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Abstract. The purpose of this talk is to present a multi-scale Vortex-in-Cell method, for direct
numerical simulation of three dimensional fluid flows. Vortex methods are Lagrangian. They
are among the most challenging particle method, and have been dramatically improved during
the last decade. This talk will present the main ideas of these methods, implemented in the open
source package COMMA, funded by ANR and based on high performance packages FISHPACK

and AGRIF.

Among numerical methods aiming at solving the equations of fluid dynamics, the particle
methods are renowned for their ability to compute accurately transport and convective effects.
Most of the current challenges focus on the Navier-Stokes equations and their generalizations :
multi-fluids, reactive flows, combustion, complex boundary conditions. In this short communi-
cation, one focuses on the basic three-dimensional Navier-Stokes equations, for an incompress-
ible fluid, given by

∂u

∂t
+ u · ∇u− ν∆u =

f

ρ
− ∇p

ρ
(1)

where u is the divergence-free velocity field satisfying the no-slip condition u = 0 on Γ, p the
pressure, ρ the density, ν the kinematic viscosity, and f the external force.

For an incompressible fluid of constant density and viscosity, taking the curl of equation (1)
and introducing the vorticity as ω = curlu, leads to

∂ω

∂t
+ u · ∇ω − ω · ∇u− ν∆ω = 0 (2)

with kinematic no-slip boundary conditions u = 0, for external forces deriving from a potential
(ie is the gradient of a scalar function).
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Figure 1: Three level multi-scale computing of a 3D column vortex.

The particle discretization consists in the approximation of vorticity by a set of Dirac func-
tions :

ωh(t) =
∑

p

ωp(t)vp(t)δxp(t) (3)

The set (ωp,xp, vp), called particle, denotes local vorticity, location and volume. Moreover,
such a particle description of vorticity is called Vortex-in-Cell method.

In practice, modern Vortex-in-Cell methods use time-splitting algorithm of the Navier-Stokes
equations : On the one hand, a linear diffusion equation with full no-slip boundary condition
(described and analysed in [3]). On the other hand, one considers the convective part of equa-
tion (2), whose particle discretization leads to the following ODE system:

dωp

dt
= [ω · ∇u]xp(t),

dxp

dt
= [u]xp(t) (4)

where ωp must satisfy ωp = curlu(xp). The velocity field u has been historically performed by
means of integral methods using multipole expansion, but it has been shown in the last decade
that hybrid grid-particle techniques are more efficient.

Among the main interests of the method, one can notice that transport u · ∇ω vanished in
the Lagrangian formulation, thus making the associated CFL vanish as well, leading to robust
schemes, that is to say stable for large time step, especially interesting for slightly viscous flows.
This has been successfully used for large time scale simulation and flow control [5, 2].

Furthermore, accuracy is strongly dependent of a particle lattice homogeneity and accurate
computation of wall effects. It follows that if particles are remeshed frequently, all Lagrangian
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Figure 2: Challenge on multi-scale simulation: real three-dimensional lung geometry.

methods, such as Particle-in-Cell (PIC) or Smoothed-Particle-Hydrodynamics (SPH) give ac-
curate results [4].

In order to have the set of ODEs (4) well defined, one has to be able to compute a velocity
field u from a vorticity field ω. The particles of vorticity are interpolated to a grid ω̃, and one
considers the vorticity-to-velocity operator A defined on a grid (that is to say u = Aω̃).

dωp

dt
= [ω̃ · Aω̃]xp(t),

dxp

dt
= [Aω̃]xp(t) (5)

where the brackets means an interpolation back to particles, by means of a sufficiently high
order kernel [6].

The vorticity-to-velocity operator A is defined on a grid by means of the stream function
−∆ψ = ω and u = curlψ. Operator A is asked to satisfy the no-flow-through condition
u · n = 0, and boundary conditions compatible with divergence free hypothesis.

The multi-scale computation is natural since it has to be introduced only in the Poisson equa-
tion −∆ψ = ω. The adaptivity is based on ∇ω and implemented using the AGRIF package.
Each level of the grid tree is a Poisson equation in a cube, using the efficient FISHPACK pack-
age, whose boundary condition is a non-homogeneous Dirichlet condition inherited from the
coarse grid containing it. The ANR project COMMA has been aiming at providing an open
source software implementing this multi-scale method.

The overall algorithm computational cost scales linearly with the number of particles [1].
This has been put in practice for moderate Reynolds numbers (fig. 1), and a special challenge
for computation of air circulation in lungs (fig. 2), in collaboration with INRIA-REO team.

In order to be able to consider complex geometries, it is helpful to write the velocity as
u = Aω = curlψ −∇φ where the potential velocity φ is solution −∆φ = T , and where T is
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Figure 3: Immersed boundary and immersion spectrum (bottom right) : there is no discrepency in conditioning,
even for complex geometries, such as geophysical context.

a generalized function hold by a surface (the domain boundary) : this is an immersed boundary
method. The application taking the distribution of the singular source T and giving the flow-
through n · ∇φ on the fluid side is well conditioned and leads to very efficient algorithms, even
for geometries as complex as geophysical context (fig. 3).
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