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Abstract

Automated planning has been a continuous field of study since the 1960s, since the notion

of accomplishing a task using an ordered set of actions resonates with almost every known

activity domain. However, as we move from toy domains closer to the complex real world, these

actions become increasingly difficult to codify. The reasons range from intense laborious effort, to

intricacies so barely identifiable, that programming them is a challenge that presents itself much

later in the process. In such domains, planners now leverage recent advancements in machine

learning to learn action models i.e. blueprints of all the actions whose execution effectuates

transitions in the system. This learning provides an opportunity for the evolution of the model

towards a version more consistent and adapted to its environment, augmenting the probability of

success of the plans. It is also a conscious effort to decrease laborious manual coding and increase

quality. This paper presents a survey of the machine learning techniques applied for learning

planning action models. It first describes the characteristics of learning systems. It then details

the learning techniques that have been used in the literature during the past decades, and finally

presents some open issues.

1 Introduction

Automated Planning (AP) is the branch of Artificial Intelligence pivoted on the formulation

of a plan: a series of actions guiding the transition of the system from the initial state to the

goal, accomplishing a required task in the process. Each action requires a certain number of

preconditions to be fulfilled in order to be applied to a particular world state. Upon application,

each action changes the world state with its induced effects. These actions can be represented

by actions models: the blueprints of the domain-specific actions. AP came into light in the 1960s

when research in the fields of operations research, theorem proving and studies into human

problem solving started gathering steam, with the intent of solving problems that were being

posed by the field of robotics among many others. The STRIPS (STanford Research Institute
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Problem Solver) system (Fikes & Nilsson (1971)) was used to control and plan the movement

of an autonomous robot called Shakey (Nilsson (1984)) as it pushed a series of boxes through a

series of interconnected rooms. This is the perfect illustration of the application of AP to execute

a task in a real life scenario. Planning, however, cannot be conducted in the absence of domain

knowledge, which describes the actions that can be executed, serving as the information base to

plan upon. This is where Knowledge Engineering (KE) finds its place in the domain of planning.

KE for AP is the process that deals with the acquisition, formulation, validation and

maintenance of planning knowledge, where the essential output is the domain model (Jilani

et al. (2014)). The main issue of current KE approaches for encoding domain models is that they

require specific expertise which can only be furnished by a domain expert. This expert, in theory

can, due to his limited knowledge of the real world domain, introduce some human-induced error

in the encoding. In these situations, the success of the AP systems fully depends on the skills

of the expert who defines the action model. This among others is the reason why AP, having

enjoyed many feats and resounding successes in the aforementioned fields, it continues to suffer

from its share of drawbacks.

Principal out of these drawbacks is the effort surrounding the creation of action models for

complex domains. While it is possible to codify action models for simple domains, it remains

laborious to do so for some complex real-world domains. Real world planning domain models

are hard to develop, debug and maintain. As planners and applications become larger, the

challenge of engineering planning domain models becomes more magnified (McCluskey et al.

(2002)). Moreover, given the sheer difficulty in generating planning domain models, many users

are not exploiting AP but easier though less-efficient approaches. It is worth pointing out that

KE tools for encoding domain models are, usually, not very well known outside the planning

community (Shah et al. (2013)).

With the intent of assisting domain experts, the planning community is developing systems to

automatically acquire AP models (Jiménez et al. (2012)). Machine Learning (ML) seems to be a

useful tool for these systems to automate the extraction, refinement, organization and exploitation

of knowledge from plan traces or user preferences. ML is viewed as a potentially powerful

means of making an agent (independent entity which perceives the world and performs actions

accordingly) autonomous, while compensating for the expert’s incomplete domain knowledge.

The work done in ML goes hand in hand with the long history of domain independent planning,

as the techniques developed as a part of this effort could be applied across a myriad of domains

to accelerate planning. In most cases, the learning techniques introduced into planners were

extensively customized to the specific architecture of the application domain. Therefore, any new

and more powerful learning technique required programming effort to replace an existing one.

These factors might explain why the planning community appears to have paid less attention

to learning till the late 1990s. However in recent times, with the explosion in computing power

and the influx of ML techniques into a myriad of computing fields, ML seems to have staged its

comeback since the early 2000s.

This article is pivoted on ML techniques which allow the learning of the underlying planning

model from a given set of traces consisting of plan executions. The employed learning techniques

vary widely in terms of context of application, technique of application, adopted learning

methodology and knowledge learned. The article begins with an introduction to the domain of

AP to the reader (section 2), followed by an a description of certain key criteria that help in the

characterization of the various learning systems (section 3). It then mentions interesting learning

approaches in the literature (section 4), proceeds to highlighting some persisting open issues

(section 5) with the discussed approaches, concluding with a roundup of the paper (section 6).

2 Formulation and Representation

Automated Planning (AP) is a means-end reasoning i.e. participating agents decide how to achieve

a goal given a set of available and applicable actions. These agents interact with the environment
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by executing actions which change the state of the environment, gradually propelling it from its

initial state towards the agents’ desired goal. This transition can also be regarded as a solution

to a planning problem the agent in question is looking to resolve. We begin with some definitions

of fundamental concepts.

Definition 1 (Planning Problem). A planning problem is a triplet P = (STS, s0, g) composed

of:

• the initial state s0 of the world,

• the goal g, (set of propositions representing the goals to achieve), belonging to the set of goal

states Sg, and

• the state transition system STS responsible for changing the world state by action applica-

tion.

Definition 2 (STS). The STS in the previous definition is formally a 3-tuple (S, A, α) further

composed of

• S = {s1, s2, . . . sn} as the set of states,

• A = {a1, a2, . . . an} as the set of actions. Here each action aεA is defined in the form of the

aggregation of three lists, namely (pre, add and del). These are the pre list (predicates whose

satisfiability determines the applicability of the action), add list (predicates added to the

current system state by the action application) and the del list (predicates deleted from the

current system state upon action application), respectively. The listing of all the applicable

actions in a domain is called the action model.

• δ : (S ×A∗→ S) is the state transition function (Ghallab et al. (2004)).

All the aforementioned elements in this section contribute to the formulation of a plan.

Definition 3 (Plan). A plan, given an initial state of the system, goal, and an action model,

is a sequence of actions π = [a1, a2, . . . an] that drives the system from the initial state to the

goal.

