{\lambda}(S), \quad (40)$$

where we combined the triangle inequality with the right-hand side of (38).

2°. We now invoke the results of [WM17] (in what follows, the expectation is conditional to \hat{S}_{λ}). Note that conditionally on \hat{S}, the random vectors $Z_j = \hat{S}_{\lambda}^{-1/2}X_j$ are i.i.d. with mean zero and covariance $J = \hat{S}_{\lambda}^{-1/2}SS_{\lambda}^{-1/2}$. By (5), and using the linear invariance of (HT),

$$\left\| E \left[\|Z_j\|^2 Z_j \otimes Z_j \right] \right\| \leq \kappa^4\|\hat{J}\|^2\text{Tr}(\hat{J}) = \kappa^4\|\hat{J}\|\text{Tr}(\hat{J}).$$
Using (38) and (40) to bound $\| \hat{J} \|$ and $\text{Tr}(\hat{J})$ correspondingly, this results in

$$
\| E \| Z_j \| Z_j \| Z_j \| Z_j \| \leq 8 \kappa^4 d f(\lambda).
$$

(41)

On the other hand, the estimator $\hat{S}^{(+)}(\lambda)$ defined in (18) satisfies

$$
\hat{S}^{(+)}(\lambda) \hat{S}^{(+)}(\lambda) = \frac{1}{m} \sum_{j=1}^{m} \psi_\theta(Z_j \otimes Z_j),
$$

that is, $\hat{S}^{(+)}(\lambda) \hat{S}^{(+)}(\lambda)$ is precisely the estimator \hat{S}^{WM} of Ψ (cf. (10)) computed from the sample (Z_1, \ldots, Z_m). Hence, combining the result of Theorem 2.2 with (41), we see that whenever

$$
\theta \geq 2 \sqrt{2 \kappa^2} \sqrt{\frac{m d f(\lambda)}{\log(2d/\delta)}},
$$

with conditional probability at least $1 - \delta$ it holds

$$
\| \hat{S}^{(-)}(\lambda) - S \| \hat{S}^{(-)}(\lambda) \| \hat{S}^{(-)}(\lambda) \| \leq \frac{2 \theta \log(2d/\delta)}{m}.
$$

Finally, we arrive at (19) by writing

$$
\| S^{(-)}(\lambda) - S \| S^{(-)}(\lambda) \| S^{(-)}(\lambda) \| \leq \frac{2 \theta \log(2d/\delta)}{m},
$$

noting that $\| S^{(-)}(\lambda) \| = \| S^{(-)}(\lambda) \| = 2$, and using (39) to bound $\| S^{(-)}(\lambda) \|$. □

C Proof of Theorem 5.1 and Corollary 5.1

Let us call the truncation level $\theta_j = \theta_{\min} 2^j$, with $j \in J$, admissible if it satisfies the condition in (30), so that θ_j is the smallest such level. Let $j^* \in J$ be the minimal $j \in J$ such that $\theta_{j^*} \geq \theta_*$ for θ_* defined in Eq. (20); note that this is always possible by the definition (28), and we have

$$
\theta_{j^*} \leq 2 \theta_*.
$$

(42)

1°. Let us prove that θ_{j^*} is admissible with probability at least $1 - \delta$. Indeed, due to (31), the premise (21) of Theorem 4.1 holds for any $\theta = \theta_j$ with $j \in J$ (recall that $\theta_j \leq 2 \theta_{\max}$). On the other hand, the premise (20) of Theorem 4.1 holds whenever $\theta_j \geq \theta_*$. Hence the bound (22) of Theorem 4.1 holds for all $\theta = \theta_j$ with $j \geq j^*$, and by the union bound we get that with probability at least $1 - \delta$,

$$
\| S^{(-)}(\lambda) - S \| S^{(-)}(\lambda) \| S^{(-)}(\lambda) \| \leq \varepsilon_j = \frac{24 \theta_j \sqrt{q \log(4d|J|/\delta) \log(4d|J|/\delta)}}{n}, \quad \forall j \geq j^*, \quad j \in J.
$$

(43)

Moreover, from (31) we also obtain

$$
\varepsilon_j \leq \frac{1}{2} \sqrt{\frac{\log(4d|J|/\delta)}{q \log(4d|J|/\delta)}} \leq \frac{1}{2}, \quad j \in J.
$$

