Skip to Main content Skip to Navigation
Journal articles

Kinetics of oxidation of levulinic biofuels in a jet-stirred reactor: Methyl levulinate

Abstract : The first kinetic study of the oxidation of methyl levulinate is reported. Fuel-lean, stoichiometric and fuel-rich mixtures were oxidized at constant mean residence time (70 ms) and fuel concentration (1000 ppm), and variable temperature (740–1250 K) in a jet-stirred reactor at atmospheric pressure. A detailed kinetic reaction mechanism was proposed based on previous kinetic models for other oxygenated fuels and theoretical calculations. The model was tested successfully against new speciation data consisting of 16 species concentration profiles vs. temperature obtained by gas chromatography (detection by mass spectrometry, flame ionization, thermal conductivity) and Fourier transform infrared spectrometry after sonic probe sampling. Some discrepancies between modeling and experiments were observed for minor species. Reaction pathways and sensitivity analyses were used to interpret the results. This study indicates that for the fuel, under the present conditions, molecular elimination is an important reaction pathway competing with H-atom abstraction by radicals (mainly OH).
Document type :
Journal articles
Complete list of metadata
Contributor : Christian Chauveau Connect in order to contact the contributor
Submitted on : Thursday, February 7, 2019 - 6:40:30 PM
Last modification on : Tuesday, October 12, 2021 - 5:20:46 PM




Sébastien Thion, Casimir Togbe, Philippe Dagaut, Guillaume Dayma, Zeynep Serinyel. Kinetics of oxidation of levulinic biofuels in a jet-stirred reactor: Methyl levulinate. Proceedings of the Combustion Institute, Elsevier, 2019, 37 (1), pp.381-388. ⟨10.1016/j.proci.2018.05.137⟩. ⟨hal-02011294⟩



Record views