The transition from the initial state to the goal is driven by the previously mentioned

transition function in Definition 1 (Ghallab et al. (2004)):

δ(s, π) =

{
s if |π|= 0

δ(δ(s, a1), [a2, . . . ak]) if precond(a1)⊆ s

This transition function, when applied to the set of the current state and the applicable action,

produces the next state as:

si+1 = δ(si, a) = (si − del(a)) ∪ add(a)

This transition function, when successively applied to the resulting intermediate states at each

step, leads to the goal. Each such action sequence, complete with initial state and goal information

(and occasionally intermediate state information), constitutes a trace. These traces can either be

in the form of action sequences (as represented in figure 4) or action sequences interleaved with

intermediate states. We explain the notion of traces in the form of a concrete example. AP defines

a certain number of world domains, one of the most famous ones being Blocksworld (Winograd

(1972)). It consists of a set of blocks resting on a table, the goal being to build one or more piles

of blocks. However only one block may be moved at a time: either placed on top of another block

or on the table. An example of action sequences in this domain is seen in the figure 4. A snapshot

of a state-action interleaved trace for the first two actions in figure 4 is given as :
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UNSTACK ( blockD , blockC ) , ( ho ld ing ( blockD ) , not ( armempty ) , c l e a r (

blockC ) ) , PUTDOWN ( blockD )

Whilst good in theory, the creation of models in the case of complex domains is a non

trivial task. While it is possible to codify, debug and maintain action models pertaining to

simple toy domains, it remains laborious, unfeasible and sometimes impractical to do so for

some complex real-world domains. The amount of effort needed to encode and maintain accurate

action blueprints is significant. There is also no “one size fits all” strategy. Thus, we seek help

from various ML techniques which allow learning of the underlying action model from traces

produced as a result of plan execution. This model can ideally be re-injected into the planner for

further planning purposes. The ML techniques to learn from these traces broadly fall into one of

the following categories:

• Online: Learning occurs during the execution phase (Zimmermann & Kambhampati (2003)).

The system can start learning as soon as the generation phase is complete. This kind of

learning never stops, thus allowing the continuous correction and improvement of an incorrect

model and adaptation to changing environment characteristics. On the flip side, the cost of

learning is added to the cost of planning, augmenting the time window in which execution

occurs.

• Offline: One-shot learning exercise from traces. It allows a decoupling of the learning and

planning phases, ensuring that the cost of learning is not added to that of planning. However,

this one-time learning also means that in case of the injection of an ill defined domain, the

planner may never be able to recover before the end of the planning and the beginning of the

learning phase, thus staying blocked. Offline learning is the more popular learning mechanism.

Given the aforementioned information, our learning problem can be formulated as follows:

given a set of plan traces T, to learn a domain model m encompassing all the domain-applicable

actions which best explains the observed plan traces (see figure 1).

Figure 1: Formulation and Representation

We explain the aforementioned definitions in the form of a concrete example. A sample problem

in the Blocksworld domain with its solution sequence is represented in the figures 2 and 3.

AP problems and domains are typically represented in a standard language called the Planning

Domain Definition Language (PDDL). It has been the official language for the representation of

the problems and solutions in all of the International Planning Competitions (IPC) which have

been held from the year 1998 onwards.
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Figure 2: Problem definition

Figure 3: Solution steps

The PDDL representation of the actions and the sequence of steps leading to the final block

configuration can be summarized in the figure 4. The left of the figure represents the sequence of

actions of the Blocksworld domain, namely: pickup, putdown, stack, unstack . The right of the

figure represents a magnified view into two of the four actions, namely stack and unstack. In the

PDDL representation of these actions, the name of the action follows the : action tag. Similarly,

the parameters constituting the action signature follow the : parameters tag. The preconditions

and effects of the action are represented as a conjunction of predicates follow the :precondition

(equivalent to the pre list in Definition 2) and :effect (equivalent to the add and del lists in

Definition 2) tags respectively.

Choosing a good representation language which accurately models every action effect the

system might encounter and no others is essential. Any extra modeling capacity is wasted and

complicates learning, since the system will have to consider a larger number of potential models,

and be more likely to overfit (Pasula et al. (2007)).
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Figure 4: PDDL Representation Of the actions stack and unstack in the Blocksworld domain

Language Features Limitations

PDDL

(McDermott et al. (1998))

(i) Machine-readable, standardized

syntax for representing STRIPS

and other languages.

(ii) Has types, constants, predicates

and actions

Goal cannot be

included into

action models

PPDDL

(Younes et al. (2005))

(i) Extension of PDDL2.1

as the standard high

level planning language

for probabilistic planners

(ii) Supports actions with

probabilistic effects

Goal cannot be

included into

action models

STRIPS

(Fikes & Nilsson (1971))
Sublanguage of PDDL

(i) Accounts for

deterministic not

probabilistic actions

(ii) Requires exponential

number of samples to learn

OCL

(McCluskey

et al. (2002))

High level language with

representation centered

around objects instead

of states

Cannot be input

into standard

planners

RDDL

(Sanner (2010))

STRIPS + functional terms,

leading to higher expressiveness

Does not cater

to non-determinism

ADL

(Pednault (1989))

STRIPS operators augmented with

quantifiers and conditional effects,

resulting in situational

calculus-like expressiveness

Computational efficiency

proportional to

knowledge of initial state

Table 1: Representation Languages in AP (PDDL = Planning Domain Definition Language,

PPDDL = Probabilistic PDDL, OCL = Object Centered Language, RDDL = Relational Dynamic

influence Diagram Language, ADL = Action Description Language)

Some languages in the domain of AP and their features are summarized in the Table 1.

We return to our example of the Blocksworld domain, and refer to the action “pick-up”



A Review of Learning Planning Action Models 7

which represents the picking up of a block from the table or from another block. A syntactic

representation of the action “pick-up” of the Blocksworld domain in four prominent languages

(described in Table 1) can be found in Table 2.

Language Domain Action Definition

PDDL %Definition of the blocksworld domain

(define (domain BLOCKSWORLD)

%Declaration of used packages (strips, typing)

(:requirements :strips :typing)

%Declaration of constant objects

(:types block)

% Declaration of symbolic facts

(:predicates (on ?x - block ?y - block)

(ontable ?x - block) (clear ?x - block)

(handempty) (holding ?x - block))

% Action definition

(:action pick-up

:parameters (?x - block)

% Preconditions for action applicability

:precondition (and (clear ?x) (ontable ?x)

(handempty))

% Transitions for objects changed by the action

:effect(and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

PPDDL

% Action definition

(:action pick-up

:parameters (?x - block)

% Prevailing conditions for operator applicability

:precondition (and (clear ?x) (ontable ?x) )

% Transitions for objects changed by the action

:effect (and (when (not (handempty))

(probabilistic 0.00) (and (clear ?x) (ontable ?x))

(when (handempty)

(probabilistic 1.00) (and (not (ontable ?x))

(not (clear ?x)) (not (handempty)) (holding ?x)))

STRIPS

%Definition of the blocksworld domain

(define (domain BLOCKSWORLD)

%Declaration of used packages (strips)

(:requirements :strips)

% Declaration of symbolic facts

(:predicates (on ?x ?y)

(ontable ?x) (clear ?x)

(handempty) (holding ?x))

% Action definition

(:action pick-up

:parameters (?x)

% Preconditions for operator applicability

:precondition (and (clear ?x) (ontable ?x)

(handempty))

% Transitions for objects changed by action

:effect(and (not (ontable ?x)) (not (clear ?x))

(not (handempty)) (holding ?x)))

Action representation in STRIPS

:action (pick-up (b)

PRECOND : clear(b) ∧ ontable(b) ∧ handempty
EFFECT : ¬ontable(b) ∧ ¬clear(b)
∧¬handempty ∧ holding(x)
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OCL

% objects(Type and instances of each object)

objects(block, [block1])

objects(gripper, [tom])

