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Abstract

Knowing the heterogeneity of applications and services that need to to be supported in the internet

of things (IoT), network slicing came out as a potential solution that virtually isolates 5G networks

with various service requirements over a common physical network infrastructure. The latter needs

to simultaneously support and isolate traffic issued from mobile and machine services which may

require different needs in terms of reliability, latency, and bandwidth. In this paper, network slicing

is investigated in LoRa networks over fixed and dynamic slicing strategies. The performance of LoRa

slices is evaluated with different spreading factor (SF) configurations. Then, a dynamic inter-slicing

algorithm is proposed based on a maximum likelihood estimation that avoids resource starvation and

prioritizes a slice over another depending on its QoS requirements. Moreover, a novel intra-slicing

strategy is proposed that maximizes resource allocation efficiency of LoRa slices with regard to their

delay requirements. An energy module for LoRa in NS3 is also implemented to evaluate the energy

consumption of devices in each slice. Simulation results performed in realistic LoRa scenarios highlight

the utility of our proposition in improving QoS requirements of IoT devices and providing isolation

between slices.

Keywords: Internet of Things (IoT), wireless networks, LoRa, network slicing, resource allocation,

quality of service (QoS)

1. Introduction

With the development of the fifth generation (5G) wireless networks, it is expected that by 2020,

an all-connected world of humans and machines will be reached offering with it the needed flexibility to

manage networks with various service requirements using major arising technologies namely network

functions virtualization (NFV) and software defined networking (SDN). With the development of the5

latter, network slicing is proposed as one of the most important technologies to reach this goal by

using a collection of logical functions. Our objective is to provide isolation between multiple virtual

networks with various QoS requirements to be created on top of a common physical device, being

mutually instantiated on-demand and independently managed.

Low-power wide-area (LPWA) research efforts direct towards LoRa technology and is considered10

as one of the best emerging technologies for the internet of things (IoT). With network slicing, radio
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resources need to be virtually reserved in an isolated and efficient manner to provide specific service

requirements for each slice. Three generic services are provisioned in 5G with conflicting quality of

service (QoS) requirements (i.e., ultra-reliable low-latency communications (URLLC), enhanced mo-

bile broadband (eMBB), and massive machine-type communications (mMTC)). Service requirements15

in mMTC category may vary between two applications running on a single IoT device and require

heterogeneous behavior mainly when it comes for example to latency and reliability. The massive

number of IoT devices continuously increasing and connecting alongside mobile devices to the new

generation core network (NGCN) in 5G, brings an exceptional need for network slicing and virtualiza-

tion to improve network flexibility. This leads to new challenges in designing resource allocation and20

slicing strategies which must guarantee slicing isolation and simultaneously provide the opportunity

for infrastructure providers to easily meet the required QoS for IoT devices in a cost-effective manner.

1.1. Related Works

Performance evaluation over LoRa networks has been intensively reviewed by many research studies

in the literature [1] [2] [3]. Other research studies focused on evaluating LoRa scalability [4] while25

considering co-SF interference that comes from collisions when using the same SF configuration on

the same channel [5] whereas others assumed that SFs on a channel are perfectly orthogonal [6] [7].

SF represents the ratio between the chirp rate and the data symbol rate and affects directly the data

rate and the range that a LoRa device can reach away from a LoRaWAN gateway. Moreover, co-SF

directly impact communication reliability, reduces the packet delivery ratio (PDR) successfully decoded30

at the gateway [8] and limits the scalability of a LoRa network when increasing the number of devices

[9]. Therefore, the latter should be considered in any upcoming study related to SF configuration

strategies and network deployments. Some study examples focused on finding the optimal transmitter

parameter settings that satisfy performance requirements using a developed link probing regime [10].

In [11], the authors analyze several SF configuration strategies where a group of LoRa devices can be35

configured with similar or heterogeneous SFs based on their position from the gateway. The goal is to

find the scheme that gives the best performance in terms of PDR. However, the impact of the latter

configuration on network slicing has not been previously tested.

Few research works recently tackled network slicing in IoT and focused on machine critical com-

munications over various wireless networks. The work in [12] introduced a slicing infrastructure for40

5G mobile networking and summarized research efforts to enable end-to-end network slicing between

5G use cases. Furthermore, authors in [13] and [14] adopted network slicing in LTE mobile wireless

networks. The former proposed a dynamic resource reservation for machine-to-machine (M2M) com-

munications whereas the latter present a slice optimizer component with a common objective in both

papers to improve QoS in terms of delay and link reliability. In a 5G wearable network, the authors45

took advantage of slicing technology to enhance the network resource sharing and energy-efficient

utilization [15]. Moreover in [16], the authors perform slicing in virtual wireless sensor networks to

improve lease management of physical resources with multiple concurrent application providers. In

[17], authors focused on URLLC and proposed several slicing methods for URLLC scenarios which re-

quire strong latency and reliability guarantees. Nowadays, guaranteeing service requirements in LoRa50

wireless access network (LoRaWAN) with traffic slicing remain as open research issues [18]. Therefore,
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unlike the previous work, in this article network slicing is investigated in LoRa technology which, to

the best of our knowledge, has not been treated before by the research community.

1.2. Contributions and outlines

Our main contribution with respect to the surveyed literature are stated as follows:55

1. Network slicing is investigated over different SF configurations in order to evaluate system per-

formance and find the one that serves best LoRa devices in each slice.