Whence for any $j \in J$ such that $j \geq j^*$ we have, under the event (43), and denoting $\hat{S}_{j,\lambda} = \hat{S}_j + \lambda I$,

$$
\| \hat{S}_{j,\lambda}^{(-)}(\lambda) - \hat{S}_{j,\lambda} \| \hat{S}_{j,\lambda}^{(-)}(\lambda) \| \hat{S}_{j,\lambda}^{(-)}(\lambda) \| \leq \| \hat{S}_{j,\lambda}^{(-)}(\lambda) \| \hat{S}_{j,\lambda}^{(-)}(\lambda) \| \hat{S}_{j,\lambda}^{(-)}(\lambda) \| \leq \frac{2 \varepsilon_j + \varepsilon_j}{2}.
$$

15
where we used (43) to bound the terms in the parentheses, and also used (cf. (39) in Appendix B):

\[\| \mathbf{S}_{j,\lambda}^{-1/2} \mathbf{S}_{\lambda}^{-1/2} \|^2 \leq \frac{1}{1 - \varepsilon_j} \leq 2, \quad \forall j \geq j_* . \]

Thus, \(j_* \) is indeed admissible with probability \(\geq 1 - \delta \).

\(2^o \). Whenever \(j_* \) is admissible, we have \(\hat{\varepsilon} \leq j_* \), whence \(\varepsilon_j \leq \varepsilon_j \) using that \(\varepsilon_j \) increases in \(j \). Thus, with probability at least \(- \delta \) it holds

\[
\begin{align*}
\| \mathbf{S}_{\lambda}^{-1/2} (\hat{\mathbf{S}}_j - \mathbf{S}) \mathbf{S}_{\lambda}^{-1/2} \| & \leq \| \mathbf{S}_{\lambda}^{-1/2} \mathbf{S}_{j_*}^{-1/2} \|^2 \cdot \| \mathbf{S}_{j_*}^{-1/2} (\hat{\mathbf{S}}_j - \mathbf{S}) \mathbf{S}_{j_*}^{-1/2} \| \\
& \leq \| \mathbf{S}_{\lambda}^{-1/2} \mathbf{S}_{j_*}^{-1/2} \|^2 \cdot \left(\| \mathbf{S}_{\lambda}^{-1/2} (\mathbf{S}_{j_*} - \hat{\mathbf{S}}_j) \mathbf{S}_{\lambda}^{-1/2} \| + \| \mathbf{S}_{\lambda}^{-1/2} (\hat{\mathbf{S}}_j - \mathbf{S}) \mathbf{S}_{j_*}^{-1/2} \| \right) \\
& \leq \frac{3}{2} (2(\varepsilon_j + \varepsilon_j) + \varepsilon_j) \leq \frac{15}{2} \varepsilon_j ,
\end{align*}
\]

where in order to obtain the last line we used (cf. (39) in Appendix B) that

\[\| \mathbf{S}_{\lambda}^{-1/2} \mathbf{S}_{j_*}^{-1/2} \|^2 \leq 1 + \varepsilon_j \leq 3/2 . \]

Finally, combining this with the expression for \(\theta_* \) in (20), and using (42)-(44), we arrive at the claimed bound.

\[\square \]

Proof of Corollary 5.1 First, \(\theta_{\max} \) defined in Eq. (33) satisfies Eq. (31) by construction; moreover, Eq. (31) is satisfied as an equality. On the other hand, by simple algebra Eq. (32) guarantees that \(\theta_{\max} \geq \theta_* \) for \(\theta_* \) defined in Eq. (20). Finally, verifying that \(\theta_{\min} \leq \theta_* \) is trivial using that \(\kappa \geq 1 \) and \(d \mathbf{f}_\lambda (\mathbf{S}) \geq 1 \).

\[\square \]

D Proof of Theorem 6.1

\(1^o \). First of all, note that \(n \) satisfying (23) suffices to guarantee that

\[
\| \mathbf{S}_{\lambda}^{-1/2} (\hat{\mathbf{S}} - \mathbf{S}) \mathbf{S}_{\lambda}^{-1/2} \| \leq 48 \kappa^2 \sqrt{\frac{d \mathbf{f}_\lambda (\mathbf{S}) \log(2d/\delta)}{n}} \leq \frac{1}{2} \tag{45}
\]

holds with probability at least \(1-\delta/2 \), cf. (24). Note also that \(\hat{\mathbf{S}}_{\lambda} \) is independent from \((X_1, ..., X_n) \), hence the vectors \(\hat{\mathbf{Z}}_i = \hat{\mathbf{S}}_{\lambda}^{-1/2} X_i Y_i, 1 \leq i \leq n \), are independent when conditioned on \((X_{n+1}, ..., X_{2n}) \). Finally, the conditional to the hold-out sample \(X_{n+1}, ..., X_{2n} \) expectation of \(\hat{\mathbf{Z}}_i \) is