% All predicates

predicates([on block(block,block),

on table(block), clear(block),

gripped(block,gripper), busy(gripper),

free(gripper)])

%Substrate Class (sc): “typical situations” that an

object of a particular sort may exist in as result of

planning process

operator( grip from table(B,G)

% prevail (preconditions for operator

applicability)

[]

% necessary (transitions for objects

changed by action)

[sc(block, B,[on table(B),clear(B)]

=>[gripped(B,G)]),

sc(gripper,G,[free(G)] =>[busy(G)])]

% conditional (optional conditions)

[]

)

Table 2: Representation of action ’pick-up’ of the Blocksworld domain in various languages

3 Characteristics of Learning Systems

During the course of this bibliographical review, we have been able to identify certain key criteria

which help us characterize the works in this paper. These criteria are described in the following

subsections. These criteria also serve as a guideline for creating a “cheat sheet” with the intent

of helping researchers starting out in the domain to choose a specific learning technique based

on the characteristics defined in this section. This “cheat sheet” (see figure 5) is not exhaustive,

and conceptualized bearing in mind the methodology adopted by the paper and the learning

techniques discussed in section 4. The branch in this figure dedicated to the learning of heuristics

is not detailed as it is beyond the scope of this paper. The characteristics are detailed in the

subsections below.

3.1 Representation Mechanism

This section tries to classify approaches based on the viewpoint the learning system is observed

from. The learning system can be seen as:

• Object-centered representation: Each object in the domain manipulated by an action

is represented by a single parameterized state machine. The action model is generally

represented in OCL (Object Centered Language).

• System-centered representation: A plan is viewed as an interleaved sequence of states

and actions representing the transition of the system from the initial state to the goal. The

action model in this case is generally represented in the form of PDDL and its sub-languages

or variants.

3.2 Inputs To The System

The inputs to the learning system as well as some other characteristics (quality, quantity etc.)

go a long way in determining the output and its quality. The inputs to the system may include:

the model, the background knowledge and the traces; all three in varying capacities.
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Figure 5: Guideline for choosing appropriate learning approach based on input requirements (OCL

= Object Centered Language, D = Deterministic, P = Probabilistic, FO = Fully Observable,

PO = Partially Observable, MAXSAT=Maximum Satisfiability, PGM=Probabilistic Graphical

Model, RL = Reinforcement Learning, SBL = Surprise Based Learning)

3.2.1 Model

Before the learning phase begins, the action model may exist in one of the following capacities:

• No Model: This refers to the fact that no information on the actions that constitute the

model is available in the beginning, and the entire model must be learnt from scratch.

• Partial Model: Some elements of the model are available to the learner in the beginning,

and the model is enriched with more knowledge at the end of the learning phase.

3.2.2 Background Knowledge

Background knowledge (BK) is mostly required only in the absence of complete and correct

domain knowledge. The availability of this BK is inversely proportional to the planning effort

required. For example in the blocksworld domain, “only one block can be on top of some other

block” or “a block being held means that the robotic arm is not empty” is an illustration of BK.

To compensate for the absence of domain knowledge, this BK may also comprise of object type

definitions as well as predicate and intermediate state information (Jilani et al. (2014)).

In most cases, it restricts the possible action choices at every system state, thus speeding

up planning. This BK, however, may also be difficult to acquire. Depending on the presence or

absence of background knowledge, the associated learning techniques may either be classified as

analytical or inductive respectively. These techniques are discussed in detail in section 4.1.

3.2.3 Traces

Traces are the residue or the proof of the execution of a series of actions in a domain. They

represent a summary of the executed action and the resulting state of the world. These plan

execution traces may be classified into pure or adulterated as follows:
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• Noisy: The traces can be adulterated because of sensor miscalibration or faulty annotation

by a domain expert. For example, AMAN (Action-Model Acquisition from Noisy plan traces)

(Zhuo et al. (2013)) falls into this category.

• Ideal: There is no discrepancy between the ideal action and the recorded action. For example,

OBSERVER (Wang (1996)).

3.3 System Outputs

3.3.1 Action Granularity

Irrespective of whether the trace is represented in form of action sequences or state-action

interleavings, the actions can be classified as atomic or grouped. Atomic actions are unitary

actions applied to a system state to effectuate a transition. Macro actions, on the other hand, are

a group of actions applied at a time point like a single action, representing high level tasks while

encompassing low level details (Newton et al. (2007, 2008, 2010)). From a broader perspective,

macros are like procedures in the programming realm. They are promising because they are

capable of aggregating several steps in the state space, and providing extended search space

visibility to the planner. Some merits of using macros include:

• Macros generated from plans of smaller problems are scalable and can be evaluated against

larger problems.

• Macros allow planning of several steps at a time and allow for re-usability in plan snippets.

Knowledge acquired from macros can be integrated into the planner or encoded into the

domain (Newton et al. (2007, 2008, 2010)).

Some limitations are as follows:

• They increase the processing time of the planner, adding more branches in the search tree

at every point in time. However, the problem is significantly reduced by search tree pruning

used by many recent planners (Newton et al. (2007)).

• Macros often result in longer plans than when no macro is used.

3.3.2 State Observability and Action Effects

The observability of the current state of the system after the action execution may either be

perfectly certain or flawed because of faulty sensor calibration. In cases of faulty calibration, the

state of the system is only partially observable at run time, thus observations return a set of

states (called as “belief states”) instead of a single state (Ghallab et al. (2004)).

Similarly, actions are not necessarily deterministic (single outcome on execution) but may

be stochastic, that is: capable of producing multiple outcomes, each of them equipped with a

different execution probability.

Keeping these variations of action effects and state observability in mind, we define four

categories of implementations:

• Deterministic effects, Full state observability: For example, the EXPO (Gil (1992)) system.

• Deterministic Effects, Partial State Observability: In this family, the system may be in one

of a set of “belief states” after the execution of each action (Ghallab et al. (2004)).

For example, the ARPlaces system (Stulp et al. (2012)).

• Probabilistic effects, Full State Observability: for example (Jiménez et al. (2012), Deshpande

et al. (2007)).

• Probabilistic Effects, Partial State Observability: Barring a few initial works in this area

(Yoon & Kambhampati (2007)), this classification remains as the most understudied one till

date.
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3.4 Learnt Model Granularity

Learning systems can be also be characterized according to the sheer amount of detail represented

in the output representation of the learnt model. This can range from a bare-bones STRIPS

model produced in the output (Zhuo & Kambhampati (2013)), to PDDL models with quantifiers

and logical implications (Zhuo et al. (2010)), to PDDL models with static predicates (predicates

existing implicitly in operator preconditions and never appearing in plans e.g. Jilani et al. (2015)).

Granularity is used a criteria to classify the works summarized in the Table 3 based on the richness

of the information learnt based on the amount of input provided.

4 Type of Learning

This section sheds light on some classical learning techniques which have been around and in use

for learning action models, as well as newer and interesting techniques which have emerged with

recent advancements and the broadening spectrum of ML techniques. The algorithms described

in this paper are further summarized in the form of Table 3. These tables provide a bird’s eye

view of the key characteristics of each algorithm in terms of input provided, output produced,

application environment etc. These tables are described with the intent of serving someone who

is new to the domain and is looking to situate their problem in the context of a previously done

work.