2. A dynamic inter-slicing algorithm is proposed where the bandwidth will be similarly reserved

on all LoRa gateways based on a maximum likelihood estimation (MLE) and then the latter is

improved and extended with an adaptive dynamic method that considers each LoRa gateway60

separately and reserves its bandwidth after applying MLE on the devices in its range. Both

dynamic slicing propositions will be compared to a straightforward fixed slicing strategy in which

the GW’s bandwidth is equally reserved between slices.

3. An energy model for LoRaWAN is integrated in NS3 based on LoRa energy specifications to

analyze the energy consumed in each slice and an intra-slicing algorithm is proposed that meets65

the QoS requirements of each slice in an isolated manner.

The remainder of this paper is organized as follows. Section II presents an overview of LoRa and

describes the system model and the network slicing problem established in this paper. In Section III,

the slicing algorithm is proposed and implemented over the LoRa module of NS3 simulator [19]. The

performance evaluation of the algorithm and simulation results are analyzed and carried out through70

various scenarios in Section V. Finally, Section VI concludes the paper.

2. Problem Description

2.1. LoRa Overview

LoRa is a shortcut name for Long Range and a spread spectrum modulation technique that

derives from chirp spread-spectrum (CSS) modulation as described in the IEEE standard 802.15.475

[20]. CSS modulation transmits symbols by encoding them into multiple signals of increasing or

decreasing radio frequencies making signals more robust to multi-path interference, Doppler shifts

and fading [21]. Currently, LoRa physical layer is used with LoRaWAN MAC layer despite being

capable of communicating with any other MAC layer. LoRaWAN supports low-power and long-range

communications where IoT devices transmit directly to LoRa gateways in a star topology before80

forwarding data to a backbone infrastructure. Each device k adopts a specific SF configuration for

information transmission. LoRa spreads each symbol in a rate of 2SF chips per symbol with SF =

{7, ..., 12} resulting a data rate computed as written in Eq. 1 below:

Rk,l,m = SF.
Rc
2SF

= SF.
bl,m
2SF

bits/s (1)

where Rc denotes the chip rate and Rk,l,m the data rate achieved by a device k depending on the

bandwidth assigned to slice l of LoRa gateway m. Channel bandwidth varies from a region to another85

from 7.8 kHz to 500 kHz. Increasing the bandwidth improves the data rate of LoRa device on the
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Spreading Factor Sensitivity (dBm)
SF7 -130.0
SF8 -132.5
SF9 -135.0
SF10 -137.5
SF11 -140.0
SF12 -142.5

Table 1: List of parameters

expanse of sensitivity. In this paper, 125 kHz bandwidth is adopted for each channel following to the

European frequency regulations.

Moreover, as shown in Table 1, increasing the spreading factor reduces the transmitted data rate,

increases the strength of the signal and offers a better sensitivity at the gateway receiver following to90

the Eq. 2 below:

P rxk,l,m =
P txk,l,mg

rx
k,l,mg

tx
k,l,m

L
eξ (2)

where P rxk,l,m and P txk,l,m denotes the received and transmitted power with a channel antenna gain

expressed with grxk,l,m and gtxk,l,m respectively. L is the path loss which depends on the distance between

the transmitter and the receiver and eξ is the lognormal shadowing component with ξ ∼ N(0, σ2).

Regarding interference, signal-to-interference-plus-noise ratio (SINR) varies based on the adopted SF95

on each device. The assumptions in [19] are followed where a packet should survive interference that

comes from other LoRa transmissions. Each LoRa device experiences a SINR value computed based

on the Eq. 3 below:

SINRi,j =
P rxi

σ2 +
∑
n∈∂j P

rx
n

(3)

where P rxi is the power of the packet n under consideration sent by device with SF = i and ∂j a

set of interfering packets with a common SF = j. Each element in the below matrix [22] denotes the

minimum signal power margin threshold Vi,j , with i, j ∈ {7, ..., 12}, that a packet sent with SF = i

must have in order to be decoded successfully over every interfering packet with SF = j. Hence,

packet survives interference with all interfering packets if, considering all combinations of SF, a higher

power margin value (dB) is satisfied than the corresponding co-channel rejection value.∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

SF7 SF8 SF9 SF10 SF11 SF12

SF7 −6 16 18 19 19 20

SF8 24 −6 20 22 22 22

SF9 27 27 −6 23 25 25

SF10 30 30 30 −6 26 28

SF11 33 33 33 33 −6 29

SF12 36 36 36 36 36 −6

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
In this paper, log-distance propagation loss model is adopted to evaluate the performance of LoRa
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devices in a dense environment and is expressed following to the Eq. 4 below:100

L = L0 + 10.n.log10(
d

d0
) (4)

where L denotes the path Loss (dB), d the length of the path (m), n represents the path loss distance

exponent, d0 the reference distance (m) and L0 the path loss at reference distance (dB).

2.2. System Model

Network slicing in a LoRa-like network is considered in this work, consisting of a set of K =

{1, 2, ..., k} LoRa devices and M = {1, 2, ...,m} LoRa Gateways (GWs) plotted over a cell and con-105

nected to external LoRa Servers via fronthaul links. Compared to Sigfox [23], NB-IoT [24] and other

IoT technologies, LoRa is more resilient to interference and jamming [25] thanks to its ability to effi-

ciently trade communication range with high data-rate. Network slicing mainly brings flexibility to the

network by virtually reserving physical resources in order to meet the QoS requirements of each slice.