\[
\hat{\mathbb{E}}[\hat{\mathbf{Z}}_i] = \hat{\mathbf{S}}_{\lambda}^{-1/2} \mathbf{w}_*, \tag{46}
\]

where we used that the residual \(\xi = Y - X^\top w_* \) satisfies \(\mathbb{E}[\xi X] = 0 \), which follows from the fact that \(\theta_* \) minimizes \(L(\theta) \).

\(2^o \). We now decompose the excess risk of \(\hat{w}_\lambda \) as follows:

\[
\sqrt{L(\hat{w}_\lambda)} - L(w^*) \leq \left\| \mathbf{S}_{\lambda}^{1/2} (\hat{w}_\lambda - w^*) \right\| + \left\| \mathbf{S}_{\lambda}^{1/2} (\hat{w}_\lambda - w_{\lambda}) \right\| + \left\| \mathbf{S}_{\lambda}^{1/2} (w_{\lambda} - w^*) \right\|, \tag{47}
\]

where \(w_{\lambda} \) is the minimizer of \(L(\theta) \) given by

\[
w_{\lambda} = \mathbf{S}_{\lambda}^{-1} \mathbf{S} w^*, \tag{48}
\]

\[16 \]
and \(\hat{w}_\lambda := \hat{E}[S_\lambda^{-1/2} \hat{Z}_1] \) can be computed using (46):

\[
\hat{w}_\lambda = \hat{S}_\lambda^{-1} S w^*.
\] (49)

The easiest to control in (47) is the term \(E_3 \) corresponding to the squared bias in the fixed-design setting:

\[
||S^{1/2}(w_\lambda - w^*)|| \leq ||S^{1/2}(w_\lambda - w^*)|| = \lambda ||S^{1/2}w^*||,
\] (50)

resulting in the second term in the brackets in (37).

3o. On the other hand, using (48)–(49) we have

\[
E_2 \leq \left|\left| S^{1/2}(S^{-1}_\lambda - \hat{S}_\lambda^{-1}) S w_s \right|\right|
= \left|\left| S^{-1/2}_\lambda \hat{S}_\lambda^{-1}(S - \hat{S}) S^{-1/2}_\lambda S w_s \right|\right|
\leq \left|\left| S^{-1/2}_\lambda \hat{S}_\lambda^{-1/2} \right|\right| \cdot \left|\left| S^{-1/2}_\lambda S^{1/2}_\lambda \right|\right| \cdot \left|\left| S^{1/2}_\lambda (S - \hat{S}) S^{-1/2}_\lambda \right|\right| \cdot \left|\left| S^{-1/2}_\lambda S^{1/2}_\lambda \right|\right| \cdot \left|\left| S^{1/2}w_s \right|\right|,
\] (51)

where the last inequality can be verified by removing the norms. Under the event (45), we can bound the first two terms by constants (see the proof of Lemma B in Appendix B), and the second term by

\[
O(1) \kappa^2 \sqrt{\frac{df_\lambda(S) \log(2d/\delta)}{n}},
\]

cf. (45). The third term is at most one. Finally, we have \(||S^{1/2}w^*||^2 = E[(X^T w^*)^2] \leq E[Y^2] = v^2 \). Collecting the above, under the event (45) we have

\[
E_2 \leq O(1) \kappa^2 \sqrt{\frac{v^2 df_\lambda(S) \log(2d/\delta)}{n}}.
\]

4o. Finally, let us estimate the term \(E_1 \) which corresponds to the additive noise, and delivers the first term in the brackets in (37). Note that we can bound

\[
E_1 = ||S^{1/2}(\tilde{w}_\lambda - \hat{w}_\lambda)||
\leq ||S^{1/2}(\tilde{w}_\lambda - \hat{w}_\lambda)||
\leq ||S^{1/2} \hat{S}_\lambda^{-1/2}|| \cdot ||S^{1/2}_\lambda (\tilde{w}_\lambda - \hat{w}_\lambda)||
= ||S^{1/2} \hat{S}_\lambda^{-1/2}|| \cdot ||\hat{Z} - \hat{E}[\hat{Z}]||,
\]