4.1 Learning Techniques based on availability of background knowledge

As discussed in section 3.2.2, the learning techniques based on the absence or presence of

background knowledge are classified into inductive and analytical learning techniques respectively.

4.1.1 Inductive Learning
The learning system is fed with a hypothesis space H and a set of traces T . The desired output is a

hypothesis from the space H that is consistent with these traces (Zimmermann & Kambhampati

(2003)). Inductive techniques are useful because they can identify patterns and generalize over

many examples in the absence of a domain model. One prominent inductive learning technique

is that of regression tree learning. Regression trees are capable of predicting continuous variables

and modeling noise in the data. In comparison to a decision tree which predicts along a category

(i.e. class), a regression tree performs value prediction along the dependent dimension for all

observations (Balac et al. (2000)).

The PELA (Planning, Execution and Learning Architecture) system (Jiménez et al. (2008))

performs the three functions suggested in its name to generate probabilistic rules from plan

executions and compile them to refine its planning model. This is done by performing multiclass

classification, which consists of using the TDIDT (Top-Down Induction of Decision Trees)

(Quinlan (1986)) algorithm to find the smallest decision tree that fits a given data set. A decision

tree is built from examples from which probabilities are captured to refine its initial model.

In ERA (Exploration, Regression tree induction and Action models) (Balac et al. (2000)), a robot

learns action models for its navigation under various terrain conditions. With each exploration

step, the robot records the executed action, the current terrain conditions and positions before

and after the action execution. When exploration is finished, the data is divided into groups based

on action type and a regression tree induction algorithm is applied to the data for each action

type. This algorithm then builds a regression tree representing the model and expected outcome

of that particular action.

LOCM (Cresswell et al. (2009, 2013)) uses an object-centered representation and learns a set of

parameterized Finite State Machines (FSM), where each FSM represents pre and post-conditions

of the domain operators (Jilani et al. (2014)). A planning domain consists of sets (called sorts)

of object instances, where each object behaves in the same way as any other object in its sort.

LOCM first collects the set of all transitions in the example sequences. It then derives a set of
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state machines, each of which can be identified with a sort. It then performs inductive learning

and identifies state parameters, providing correlations between the action parameters and state

parameters occurring in the start/end states of transitions (Cresswell et al. (2009, 2013)). The

limitation of LOCM is that it provides a single state machine to represent each object, which is

overcome by LOCM2 (Cresswell & Gregory (2011)).

LOCM2 (Cresswell & Gregory (2011)) is generalized and heuristic in nature to allow multiple

state machines to represent a single object. This extends the coverage of domains for which a

domain model can be learned. Unlike LOCM, LOCM2 constructs many possible solutions to the

same problem. The heuristic is used to select a single solution from these possible solutions. This

means that the learned models produce plans which are shorter than optimal solutions. Note that

both systems gather only dynamic properties of a planning domain and not the static ones. This

is a drawback as many systems use static predicates to contain the set of possible actions. This

limitation is addressed by the NLOCM (Numeric LOCM) system.

NLOCM (Gregory & Lindsay (2016)) extends classical planning1 to numerical planning i.e.

learns action costs in planning domains from state transition sequences using a constraint

programming approach. It uses the LOCM2 and LOP systems as pre-processing steps. While

the LOCM and LOCM2 algorithms only learn the dynamic aspects of the domain, the LOP

system (Gregory P. & Cresswell (2015)) learns static relations. NLOCM extends the FSM of

LOCM to an automata with numeric weights on the important features. A set of templates is

defined for each operator which contributes to the action cost of that operator in the domain. The

algorithm successively solves more and more complex template sets until a satisfying assignment

which minimizes the complexity cost is found. These templates are used to find the valid cost

models.

Opmaker (McCluskey et al. (2002)) is a mixed initiative tool to induce operators from action

sequences, domain knowledge and user interaction. These operators are parameterized and

hierarchical in nature. OCL is used to model the domain. For each action in the training solution

sequence, it asks the user to input, if needed, the target state that each object would occupy after

the action execution, thus creating its operator schema step-by-step. It is implemented inside

a graphic tool called GIPO (Graphical Interface for Planning with Objects), which facilitates

user interaction, domain modeling and operator induction (McCluskey et al. (2002), Jilani et al.

(2014)).

Opmaker2 (McCluskey et al. (2009)) is an improvement over Opmaker such that it eliminates

the dependency on the user for intermediate state information. After Opmaker2 automatically

infers this intermediate state information, it proceeds in the same fashion as Opmaker and induces

the same operators. The main advantage of Opmaker2 is that it computes its own intermediate

states using a combination of heuristics and inference from the partial domain model (PDM),

example sequences and solutions. In Opmaker2, the DetermineStates procedure performs this

function by tracking the changing states of each object referred to in the training example, taking

advantage of the static and other information in the PDM. The output from DetermineStates

is, for each object, a map associating each object to a unique state value at each point in the

training sequence. Once the map has been generated, the techniques of the original Opmaker

algorithm are used to create an operator schema.

In Mart́ınez et al. (2016), the authors learn a probabilistic model including exogenous effects

(predicates not related to any action execution) from a set of state transitions. They use the LFIT

(Learning From Interpretation Transitions) framework (Inoue et al. (2014)) which uses ILP to

induce a set of propositional rules that orchestrate the given input transitions. This is done by

first transforming grounded to relational transitions, then relational transitions to probabilistic

1Branch of planning in which predicates are propositional: they do not change unless acted upon by
the planning agent. Moreover, all relevant attributes can be observed at any time, the impact of action
execution on the environment is known and deterministic, the effects of action execution occur instantly
and so on (Zimmermann & Kambhampati (2003)).
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rules. Planning operators can be reconstructed from probabilistic rules. A score function evaluates

the operators, and a heuristic search algorithm selects the set of operators that maximize the

score.

4.1.2 Analytical Learning
The learning system has at its disposal the same hypothesis space H and traces as in the case

of inductive learning but with an additional input: BK that can explain traces. The desired

output is a hypothesis from the space H that is consistent with both the traces and BK. Analytic

learning relies on BK to analyze a given trace and identify its relevant features. Any system

which relies on domain knowledge, predicate information or intermediate state information can

be classified under this category. More details about analytic learning techniques can be found

in (Zimmermann & Kambhampati (2003)).

4.2 Genetic and Evolutionary algorithm based approaches

A series of approaches which use evolutionary algorithms to learn macro actions in the absence of

any kind of additional knowledge may be classified under this category. An approach by (Newton

et al. (2007)) learns macro actions given a domain and action sequences. It is generic in the sense

that it does not require structural knowledge about the domain or the planner, but learns from

plans generated for random planners and domains using a genetic algorithm .

Another approach by the same author (Newton & Levine (2010)) learns macros as well as

macro-sets (collection of macros which collectively perform well). In this work, once a macro

is learned, it is tinkered with by adding, deleting and modifying existing and new actions in a

bid to learn how the new macro performs. In the first phase, only individual macros are learned

using actions from generalized plans produced by solving input problems. In the second phase,

macro-sets are learned using the macro pool obtained in the first phase, including only those that

have fitness values greater than a certain minimum level.