In IoT, each device requires specific QoS requirements in terms of delay and reliability depending on110

the running IoT application. A slicing framework is defined that consists of a set of L virtual network

slices such that L = {1, 2, ..., l} can be created on physical network hardware, more specifically on

LoRa GWs, where the bandwidth of each GWs is divided into l slices with l ∈ L, as shown in Fig. 1

below. The main goal behind slicing is to virtually split the network by reserving resources for each

slice on the same physical device with each slice l characterized by a priority spl and a bandwidth bl,m115

at the GW level. A set of virtual flows F is defined where a device k associated to slice l generates a

flow fk,l,m that goes from the GW m to LoRa servers and is characterized by a utility metric Uk,l,m

specified later on in this paper. LoRa GWs in range will receive the packets but only one GW slice

forwards the packet to LoRa servers to avoid duplicated packets.

Figure 1: IoT Slicing architecture in LoRa Networks
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2.3. Problem formulation120

In this work, optimizing network slicing in IoT is a threefold problem and involves: 1) LoRa devices

admission and association to slices; 2) Finding the best inter-slicing resources reservation strategy ; 3)

Intra-slice resources allocation. First, L slices are defined based on the delay urgency factor and

reliability requirements of each device. Each device is assigned next to the slice that meets best its

service latency requirement. It is noteworthy that in IoT, the delay urgency and reliability represents125

the major key factors to define the priority of a device over another without neglecting the service

type and the congestion that results from the large amount of IoT devices. Next, based on throughput

requirements of each slice, slicing rate is estimated to define capacity cl that needs to be reserved for

each slice l. Each GW m reserves for each slice, some of its physical receiving paths and each member

of a slice is characterized by a specific utility value Uk,l,m. Finally in the third step, intra-slice resource130

allocation is optimized by assigning each device in slice l to the most efficient virtual flow with the

highest utility metric. Let αk,l ∈ {0, 1} be a binary variable that indicates whether a device k is

associated with a flow fk,l,m ∈ F . The goal is to maximize the number of LoRa devices assigned to

virtual flows in a way that maximizes the utility function adopted by each slice members. Therefore,

the slicing and resource allocation problem for IoT can be formulated as135

Max
∑
k∈K

∑
l∈L

αk,lUk,l,m,∀m ∈M (5)

subject to

C1 :
∑
l∈L

αk,l = 1,∀k ∈ K (6a)

C2 :
∑
kεK

βk,mpk,l,m ≤ Pmaxm ,∀m ∈M, ∀l ∈ L (6b)

C3 :
∑
kεK

αk,lβk,mrk,l,m ≤ Rmaxl,m ,∀l ∈ L,∀m ∈M (6c)

C4 : βk,m =

{
1 if device k is assigned to gateway m.

0 Otherwise.
(6d)

Knowing that multiple virtual network slices are isolated and built on top of a common physical

gateway, (6a) ensures that each device should always choose exactly one and only network slice even

if the latter was implemented on different physical gateways. Hence in a multi-gateway scenario, the

device assigned to a slice will only have the option to choose between the flows that leads to the slice

it belongs to. The total transmission power of each GW m is limited in constraint (6b). Moreover,140

constraint (6c) guarantees the sum of uplink traffic sent by slice members do not exceed the maximum

data rate capacity of the slice that can be sent through each gateway. Constraint (6d) ensures binary-

association values βk,m between a physical IoT device k and a physical LoRa gateway m. Table 2

below summarizes the key denotations adopted in the paper.
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Parameter Parameter Name
M the set of LoRa Gateways
K the set of LoRa Devices
L the set of Slices
Kl the set of devices associated to slice l
∂j the set of packets with SF = j

fk,l,m virtual flow for device k in slice l through GW m
Uk,l,m utility for device k in slice l on GW m
spl slice priority of slice l
bl,m bandwidth assigned for slice l over GW m
Pmaxm maximum transmission power of GW m
gk,l,m power gain between a GW m and a device k
eξ lognormal shadowing component
αk,l admission index of device k to slice l
βk,m association index of device k to GW m
uk urgency factor for device k
dk instant packet delay for device k

PDBk packet delay budget for device k

Table 2: List of parameters

3. The Proposed Slicing Algorithm145

In LoRa networks, the general control plane and resource management module are centralized and

moved to a management and control entity (MCE) in the cloud to ensure an efficient coordination

of resources. Hence, LoRa servers will be the final decision maker in assigning the devices to the

appropriate slice and defining the gateway that will transmit the packet following to a three-steps

optimization algorithm. In the first step, each device will be assigned to the slice that meets its QoS150

requirements based on a balanced iterative reducing and clustering method using hierarchies (BIRCH).

Next, after assigning each device to its corresponding slice, GW resources will be dynamically reserved

for each slice based on a maximum likelihood estimation (MLE) before finally forwarding the packet

to LoRa servers through the GW that provides the maximum utility value.