where \(\hat{Z} = \hat{S}_\lambda^{-1/2} XY \), cf. (36) and (46). Recall that under the event (45), the first term in the product is bounded by a constant, and it remains to control the deviations of the estimator \(\hat{Z} \) of \(Z \) from the (conditional) average \(\hat{E}[\hat{Z}] \). To this end, consider the following construction due to [Min18, Sec. 3.3]. For the general matrix \(A \in \mathbb{R}^{d_1 \times d_2} \), define its Hermitian dilation

\[
\mathcal{H}(A) = \begin{pmatrix} 0_{d_1 \times d_1} & A \\ A^T & 0_{d_2 \times d_2} \end{pmatrix},
\] (52)

and for any \(\varphi : \mathbb{R} \rightarrow \mathbb{R} \), define the map on the space of \((d_1 + d_2) \times (d_1 \times d_2) \) Hermitian matrices:

\[
\varphi(A) := Q \varphi(A) Q^T = Q \text{diag}(\varphi(\lambda_1) \cdots \varphi(\lambda_d)) Q^T,
\]

where \(QAQ^T \) is the eigendecomposition of \(A \). In this notation, consider the following estimator of \(\mathbb{E}[A] \in \mathbb{R}^{d_1 \times d_2} \) from i.i.d. copies \(A_1, \ldots, A_n \) of \(A \): compute the \((d_1 + d_2) \times (d_1 + d_2) \) Hermitian matrix

\[
\hat{T} = \frac{1}{n} \sum_{i=1}^{n} \psi_{\theta}(\mathcal{H}(A_i)),
\] (53)

17
where \(\psi_\theta(\cdot) \) is the matrix map corresponding to (9) with truncation level \(\theta \), and then output the top right block of \(\hat{T} \) (i.e., the one corresponding to \(A \) in \(\mathcal{H}(A) \)) as the final estimate. As proved in [Min18, Cor. 3.1], the resulting estimate satisfies

\[
\| \hat{A} - E[A] \| \leq O(1) \frac{\theta \log(1/\delta)}{n}
\]

with probability at least \(1 - \delta \), provided that \(\delta \leq 1/2 \), and

\[
\bar{\theta} = \sqrt{\frac{n \bar{w}}{\log(1/\delta)}} \quad \text{for some} \quad \bar{w} \geq \text{Tr}[E[A \otimes A]].
\]

On the other hand, one can verify that this construction corresponds to \(\hat{Z} \) when estimating \(E[\hat{Z}] \), from \(\hat{Z}_1, \ldots, \hat{Z}_n \) with the same \(\bar{\theta} \). Thus, with (conditional) probability \(\geq 1 - \delta/2 \) it holds

\[
\| \hat{Z} - \hat{E}[\hat{Z}] \| \leq O(1) \frac{\bar{\theta} \log(2/\delta)}{n}
\]

whenever \(\bar{\theta} \) is taken to be

\[
\bar{\theta} = \sqrt{\frac{n \bar{w}}{\log(1/\delta)}} \quad \text{for some} \quad \bar{w} \geq \text{Tr}[\hat{E}[\hat{Z} \otimes \hat{Z}]],
\]

which then results in the bound

\[
\| \hat{Z} - \hat{E}[\hat{Z}] \| \leq O(1) \sqrt{\frac{\bar{w} \log(2/\delta)}{n}}.
\]

It remains to bound \(\bar{w} = \text{Tr}[\hat{E}[\hat{Z} \otimes \hat{Z}]] \). Using the trace Hölder inequality, we have

\[
\text{Tr} \left[\hat{E}[\hat{Z} \otimes \hat{Z}] \right] = \text{Tr} \left[\hat{S}_\lambda^{-1}E[Y^2XX^\top] \right]
\]

\[
\leq \left\| S_\lambda^{1/2}\hat{S}_\lambda^{-1/2} \right\| \cdot \text{Tr} \left[S_\lambda^{-1}E[Y^2XX^\top] \right],
\]

\[
= \left\| S_\lambda^{1/2}\hat{S}_\lambda^{-1/2} \right\| \cdot E \left[\left\| YS_\lambda^{-1/2}X \right\|^2 \right]
\]

where the first term on the right is at most a constant under (45). Finally, under the fourth-moment assumptions in the premise of the theorem, we can bound the last term coordinatewise, using that each coordinate of \(S_\lambda^{-1/2}X \) is simply the projection of \(S_\lambda^{1/2}X \) onto the corresponding coordinate vector, and proceeding via Cauchy-Schwarz:

\[
E \left[\left\| YS_\lambda^{-1/2}X \right\|^2 \right] \leq \kappa^2 \sigma^2 E \left[\left\| S_\lambda^{-1/2}X \right\|^2 \right] = \kappa^2 \sigma^2 \text{df}_\lambda(S).
\]