In a third approach by the same author (Newton et al. (2008)), non-observable macros

i.e. macros that are not observable from traces are learned. This is done with the intent

of constructing a comprehensive macro-library for future reuse. Learning is based on an

evolutionary algorithm. Evolutionary algorithms repeatedly generate new macros (in every

epoch) from current individuals by using given genetic operators: only the individuals with the

best fitness values survive through successive epochs. The fitness function is based on three

measures: Cover, Score, Point. Cover evaluates the percentage of problems solved when the

macro is used. Score measures the time gained or lost over all the problems solved with the

augmented domain compared to when they are solved using the original domain. Point measures

the percentage of problems solved with the augmented domain which take less or equal time

compared to when they are solved using the original domain.

4.3 Reinforcement Learning

Reinforcement learning (RL) is a special case of inductive learning, and more specifically

characterizes a learning problem instead of a learning technique (Sutton & Barto (1998)). An

RL problem is composed of three principal elements: (i) the goal an agent must achieve, (ii) a

stochastic environment, and (iii) actions an agent takes to modify the state of the environment

(Sutton & Barto (1998)). RL takes place during the process of plan building. Through trial-

and-error online traversal of states, an optimal policy (mapping from perceived states of the

environment to actions to be taken when in those states) is found for achieving the agent’s

goals (Zimmermann & Kambhampati (2003)). The strength of RL lies in its ability to handle

dynamic and stochastic environments where the domain model is either nonexistent or incomplete.

The benefits of an RL system are two-fold: on one hand, it improves plan quality (the system
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progressively moves towards finding an optimal policy) and, on the other hand, it can learn

the domain model. One of the major drawbacks of RL is that of generalization: in its bid

to achieve domain-specific goals, it cannot gather general knowledge of the system dynamics,

leading to a problem of generalization. Despite its drawbacks, RL played a major role in the

success of real life systems such as the recent AlphaGo (Silver et al. (2016)). AlphaGo used policy

gradient RL (policy represented by own function approximator) to optimize a deep convolutional

neural network by simulating games of the network playing against previous versions of itself and

rewarding itself for taking moves that gave it wins.

The LOPE (Learning by Observation in Planning Environments) (Garćıa-Mart́ınez & Borrajo

(2000)) system learned planning operators by observing the consequences of the execution of

planned actions in the environment. In the beginning, the system is a blank slate and has

no knowledge, it perceives the initial situation, and selects a random action to execute in the

environment. It then loops by (1) executing an action, (2) perceiving the resulting situation of

the action execution and its utility, (3) learning a model from this perception and (4) planning

for further interaction with the environment. A global reinforcement mechanism either rewards

or punishes operators based on their success in predicting the environment behavior. This is done

by a virtual generalized Q table (associates each (s, a) pair with an estimate of Q(s, a), where s

and a are state and action respectively, and Q(s, a) is the expected reward for taking action a in

state s).

In an approach by (Safaei & Ghassem-Sani (2007)), probabilistic planning operators are

learned in an incremental fashion. It has an integrated learning-planning system consisting of

(i) an observation module for operator learning, (ii) an acting module for planning, and (iii)

a control center for generating goals to further test the algorithm. This control center also

dynamically assigns the reward function.

4.3.1 Relational Reinforcement Learning

Relational reinforcement learning is the combination between reinforcement learning and induc-

tive logic programming (Dz̃eroski et al. (2001)). Given a (i) possible state set S, (ii) possible

action set A, (iii) state transition function δ : S ×A→ S, (iv) reward function r : S ×A→ S,

(v) background knowledge and (vi) declarative bias for learning policy representations; the task

is finding a policy π for selecting actions π : S→A that maximizes the expected reward. RRL

employs the Q-learning method (learns policies which are represented as value-assigned state-

action pairs) using a relational regression tree. Due to the use of a more expressive relational

language, RRL can be applied to a wider array of problems. It also allows the reuse of results of

previous learning phases and their application to novel and more challenging situations.

MARLIE (Model-Assisted Reinforcement Learning in Expressive languages) is the first RRL

system that learns a transition and reward function online (Croonenborghs et al. (2007)).

MARLIE builds probabilistic models accounting for the uncertainty of world dynamics. It uses

the TG algorithm (Driessens et al. (2001)) to learn relational decision trees. The decision trees

are not restructured on the appearance of new examples. However their fully relational aspect

allows them to be applicable to a wider range of problems.

IRALe (Incremental Relational Action Learning algorithm) (Rodrigues et al. (2011)) produces

a STRIPS-like (see Table 1) action model consisting of a set of rules by combining RRL and

active learning. At first, the action model is an empty rule-set. The interactions between the

agent and the environment produce examples. In the event of a counter example (an example

that contradicts the model), the example has to be revised by modifying or adding one or more

rules. This contradiction is determined by matching operations performed between the rules and

examples, and each identified counter-example leads to either a specialization or a generalization.

The agent also performs active learning, that is, in every state it chooses an action that it expects

to lead to a generalization of the model. IRALe is mainly bottom-up, and new opportunities
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for generalizing the model will decrease the number of examples required to converge to the

correct model. It uses a formalism called Extended Deterministic STRIPS (EDS), which is more

expressive than traditional STRIPS.

4.4 Uncertainty-based techniques

4.4.1 Markov Logic Networks

A Markov logic network (Richardson & Domingos (2006)) is a combination of first order logic and

probabilistic graphical models. It is a first-order knowledge base consisting of weighted formulas,

and can be equated to a template used to construct Markov networks. They have numerous

advantages. From the probability point of view, MLNs provide a language scalable enough to

specify very large Markov networks, and the ability to inject a comprehensive range of domain

knowledge into them. From the first-order logic point of view, MLNs are equipped with the

ability to soundly handle imperfect knowledge and uncertainty. For example, the LAMP (Learning

Action Models from Plan traces) system (Zhuo et al. (2010)) learns action models with quantifiers

and logical implications using MLNs. Firstly, the input plan traces (state-action inter leavings)

are encoded into propositional formulas (conjunction of ground literals) to store into a database

as a collection of facts. These formulas are very close to PDDL (refer to Table 1) in terms of

representation. Secondly, candidate formulas are generated according to the predicate lists and

domain constraints. Thirdly, a Markov Logic Network (MLN) uses the formulas generated in the

above two steps to learn the corresponding weights of formulas and select the most likely subset

from the candidate formula set. Finally, this subset is transformed into the final action models

(Zhuo et al. (2010)).

4.4.2 Noisy Trace Treatment Approaches

As explained in section 3.2.3, sensor miscalibration may cause introduce noise giving birth to

uncertainty. For example, AMAN (Action-Model Acquisition from Noisy plan traces) handles

noise (Zhuo et al. (2013)) by finding a domain model that best explains the observed noisy plan

traces using a probabilistic graphical model based approach. The only input to the learning phase

are traces in the form of noisy action sequences. A probabilistic graphical model (PGM, graphical

representation of dependence among random variables) is used to capture the relationship between

the current state, correct action, observed action and the domain model. First, a set of all possible

candidate models is generated. Then the observed noisy plan traces are used to predict the

correct plan traces based on the PGM. Then, the correct plan traces are executed to calculate

the reward of the predicted correct plan traces according to a predefined reward function. This

reward function output is used to update the weights of the candidate models. The model with

the highest weight is rendered as the model being searched for (Jilani et al. (2014)).