3.1. BIRCH-based Slicing Definition155

Due to the ultra-dense nature in an IoT, BIRCH algorithm is adopted [26] which belongs to the

agglomerative hierarchical clustering family and was proven as the best available clustering method for

handling large datasets [27] [28]. The main goal behind this method is to define slices by checking the

QoS requirements of each MTCD and moving from a large set of devices into a group of subsets with

similar QoS requirements. The most urgent devices are the ones that have the closest instant delay160

dk to their packet delay budget PDBk and are assigned the highest priority. uk denotes the urgency

factor of device k with uk = dk/PDBk. Given Kl devices in a cluster l, the latter will be considered

as a utility point uk of each device in a cluster with k = 1, 2, ...,Kl. Each node in the CF-tree is a

cluster of subclusters defined by a clustering feature CF as follows:

CF = (Kl, LS, SS) = (Kl,

Kl∑
k=1

uk,

Kl∑
k=1

u2k) (7)

where Kl denotes the number of devices in the cluster, LS the linear sum of the Kl utility points165

and SS the square sum of the Kl utility points. BIRCH dynamically builds a CF-tree, at each time a

new MTCD is inserted based on two parameters: a branching factor B and a threshold T . Each parent
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node contains a maximum number of B childs and a single child node contains at most T entries. In

this problem, B represents the number of L slices created with Kl the group of devices admitted to

slice l. Hence, l nodes derive from the root representing the slices created with each slice is made up170

of a group of subclusters. Therefore, entries in CF-tree are not considered as devices but as a set of

subclusters C that belongs to slice l and groups LoRa devices with nearly similar utility points.

Pseudo-code 1 BIRCH-based Slicing Admission algorithm

Input : Set of devices K, diameter D, branching factor L, threshold T
1 begin
2 Initialize as many clusters as devices

for each k ∈ K do
3 Start from root

Search for closest child node according to D
Search for closest subcluster according to D
if number of entries < T then

4 Add k to subcluster Cl,l
Update CF of Cl,l

5 else if number of childs < B then
6 Create a new subcluster Cl,l′

Add k to Cl,l′

Update CF of the parent node Sl
7 else if number of parents < B then
8 Split child nodes and redistribute CF entries according to closest

D
9 else

10 Split parent nodes
11 end

12 end
13 Update CF entries in CF-tree

14 end
Output: Set of groups Gl(l=1,2,...,L)

As explained in Pseudo-code 1, the algorithm scans the clusters from the root (line 3) and

recursively traverses down the CF-tree and chooses the closest node at each level with the smallest

average inter-cluster distance D as follows:

minD =

( Kl∑
k=1

Kl+Kl′∑
k′=Kl+1

(uk − uk′)

KlKl′

)1/2

,∀k ∈ Kl,∀k′ ∈ Kl′ (8)

After defining the candidate child node, a test is performed to find the closest CF-entry and defines

if the device can be added to the candidate subcluster without violating the threshold condition. If

so, the algorithm groups the node with the chosen entry and updates the CF-entry of the candidate175

subcluster (line 4). If not, a new entry is created for the node inside the candidate child node without

breaking the branching factor condition (line 5-6). Otherwise, the child node is splitted and the

utility points are redistributed based on the closest distance criteria to obtain a set of new subclusters

that do not break the branching factor constraint (line 7-8). In case the number of childs already
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reached the maximum, the parent nodes are splitted and the childs are redistributed to the closest180

parents (line 9-10). After inserting the CF-entry, all CF informations of the path are updated from

the inserted information to the root (line 13).

3.2. Dynamic MLE-based Inter-Slicing Algorithm

Knowing that the physical capacity c in terms of radio resources of a GW m is limited. The goal

of this scheme is to estimate and reserve the appropriate resources by finding the maximum likelihood185

buffer demands for each slice l starting by the one with the highest slicing priority. In this work, the

traffic that needs to be uploaded follows a Poisson distribution and LoRa servers are aware of the

amount of data stored in the buffer Bi of each slice member.

Lemma 1. Let Ti be the throughput needed by each device i, ∀i ∈ Kl captured at each slicing interval

time and identified by a corresponding probability distribution. For a fixed physical capacity, the opti-190

mum slicing strategy is to virtually reserve resources for each slice based on the mean throughput of its

members.

Proof : Ti follows a Poisson distribution P(λi) where λi denotes the throughput needed by device

i assigned to slice l,∀i ∈ Kl. Let f(Ti|λi) be a probability density function similar to L(λi|Ti) that

represents the likelihood of λi given the observed throughput.195

L(λ|T1, T2, ..., TKl
) = f(T1|λ1)f(T2|λ2)....f(Tl|λl)

L(λ|T1, T2, ..., TKl
) =

Kl∏
i=1

e−λiλTi
i

Ti!

logL(λ|T1, T2, ..., TKl
) = log

[
Kl∏
i=1

e−λiλTi
i

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑
i=1

log

[
e−λiλTi

i

Ti!

]

logL(λ|T1, T2, ..., TKl
) =

Kl∑
i=1

[
− λ+ Tilogλ− log(Ti!)

]
logL(λ|T1, T2, ..., TKl

) = Klλi +

Kl∑
i=1

Tilogλi

To find the maximum likelihood parameter, the first derivative is applied and solved to zero.