Combining the previous steps, we obtain the claimed result. \(\Box \)

E Proof of Eq. (7)

Given \(X \in \mathbb{R}^d \) satisfying \(E[X] = 0 \), \(E[X \otimes X] = S \), and the subgaussian moment growth condition

\[
E^{1/p}[\langle X, u \rangle^p] \leq \kappa \sqrt{p} \cdot E^{1/2}[\langle X, u \rangle^2], \quad \forall u \in \mathbb{R}^d, \ p \geq 2,
\]

our goal is to prove the bound

\[
M_n := E^{1/2} \left[\max_{1 \leq i \leq n} \| X_i \otimes X_i - S \|^2 \right] \leq O(1)\kappa^2 \text{Tr}(S) \log(n + 1),
\]

where \(X_1, \ldots, X_n \) are i.i.d. copies of \(X \). We will use the following well-known result:
Theorem E.1. Let $X \in \mathbb{R}^d$ be centered, satisfy (54), and let $E[X \otimes X] = S$. Then with probability at least $1 - \delta$ it holds
\[
\|X\|^2 \leq O(1)\kappa^2 \left(\text{Tr}(S) + \|S\|_F \sqrt{\log(1/\delta)} + \|S\| \log(1/\delta) \right).
\]
where $\|S\|_F$ and $\|S\|$ are the Frobenius and spectral norms of S; note that both are upper-bounded by $\text{Tr}(S)$.

This result is obtained from [HKZ12b, Theorem 1] by setting $\mu = 0$ and using that the moment growth assumption (54) is equivalent, when $E[X] = 0$, to the moment generating function assumption:
\[
E[\exp\{X, u\}] \leq \exp(\sigma\|u\|^2), \quad \forall u \in \mathbb{R}^d,
\]
in the sense that both hold simultaneously hold with κ and σ related through a constant factor (see [Ver12, Section 5.2.3]). Moreover, we note in passing that the result can be improved: the factor $\kappa \geq 1$ ahead of $\text{Tr}(S)$ can be improved to 1 (note that $\text{Tr}(S) = E[\|X\|^2]$); we do not give a proof of the improved result since Theorem E.1 suffices for our purposes.

Returning to our task, note that we can bound $\mu^2(X) := \|X \otimes X - S\|^2$ by the triangle inequality:
\[
\mu^2(X) \leq 2\|X \otimes X\|^2 + 2\|S\|^2 \leq 2\|X\|^4 + 2\|S\|^2.
\]
Hence, M_n satisfies
\[
M_n \leq E^{1/2} \left[\max_{1 \leq i \leq n} \mu^2(X_i) \right] \leq \sqrt{2}\|S\| + \sqrt{2}E^{1/2} \left[\max_{1 \leq i \leq n} \|X_i\|^4 \right]. \tag{56}
\]

Squaring the bound of Theorem E.1, and taking the union bound, we obtain that w.p. $\geq 1 - \delta$,
\[
\max_{1 \leq i \leq n} \|X_i\|^4 \leq O(1)\kappa^4 \text{Tr}(S)^2 (1 + \sqrt{\log(n/\delta)})^4 \leq O(1)\kappa^4 \text{Tr}(S)^2 \log^2((n + 1)/\delta),
\]
where in the end we used that $\log((n + 1)/\delta) \geq O(1)$ for all $\delta \in (0, 1]$. Applying the triangle inequality again, we arrive at
\[
\max_{1 \leq i \leq n} \|X_i\|^4 \leq O(1)\kappa^4 \text{Tr}(S)^2 \left[\log^2(n + 1) + \log^2(1/\delta) \right],
\]
whence, noting that the left-hand side is a non-negative random variable,
\[
E \left[\max_{1 \leq i \leq n} \|X_i\|^4 \right] \leq O(1)\kappa^4 \text{Tr}(S)^2 \left(\log^2(n + 1) + \int_0^{+\infty} e^{-\delta^2t}dt \right) \leq O(1)\kappa^4 \text{Tr}(S)^2 \log^2(n + 1).
\]
Plugging this into (56), and estimating $\|S\| \leq \kappa^2 \text{Tr}(S)$ (recall that $\kappa \geq 1$), we arrive at (55).

\[\square\]

References