In a series of works by (Pasula et al. (2004, 2007), Zettlemoyer et al. (2005)), the goal is

to learn action models in noisy and stochastic domains. This is done by: (i) Allowing rules to

refer to objects not mentioned in the signature of the action. (ii) Relaxing the frame assumption

(unspecified atoms in the operator’s effects remain unchanged) and allowing the existence of

“noise-induced” changes in the world. (iii) Extending the language: introducing newer and more

complex like existential quantification, universal quantification, counting and transitive closure.

It allows to learn probabilistic rules which are affected by a factor of noise and include deictic

references, thus are called Noisy Deictic Rules (NDR). Deictic references are used to identify

objects, even those which are not directly affected by the mentioned predicates. The works

conclude that the addition of noise and deictic references increases the quality of the learned rules.
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4.5 Surprise Based Learning (SBL)

In a learning system, a surprise is produced if the latest prediction and the latest observation

are considerably different (Ranasinghe & Shen (2008)). Once an action is performed, the world

state is sensed by a perceptor module which extracts sensor information. If the algorithm had

made a prediction, it is verified by the surprise analyzer. If the prediction turns out incorrect,

the model modifier adjusts the world model accordingly. Based on the updated model, the action

selector will perform the next action so as to repeat the learning cycle. This notion of isolating

faults is ideologically equivalent to the model based diagnosis (MBD) approaches to explain faults

presented in (De Jonge et al. (2009), Kalech (2012), Micalizio & Torasso (2014)).

A series of approaches based on SBL have used Goal Driven Autonomy (GDA). GDA

(Weber et al. (2012)) is a conceptual model for creating an autonomous agent that (i) monitors

expectations during plan execution (ii) detects the occurrence of discrepancies, (iii) builds

explanations and new goals to pursue in the case of failures. In order to identify when planning

failures occur, a GDA agent requires the planning component to generate an expectation of world

state after executing each action in the execution environment. The GDA model thus provides a

framework for creating agents capable of responding to unforeseen failures during plan execution

in complex environments.

FOOLMETWICE (Molineaux & Aha (2014)) is a goal-oriented algorithm which learns from

surprises. It tries to find inaccuracies in the environment model by attempting to explain all

received observations. When a consistent explanation cannot be found, it infers that some

unknown event happened that is not represented in the model. It then creates a model of the

preconditions of these events by generalizing over the states that trigger them.

LIVE (Shen (1993)) is a discrimination-based learning method that creates general rules by

noticing the changes in the environment, then specifying the rules by explaining their failures

in prediction. When a rule executes and the predicted outcome does not match the observation,

LIVE explores and creates new sibling rules. These rules are usually created by comparing the

difference between a successful previous execution and the current failed one. New rules can

accordingly be made more specific/generic.

LGDA (Learning GDA) (Jaidee et al. (2011)) is a GDA algorithm that uses case-based rea-

soning to map state-action pairs to a distribution over expected states, and map goal-discrepancy

pairs to a value distribution over discrepancy-resolution goals. It also uses reinforcement learning

to learn the expected values of the goals. It models goal formulation as an RL problem in which

the value of a goal is estimated based on the expected future reward obtained on achieving it.

OBSERVER (Wang (1996)) is an integrated learning, planning and execution system which

incrementally learns planning operators. The learning module learns operator preconditions and

effects by observing experts executing sample problems, then refining the operators collected from

these observations. The operator preconditions are learned by creating and updating both the

most specific and most general representations of the preconditions based on trace executions.

Operator effects are learned by generalizing the delta-state (the difference between pre-state and

post-state) from multiple observations. This learning mechanism adopted by OBSERVER can

also be seen in many following works (Walsh & Littman (2008), Stern & Brendan (2017)).

The EXPO (Gil (1992)) system refines incomplete planning operators by a method called

the ORM (operator refinement method). EXPO does this by generating plans and monitoring

their execution to detect the difference between the predicted and observed state. EXPO then

constructs a set of specific hypotheses to fix the detected differences. After heuristic filtration, each

hypothesis is experimentally tested and a plan is constructed to achieve the required situation

(Jiménez et al. (2012)).

The ARTUE (Autonomous Response To Unexpected Events) system (Molineaux et al. (2010))

dynamically reasons about the goals to pursue when encountered with unexpected environmental

situations. It consists of four principal components. A Hierarchical Task Network (HTN) planner

reasons about exogenous events. A goal generation component reasons about and generates new
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goals. An explanation component reasons about hidden information in the environment. Finally,

a goal management component manages and communicates the goals to the planner. ARTUE

handles unexpected environmental changes by first explaining those changes, then generating new

goals incorporating the explained knowledge about hidden environmental aspects.

4.6 Transfer Learning

Transfer learning is the technique which, given a source task and target task, aims to extract the

knowledge from the source task and apply it to the target task in a situation where the latter

has fewer training data (Pan & Yang (2010)). Most machine learning methods work well only

under a common assumption: the training and test data are drawn from the same probability

distribution. However, when the distribution changes, most models need to be reconstructed,

trained and tested from scratch using data generated from the new probability distribution. In

many real world applications, it is expensive, if not impossible, to regenerate the needed training

data for model reconstruction. In order to reduce the effort to regenerate the training data, the

possibility of knowledge transfer between domains would be ideal. Transfer learning (Pan & Yang

(2010)) allows the domains, tasks, and probability distributions used in training and testing to

be different. For example, we may find that learning to recognize apples might help to recognize

oranges. Some characteristics of transfer learning systems include: the type of knowledge to be

transfered, situation of transfer and technique of transfer. As far as type of knowledge goes,

some knowledge is specific to individual domains, while other may be common between different

domains such that it may help improve performance for the target domain. After discovering

which knowledge can be transferred, learning algorithms need to be developed to perform the

knowledge transfer. The situation of transfer is an important characteristic as while it is important

to know the situation in which a transfer must occur, it is equally important to know the situations

in which transfer must not occur. In some cases, when the source domain and target domain are

not related to each other, thus a brute-force transfer may be highly unsuccessful. In the worst

case, it may even degrade the performance of the target domain, a situation referred to as negative

transfer (for example, when an Indian or British tourist in Europe learns to drive on the left side

of the road).

The advantages of using transfer learning are clear: a change of features, domains, tasks, and

probability distributions from the training to the testing phase does not require the underlying

learning model to be rebuilt. The disadvantages are listed as follows:

• Most existing transfer learning algorithms assume that the source and target domains are

related to each other in some sense. However, if the assumption does not hold, negative

transfer may happen. In order to avoid negative transfer learning, measures to ascertain

transferability between source domains and target domains needs to be studied. Based on

this study of possible transferability, we can then select relevant source domains/tasks to

extract knowledge for learning the target domains/tasks.