∂logL(λ|T1, T2, ..., TKl
)

∂λ
= −Kl +

Kl∑
i=1

Ti

λi
= 0

λ̂i =

Kl∑
i=1

Ti

Kl
,∀i ∈ Kl

Hence, λ̂i represents the optimal parameter estimation which proves that the optimal slicing de-

cision is to consider the mean throughput of each slice members. However, slices are not equal in

9



terms of priority. Therefore, the resource on GWs will be dynamically allocated to the most urgent

slice starting by the channel with the highest reliability. Let Θi = λ̂i/
l∑
i=1

Ti be the slicing rate based

on which the algorithm reserves for each slice a capacity ci,m = cm.Θi,∀i ∈ L. Pseudo-code 2200

summarizes the intra-slicing algorithm and starts with the most critical slice (line 2). Depending on

the slicing strategy, the algorithm equally reserves the bandwidth between slices based on a straight-

forward fixed slicing (FS) (line 14-16) or estimates the needed throughput λ̂i of all slice l members

in the case of Dynamic Slicing (DS) strategy, defines Θl for channels reservation and reserve a part

of the bandwidth on all LoRa GWs in a similar manner (line 3-7). If the adaptive dynamic slicing205

(ADS) was adopted, slicing rate of each slice Θl varies from a GW to another because in this case,

MLE estimates throughput of each slice members deployed in the range of the corresponding GW m

(line 8-14). The algorithm moves next to the following slice, repeats the process and stops when no

resources are left for reservation.

Pseudo-code 2 Adaptive Dynamic Intra-Slicing Algorithm

Input : Capacities cm, c′n; Number of slices L;
Set of Throughput Requirements Tl

1 begin
2 Put slices in decreasing order based on priority spl

if method=DS then
3 for each GW m do
4 for each slice l ∈ L do
5 Apply MLE Estimation based on the throughput

required by all slice l members
Define Slicing Rate Θl and Reserve capacity cl,m

6 end

7 end

8 else if method=ADS then
9 for each GW m do

10 for each slice l ∈ L do
11 Apply MLE Estimation based on the throughput

required by slice l members in the range of GW m
Define Slicing Rate Θl and Reserve capacity cl,m

12 end

13 end

14 else
15 Reserve capacity cl,m equally between slices
16 end

17 end
Output: Set of resources reserved for each slice l

3.3. Intra-Slicing Resource Allocation Algorithm210

After defining and reserving the radio resources for each slice, the goal in this section is to maximize

the utility function of slice members. Here, utility function for each slice is computed based on multiple

criteria weights wr and wld for reliability and load respectively manipulated using the analytical and
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hierarchy process (AHP) approach. The latter is proved as a very decent method for multi-criteria

decisions and was adopted in many applications [29].215

Based on the QoS table proposed in Table 3, one can note that in IoT, devices can be classified

into three categories:

QCI
SLice
ID

Packet
Delay
Budget

Services
Percentage of
IoT flows

5 1 <100 ms
Surveillance and
Emergency Alerting

10 %

1-2 2 100-1000 ms Health Sensors 15 %
3-4 2 100-1000 ms Home Security System 15 %

6 3 >1000 ms
Smart Metering
Applications

60 %

Table 3: Application Parameters [30]

High critical communications (HCC) slice: requires the highest slicing priority due to urgency and

reliability requirements of its members, i.e: surveillance, emergency alerting and alarm monitoring.

Based on Eq. 9, UHCC is computed to define the utility for critical communications with σr =

SINRk,l,m/SINRmax the rate of reliability of SINR that a device k achieves on a flow fk,l,m over the

highest flow reliability that can be achieved through slice l and δr, a binary variable that guarantees

a minimum threshold when searching for the highest reliability links.

UHCC = δr(σrwr + σldwld) with δr ∈ {0, 1} (9)

Medium critical communications (MCC) slice: requires lower priority consideration and are less

critical in terms of delay. This slice presents a trade-off between reliability and load, i.e: health sensors

and home security systems.

UMCC = σrwr + σldwld (10)

Low critical communications (LCC) slice: requires the lowest priority due to their non-guaranteed

data rate and delay-tolerant QoS requirements, i.e: smart metering applications.

ULCC = σldwld (11)

The algorithm searches in each slice for the gateway that offers the most robust and reliable link

with lowest delay [31], finds the highest UHCC metric and allocates resources accordingly. Increasing

the number of devices will decrease the reliability of links due to congestion. In some cases, the most220

reliable link may be overloaded due to the increasing number of devices and should not be taken into

consideration. Hence in Eq. 10, UMCC is defined to search for the flow that gives the best trade-

off solution and offers the highest reliability with the lowest possible load. And finally in Eq. 11,

LCC slice includes delay-tolerant devices with high packet delay budgets. Therefore, only the load is

considered in the latter without taking reliability into consideration.225

In Fig. 2, a directed network N = (V,E) is considered, where each device k is a source node s

uploading traffic to external server considered as sink node t such that s, t ∈ V . Moreover, each GW
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Figure 2: Flow modeling for IoT Network Slicing

m is considered as edge node and bounded by the amount of flow allowed in each slice l. In the latter,

the flow that maximizes the utility function of each device k is selected. Without loss of generality, t

is assumed that no edges enter the sources or exist sinks. For each edge, the respective utilities U ′k,l,m230

and U ′′k,l,m are computed in the network based on Eq. 12 below:

Uk,l,m = U ′k,l,m + U ′′k,l,m (12)

Each LoRa device k assigned to slice l searches for the most efficient virtual flow through GW m with

the objective to find the highest utility metric Uk,l,m as shown in the Pseudo-code 3 below.