• Most existing transfer learning algorithms so far have focused on improving generalization

across different distributions between source and target domains or tasks. In doing so, they

assumed that the feature spaces between the source and target domains are the same.

However, in many applications, we may wish to transfer knowledge across domains or tasks

that have different feature spaces. This type of transfer learning is referred to as heterogeneous

transfer learning, which remains a challenge yet to be overcome (Pan & Yang (2010)).

A perfect example of transfer learning is the TRAMP (Transfer learning Action Models

for Planning) system. TRAMP, given a set of traces in the target domain and expert-created

domain models in the source domain, learns action models in the target domain by transferring

knowledge from the source domain. TRAMP first encodes the input plan traces, which are

state-action interleavings, into propositional formulas then as databases. Second, TRAMP

encodes the action models from the source domains to a propositional formula set. Thirdly,
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TRAMP generates a candidate formula set to structure the target action models, building

mappings between the source and target domains by searching keywords of predicates and

actions from the Web then calculating similarities of Web pages to bridge the gap between

the two and transfer knowledge. Finally, TRAMP learns action models from the transferred

knowledge with the help of Markov Logic Networks (Zhuo & Yang (2014)).

4.7 MAX-SAT based approaches

A weighted MAX-SAT (maximum satisfiability) problem can be stated as: given a collection C of

m clauses (C1, ..., Cm) involving the disjunction of n logical variables, with clause weights wi, find

a truth assignment of the logical variables that maximizes the total weight of the satisfied clauses

in C (Zhuo & Yang (2014)). Among works that use MAX-SAT, the LAWS (Learn Action models

with transferring knowledge from a related source domain via Web search) system (Zhuo et al.

(2011)) makes use of action models already created beforehand in other source domains, to help

learn models in the target domain. The target domain and a related source domain are bridged

by searching web pages related to the two domains, and then building a mapping between them

by means of a similarity function which calculates the similarity between their corresponding

Web pages. The similarity is calculated using the Kullback-Leibler (KL) divergence. Based on

the calculated similarity, a set of weighted constraints, called web constraints, are built. Other

constraints such as state, action and plan constraints, are also built from traces in the target

domain. All the above constraints are solved using a weighted MAX-SAT solver, and target

domain action models are reconstructed from the satisfied clauses.

The ARMS (Action-Relation Modelling System) (Yang et al. (2007)) system learns action

models from traces which consist of action sequences occasionally interleaved with intermediate

states. The parsed predicates are encoded in the form of intra-operator constraints called

information and action constraints respected by these predicates. Frequent action pairs in the

traces are identified with the help of the apriori algorithm (Agrawal & Srikant (1994)), which are

then used to obtain a set of intra-operator plan constraints. These constraints are then solved

with the help of a SAT solver. The constraints which amount to true are used to reconstruct the

actions of the domain model. The process iterates until all actions are modeled.

The RIM (Refining Incomplete planning domain Models through plan traces) system (Zhuo

et al. (2013)) enriches its partial model during the process of learning. It constructs sets of soft

and hard constraints from incomplete models and plan traces. These constraints are again intra-

operator and inter-operator ones that must be satisfied by atomic actions as well as macro-actions.

The novelty of this approach is that it learns macro-actions as well. Macro-actions increase the

accuracy of the incomplete model. These constraints are solved with the help of a SAT solver.

The constraints which amount to true are used to obtain sets of macro-actions and refined action

models.

The Lammas (Learning Models for Multi-Agent Systems) system (Zhuo et al. (2013)) learns

action models from input plan traces in the same lines of ARMS, however extended to a multi-

agent setting. Lammas also encodes the input plan traces as constraints which fall into one of

the following three categories: (1) correctness constraints imposed on the relationship between

actions in plan traces to ensure that causal links in the plan traces is not broken, (2) action

constraints encoding the actions based on STRIPS semantics and (3) coordination constraints

encoded from an Agent Interaction Graph (AIG) describing inter-agent interactions. The learnt

actions are represented in the MA-STRIPS language which is more adapted for a multi-agent

setting (Brafman & Domshlak (2008)).
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4.8 Supervised Learning Based Approaches

In (Mourão et al. (2008)), the authors learn the effects of an agent’s actions given a set of

actions and their preconditions, in a partially observable and noisy environment. The input

to the learning mechanism uses a vector representation that encodes a description of the

action being performed and the state at which the action is applied. The final input vector

representing a particular action applied to a certain state has the form: (actions, object−
independent properties, object− dependent properties). The output vector has the form:

(object− independent properties, object− dependent properties). The task is to learn the

associations between action-precondition pairs and their effects, that is, rules of the form

(A, Pre(A)→ Eff(A)). The learning problem has a set of binary classification problems, and

the perceptron is used as a classifier. The prediction consists of calculating the kernel matrix,

and the kernel trick is used in the case of non-linearly separable data (Mourão et al. (2008)).

Another work by the same authors (Mourão et al. (2010)) is based on the same lines, except

that a voted kernel perceptron learning model with a Disjunctive Normal Form (DNF) kernel

(K(x, y) = 2same(x,y), where same(x, y) is the number of bits with equal values in x and y) is

used, allowing the perceptron to run over the entire space of possible rules (Sadohara (2001)).

Action and state information is encoded in a vector representation as input to the learning model,

and resulting state changes are produced in the form of an output vector. A third approach by the

same authors (Mourão et al. (2012)) decomposes the learning problem into two stages: learning

implicit action models and progressively deriving explicit rules from the implicit models. Rules

are extracted from classifiers based on the notion that more discriminative features will contribute

more to the classifier’s objective function. The classifiers use the 3-DNF kernel.

A very recent work by the same authors (Mourão (2014)) learns probabilistic planning

operators from noisy traces. While the precedent approaches find the most probable outcome,

this approach emphasizes on generating alternately less probable outcomes from noisy traces.

The rule fragments (partial precondition and single effect predicates) derived from classifiers that

only contributed to the preconditions provide for a source of alternative effects for the planning

operator. An alternative rule is created by reusing the precondition from the planning operator,

and by one-by-one combining the effects of the rule fragments. Each new effect is accepted if the

resulting rule gives better F-scores than the previous rule on the remaining training examples.

Once all the rule fragments have been considered, we delete the training examples covered by

the new rule as well as those fragments that contributed to the new rule. This process iterates

until no further rules can be created.

5 Applications and Open Issues

This section is dedicated to highlight some of the feats of AP in terms of deployments in real-

world applications serving actual needs. It then proceeds to account for some key issues which

continue to plague the domain.

5.1 Applications of AP

Planning has found its place into an array of real world applications which range from human

multi-drones search-and-rescue missions (Bevacqua et al. (2015)), single-operator multi-aircraft

guidance (Strenzke & Schulte (2011)) to military evacuation operations (Muñoz-Avila et al.

(1999)).