Pseudo-code 3 Max-Utility Inter-Slice Resource Allocation

Input : Set of LoRa devices K, GWs M , slices L and ca-
pacity c

1 begin
2 Initialize flow utilities to null for all e ∈ E

for each slice l ∈ L do
3 Put devices in decreasing order based on uk

for each device k ∈ Kl do
4 Draw network N(V,E)

Find path with the highest utility Uk,l,m
Allocate device k to fk,l,m
Update capacity cl,m

5 end

6 end

7 end
Output: Max-Utility flows allocation for LoRa devices

12



4. Performance Evaluation

In uplink, centralized servers enable the opportunity to make efficient slicing configurations based235

on data traffic in the buffer of each LoRa device. In this work, LoRa model is adopted [19] to simulate

the network in the open source NS3 simulator [32]. For additional implementation details, we invite

the readers to check the work in [33] which includes a complete description of the model and integrate

it in NS3 platform. Each simulation is replicated 50 times and results are plotted with 95% confidence

intervals with respect to the parameters shown in the first section of Table 4.240

Simulation Parameters
Simulation Time 300 seconds
Slicing Interval Time 50 seconds
Cell Radius 10 KM
Number of replications 50
MAC retransmissions 8
LoRa devices and GWs distribution Random Uniform
Propagation loss model Log-distance
Bandwidth 125 kHz
Spreading Factor {7,8,9,10,11,12}
Confidence intervals 95%
European ISM sub-band 863-870 MHz

Power Consumption Parameters [21]
Battery Maximum Capacity 950 mAh
LoRa Supply Voltage 3.3V
Amplifier Power’s added Efficiency 10%
Connected (Tx/Rx-SF7) 2 dBm
Connected (Tx/Rx-SF8) 5 dBm
Connected (Tx/Rx-SF9) 8 dBm
Connected (Tx/Rx-SF10) 10 dBm
Connected (Tx/Rx-SF11-12) 14 dBm
Standby 0.09 mW
Sleep 0 mW

Table 4: Simulation Parameters

The experiment is realized in a realistic LoRa scenario where devices are choosing a random time

for transmission but periodically uploading to LoRa servers small packet payloads that varies from

10 to 20 Bytes. Simulations start with 100 devices to emulate a load of one due to the legal duty-

cycle limitations of 1% in the European region [34]. The maximum number connected to a single

gateway is limited to 1000 devices following to the scalability study in [35]. LoRa servers allow 8 MAC

retransmissions for IoT devices before defining a packet delivery failure. Moreover, LoRa devices and

gateways are both placed over a cell of 10 KM radius following to a uniform random distribution. Each

device is configured with spreading factors that varies from 7-12 when uploading traffic to LoRa GWs.

Each GW is characterized by 8 receiving channels in the 867-868 MHz european sub-band. Based on

the Eq. 13 below, energy consumption is evaluated when the number of LoRa devices increases in

each slice.

Ek,l,m =
ptxi + prxi
V + epa

.dtx/rx (13)
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where Ek,l,m is the energy consumed by an IoT device, V the LoRa supply voltage, epa the amplifier’s

added efficiency, dtx the duration of transmission, prxi the power of reception and ptxi the power of

transmission that varies between 2 and 14 dBm based on the spreading factor i adopted. An energy

module for LoRa module is integrated in NS3, inspired by the one that already exists for Wifi, and is

characterized with specific energy parameters and power model for LoRa [21] as listed in the second245

section of Table 4 below.

4.1. Proof of Isolation

The very first step before investigating slicing strategies is to prove the isolation concept. Assuming

that all devices are uploading packets to a single LoRa GW. The number of LoRa devices is fixed to

20 in HCC slice and the rest of devices in the network are assigned to MCC and LCC slices. Fig. 3250

proves the isolation concept because when the number of devices increases in MCC and LCC slices,

HCC members were not affected and the percentage of packet loss rate (PLR%) remained constant

and nearly null whereas PLR increased in MCC and HCC slices in a more congested scenario.

Figure 3: Proof of Isolation

4.2. SF Configuration Variation

In this section, the performance of LoRa slices is evaluated with different SF configurations for a255

fixed number of 300 devices. Three major slicing strategies are considered, namely static configuration

where all devices in the cell are configured with the same SF, dynamic − random where each device

randomly picks a SF value and finally the dynamic − adaptive where each LoRa device estimates

the best SF configuration depending on the receiving power measured from the gateway. In static

configurations, the test is repeated for each SF value. However, regarding dynamic configurations,260

a device with a powerful receiving signal picks a small SF value whereas edge nodes are generally

configured with larger SF values. Table 5 and Table 6 summarize the mean PLR% for each SF

configuration with a fixed and variant packet transmission intervals respectively. Packets may be lost
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when the gateway is saturated due to the load in the network (Congestion PLR%), due to co-channel

rejection (Interference PLR%) or due to lack of sensitivity when the packet is out of range or when it265

doesn’t reach the gateway due to an appropriate SF configuration (Sensitivity PLR%).

4.2.1. Fixed Packets Transmission Period

In this subsection, a decent comparison is performed between SF configuration methods for a

fixed packet transmission interval. Each device randomly select a time for transmission and then

it periodically uploads a packet each 50s. static − SF12 scored the highest PLR percentage. By270

adopting this configuration, packets transmitted occupy the spectrum for the longest time on air.

Therefore, the highest impact on PLR% was reached due to congestion. Packets arrive at constant

intervals and cannot be decoded due to gateway saturation. It is noteworthy to mention that no

packets were lost due to lack of sensitivity because increasing the spreading factor increases at its turn

the range and the probability for successfully decoding a packet. Unlike static − SF12, devices with275

static − SF7 configuration lost more than half of the packets. However this time, the main loss was

due to lack of sensitivity for packets that are mainly transmitted by edge nodes and cannot reach the

gateway because SF7 offers the shortest range capability between SF configurations. Following these

assumptions, one can now understand why static− SF9 could be placed as a trade-off between range

and spectrum occupation with the best overall PLR% between the measured static configurations. As280

previously mentioned, increasing SF configuration also increases the time occupation of packets sent,

which also increases the interference PLR% because the probability of receiving packets with the same

SF configuration at the same time will also increase.

Slice
Name

Static Dynamic
SF7 SF8 SF9 SF10 SF11 SF12 Random Adaptive

Mean PLR % Overall 54.14 39.24 39.03 43.93 78.19 94.15 43.02 30.07

Sensitivity
PLR %

Overall 76.14 61.75 28.84 2.06 0 0 19.63 0
HCC 17.99 17.90 17.99 19.74 0 0 18.73 0
MCC 26.98 26.91 25.97 24.21 0 0 27.75 0
LCC 55.03 55.20 56.04 56.05 0 0 53.52 0

Congestion
PLR %

Overall 22.16 32.35 53.78 63.61 61.9 69.53 69.51 86.43
HCC 0.12 0.62 2.91 6.91 11.08 15.9 8.99 8.48
MCC 0.41 1.75 9.42 30.65 46.75 49.76 36.28 34.76
LCC 99.47 97.63 87.66 62.44 42.17 34.34 54.73 56.76

Interference
PLR %

Overall 0.89 4.87 16.15 33.32 37.30 30.47 9.84 12.39
HCC 7.45 11.85 13.35 15.33 16.44 20.05 16.16 15.43
MCC 42.40 42.21 40.01 35.88 30.08 28.01 35.12 36.29
LCC 50.15 45.83 46.64 48.78 53.48 51.95 48.72 48.28

Table 5: Packet Loss Rate Variation with various SF configurations

Table 5 illustrates PLR percentage for each category in each slice. Results show that dynamic−
adaptive configuration was the most reliable technique because SFs are dynamically configured on LoRa285

devices by measuring the receiving power that a GW gets from the device depending on its position.

The advantages that the latter configuration present are two-fold: first, depending on how far the

device is from the gateway, a smaller distance requires a smaller SF configuration and secondly, the
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fact of adopting different SFs configuration reduces interference PLR and the probability of collisions.

Regardless of the adopted SF configuration method, the urgency character of HCC slice members290

explains the low percentage in terms of PLR compared to MCC and LCC slices. Urgent packets are

not sent as often as other slices which reduces the probability of packets collision.

4.2.2. Variant Packets Transmission Interval

In Fig. 4, static − SF9 is considered as the best static SF configuration and is compared to

dynamic− random and dynamic− adaptive SF configurations when the packets transmission period295

increases. PLR increases in more congested scenarios. However, it is noteworthy that regardless of

the adopted configuration, increasing packets transmission interval decreases the intensity and the

congestion in the network. This can be shown with the decreasing behavior of all configurations

for a common set of devices simulated. static − SF9 meets the performance configuration for high

transmission intervals which proves the utility of the former in realistic scenarios where the congestion300

is normally higher due to the massive number of IoT devices. Moreover, reducing congestion had the

same impact on slices. Detailed results are shown in Table 6 below. For each transmission interval, it

is shown how the percentage of PLR is distributed on each slice. Moreover, increasing the transmission

period decreased PLR percentage in all slices while having the smallest impact on HCC slice with the

highest reliability requirements.305

(a) PLR Variation with Static-SF9 con-
figuration

(b) PLR Variation with Dynamic-
Random configuration

(c) PLR Variation with Dynamic-
Adaptive configuration

Figure 4: Performance Study with/without considering load in metric calculations

4.3. Fixed (FS) vs Dynamic (DS) vs Adaptive-Dynamic (ADS) Slicing

Following to previous simulations, dynamic − adaptive SF configuration is adopted which has

proved its worthiness for this study. The goal in this section is to evaluate the performance of the

fixed (FS), dynamic (DS) and the adaptive−dynamic (ADS) slicing strategy. With FS, the number

of receiving paths is reserved in an equal manner and is compared to DS and ADS strategies where310

slicing decisions are performed using MLE throughput estimation for each slice starting with the one

with the highest priority. Moreover, the impact of adding load metric to utility calculations is studied

for each slicing strategy when the number of LoRa devices assigned to each slice increases. Each slice

in a LoRa gateway suffers from congestion, decreasing with it the probability of successfully decoding

the packet. Simulation results in Fig. 5 prove the efficiency of load consideration when computing315
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PLR % PTP (s)
Static-SF9 Dynamic-random Dynamic-adaptive
HCC MCC LCC HCC MCC LCC HCC MCC LCC

Sensitivity
PLR %

20 24.68 22.98 52.34 18.86 26.12 55.02 0 0 0
40 20.35 25.81 53.84 18.69 27.43 53.88 0 0 0
60 19.97 24.15 55.88 18.25 27.36 54.39 0 0 0
80 18.23 24.22 58.46 18.52 26.82 54.66 0 0 0
100 17.32 23.92 57.85 18.80 26.96 54.24 0 0 0

Congestion
PLR %

20 11.57 45.75 42.68 10.46 39.39 50.15 10.93 39.30 49.77
40 8.00 37.26 54.74 8.78 36.33 54.89 8.88 36.73 54.39
60 5.77 24.71 69.52 8.01 31.49 60.50 7.92 32.38 59.70
80 3.95 13.74 82.31 6.45 29.25 64.30 6.30 29.40 64.30
100 3.13 8.33 88.55 5.29 23.84 70.87 5.11 24.16 70.73

Interference
PLR %

20 15.92 32.20 51.88 16.32 35.63 48.05 16.12 36.77 47.11
40 15.82 35.53 48.65 15.66 34.95 49.40 15.43 36.98 47.59
60 15.56 37.12 47.32 14.92 36.28 48.80 15.14 35.81 49.05
80 14.50 38.37 47.13 15.62 36.58 47.81 15.63 36.20 48.17
100 14.42 38.14 47.44 15.91 36.16 47.93 13.93 36.53 49.55

Table 6: Packet Loss Rate Variation with various SF configurations

the mean values of slices with and without considering load in metric calculations. Being load-aware

improves reliability in the network. When congestion in the network increases, the traffic is balanced

to the corresponding slice but on a less-loaded gateway. Reliability on all slices improved especially

in LCC slice because its most of its members lose previously lost their packets due to congestion. In

a comparison between each slicing strategy, ADS with load consideration showed the most reliable320

performance for HCC and MCC slice as plotted in Fig. 5a and Fig. 5b respectively. This returns

for example to the case of HCC slice where the sporadic nature of packet transmissions requires low

latency and high reliability with unsteady throughput needs. Therefore, an appropriate estimation

of throughput improves slicing and should be considered on each GW separately because it differs

from a gateway to another. Moreover, Fig. 5b shows that considering load in metric calculations325

scored approximately 50% improvement in the PLR% of LCC slice members. However, this did not

prevent ADS from being the lowest reliable strategy in LCC slice. The reason returns to the fact that

ADS prioritizes a slice over another and reserves for it the needed bandwidth unlike FS where the

bandwidth is equally reserved between slices. LCC members do not always get the needed bandwidth

required for transmission when a small capacity is fixed for this slice. The performance of each slice330

is evaluated next using ADS with a load strategy in terms of energy consumption and the percentage

of devices that respected their delay deadlines.

4.3.1. Percentage of Unserved nodes

The efficiency of ADS is mainly shown in Fig. 6 below. With ADS, LoRa devices had the highest

percentage of devices that respected their delay deadlines compared to DS and FS strategies with an335

unserved rate that never exceeded 10% of the total number of packets transmitted. This highlights the

importance of including urgency priority in slicing strategies and considering reliability in intra-slice

resource allocation algorithm due to its direct impact on the spreading factor configuration and the

spectrum occupation time.
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(a) HCC Slice PLR Variation (b) MCC Slice PLR Variation (c) LCC Slice PLR Variation

Figure 5: Packet Loss Rate in each Slice with various Slicing Strategies

Figure 6: Percentage of Unserved nodes

4.3.2. Jain’s Fairness Index340

The goal of this study is to measure the metric that identifies underutilized channels in each slice

with FS, DS and ADS strategies. Based on Eq. 14, we evaluate in Fig. 7 the Jain’s fairness index of

each slicing strategy as follows:

Fairnessindex =

(
n∑
i=1

xi)
2

n
n∑
i=1

x2i

(14)

where xi denotes the normalized throughput of each IoT device and n is the total number of active

devices in each slice. Jain’s fairness index varies between 0 and 1 with 1 being perfectly fair. ADS

strategy provides the best distribution compared to DS and FS strategies as plotted in Fig. 7a and

Fig. 7b below. With FS strategy, resources are divided equally between HCC,MCC and LCC slices.

This explains fairness results of FS that are quite similar in all simulated slices. It is noteworthy to345

mention performance degradation of ADS and DS strategies when moving from urgent to less urgent

slices. This is normal due to slicing priority consideration where resource reservation algorithm begins
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with the most critical slice. However, ADS always had a clear upper hand over DS strategy in urgent

slices except for LCC slice where less channels are reserved for its members as shown in Fig. 7c below.

(a) HCC Slice Fairness index (b) MCC Slice Fairness index (c) LCC Slice Fairness index

Figure 7: Fairness Evaluation in each Slice with various Slicing Strategies

4.3.3. Energy Consumption350

When increasing the number of nodes, the total energy consumed increases for all the simulated

slices, as plotted in Fig. 8 below. However, HCC slice always consumed less energy even when the

number of its LoRa members increased. This returns to relation between SF and TP configuration

shown in in the second section of Table 4. Increasing SF will increase the transmission power and the

energy consumption of a slice member. Therefore, the consideration of reliability in utility calculations355

forces delay-sensitive devices to take the most reliable path with the lowest spreading factor values

and transmission power compared to MCC and LCC slices.

Figure 8: Mean Energy Consumption Variation
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5. Conclusion

In this paper, network slicing is evaluated in LoRa technology with the goal of maximizing utilities

in each LoRa slice. Therefore, static slicing is improved with an adaptive dynamic inter-slicing algo-360

rithm that was proposed based on a maximum likelihood estimation. An intra-slicing algorithm is also

introduced that improves resource allocation to meet the QoS requirements of each slice. Numerical

results show the effectiveness of the proposed adaptive dynamic slicing strategy and how it outper-

formed static and dynamic slicing and improved the efficiency of LoRa devices in terms of reliability,

energy consumption and the percentage of satisfied devices with regard to their delay requirements.365

However, there’s still a room to improve the proposed slicing strategy in terms of reliability and energy

consumption. It would be interesting to focus in the future on improving the energy efficiency in LoRa

network slicing, by optimizing LoRa parameters configuration without degrading the QoS performance

in the network.
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