Robotics is one of the most appealing application areas for AP. The fast-developing world

of social robotics has cited planning and its ability to scale to real-world problems posed by

robotics as a key issue to resolve. This is because most work done in AP is focused on action

planning, whereas actions are not the only aspects that a robot reasons upon. Planning also
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needs to account for temporal, causal, resource and information dependencies between compu-

tational, perceptual, and actuation components (Di Rocco et al. (2013)). This is increasingly

falling into place. For example, the ROBIL team in the DARPA robotics challenge (DRC)

(www.darpa.mil/NewsEvents/Releases/2012/10/24.aspx) used hierarchical plans for runtime

monitoring of resources (Cohen et al. (2015)). The DARPA Grand Challenge is pivoted on path

planning for autonomous vehicles, thus is beyond the scope of this paper. All in all, these works

are gradual steps towards conceptualizing autonomous systems.

Achieving autonomous systems is one of the most prominent challenges of AP. AI planners

have been successfully used in a wide range of applications with the intent of contributing

towards the creation of autonomous systems. However AP alone is not sufficient to achieve such

kind of autonomy, and requires the amalgamation of perception, comprehension and projection

capabilities in order to achieve contextual awareness leading to fully autonomous behavior

(Endsley & Garland (2000)). From the perspective of AI planning and within the scope of this

paper, we present a list of non-exhaustive guidelines that a robotic system can follow in order to

be proclaimed autonomous:

• Capability of Autonomous Exploration and Conservative Planning: a robot must be capable

of observing its surroundings using onboard sensors, selecting from a set of candidate

locations, planning a trajectory and autonomously navigating to the selected location

(Gregory et al. (2016)). Conservative planning is a method that seeks to exploit the classical

planning framework, while simultaneously recognizing the opportunities (unexpected events).

These opportunities are then used to increase the plan utility during its execution (Cashmore

et al. (2016a)).

• Persistent Autonomy: capable of planning long-term behaviour and performing activity over

extended periods of time without human intervention (Cashmore et al. (2016b)).

• Interleaving with other tasks: This entails the combination of two types of planners: AI task

planners that handle the high-level symbolic reasoning part and motion planners that plan

the movements in space and check the geometrical feasibility of the plans output by the task

planners (Ferrer-Mestres et al. (2015)). It also entails concurrent planning and execution

abilities so that the robot can achieve the goal as quickly as possible.

AP techniques have also been used extensively in the field of space exploration, notably in

satellite, rover and spacecraft missions. For example, the Deep Space One employed a constraint-

based integrated temporal planner and resource scheduler which performed periodic planning

to manage resources and develop plans to achieve goals in a timely manner (Muscettola et al.

(1998), Pell et al. (1997)).

5.2 Open Issues

Despite the aforementioned joint advances in the fields of AP and ML, there remain some issues

which continue to cloud the domain. Some of the key issues are highlighted and discussed below.

• Fully Automated Planning-boon or bane? The necessity of fully automated planning

can be debated in a two-fold fashion:

– Is it rational to envision a fully automated learning-planning-execution sys-

tem? Despite the usage of the most comprehensive and state-of-the-art ML techniques,

there is a certain amount of user-provided domain knowledge which cannot be discounted;

especially bearing in mind the direct correlation between the speed of learning and the

amount of domain knowledge furnished. Thus even the highest level of automation cannot

weed out the need and advantages of human intervention.

– Is a fully automated system needed at all? Even the most competent ML system

is somewhat of questionable use if it is not designed to factor in human’s desire of being

able to control its surroundings and automated systems. Modern day users, aware of the
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fact that an ideal system is difficult to envision, prefer a system that can not only be

useful in a real-life situation, but can also be at the mercy of the user, such that the user

gets autonomy over the representation mechanism, language, kind of traces etc.

• Ignored Aspects:

– Re-usable knowledge: The cross domain transfer of knowledge from an existing domain

to enrich the model learning process in an alien domain (similar to the source domain)

with few training examples, is an approach which has come into light recently with a

series of works in transfer learning (Pan & Yang (2010)).

– Learning during plan execution: this refers to a situation where the expected and

obtained system state after an action execution are not in accord with each other. It

arises due to a flawed domain theory. It has been a major topic of neglect owing to the

fact that a flawed domain theory is somewhat of an alien concept in classical planning.

This has, however, been a topic of greater attention given a flurry of approaches which

have been pivoted on Surprise Based Learning (SBL) (Ranasinghe & Shen (2008)).

• Learning with the time dimension: Time plays an imperative role in most real life

domains. For example, each dialogue in a Human-Robot Interaction (HRI) is composed of an

utterance further accompanied by gestural, body and eye movements; all of them interleaved

in a narrow time frame. These interactions may thus be represented by a time sequence, with

the intent of learning the underlying action model. Barring some initial works in this area,

time remains an interesting dimension to explore ((Zhang et al. (2015)), Guillame-Bert &

Crowley (2012)).

• Direct re-applicability of learned model: Direct re-use of a learned model by a planner

continues to remain a concern. A model that has been learned by applying ML techniques is

more often than not incomplete, more concretely: inadept to be fed to a planner to directly

generate plans. It needs to be retouched and fine tuned by a domain expert in order to be

reusable. This marks a stark incapability of prominently used machine learning techniques

to be comprehensive, leaving scope for more research.

• Extension of classical planning to a full scope domain: The applicability of the

aforementioned approaches, most of which have been tested on highly simplified toy domains

and not in real scenarios, remains an issue to be addressed. As mentioned in section 2, classical

planning is founded on restrictive assumptions and dwells in determinism. However, the real

world is laced with unpredictability: a predicate might switch its value spontaneously, the

world may have hidden variables, the exact impact of actions may be unpredictable and

so on (Zimmermann & Kambhampati (2003)). Thus, the application of a model learned

on benchmark traces into the real world remains a point to ponder about. Barring a few

works (Ortiz et al. (2013)), a fair share of algorithms that treat noisy traces are learning on

benchmark traces which they have been “self-adulterated” to produce noisy ones. This can

be seen as a means of a conscious steering of the learning algorithm towards a higher rate of

learning, raising questions over their neutrality.

6 Conclusion

Automated Planning (AP) has been gaining steam ever since studies into human problem

solving, operations research (primarily state space search) and theorem proving started gaining

momentum. This is because the notion of a series of actions orchestrating the accomplishment

of a goal is one that resonates amongst all these fields. However, depending on the domain

characteristics, its constituent actions are difficult to quantify thus codify. Planners are now

equipped with the capability to reverse engineer the signatures, preconditions and effects of

the domain-applicable actions. This reverse engineering is achieved by capitalizing on several

state-of-the-art and classical machine learning (ML) techniques. The article broadly classifies ML

approaches based on several criteria, along with the merits and limitations of each approach. It
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then highlights some persisting open issues with the discussed approaches. It concludes that while

a significant number of interesting techniques have been applied to highly controlled experimental

setups and toy domains, their full-blown application to diverse and uncertain real world scenarios

remains a topic of further research.
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Table 3: State of the art planning algorithms (PDM = Partial Domain Model, OCL = Object Centered Language, D = Deterministic, P=Probabilistic,

FO = Fully Observable, PO = Partially Observable, CNF = Conjunctive Normal Form, PDL = Prodigy Description Language, MAXSAT = Maximum

Satisfiability, PGM = Probabilistic Graphical Model, GDA = Goal Driven Autonomy, FOL = First Order Logic), Granularity = {+ (high), i (intermediate),

− (low)}

Algorithm Input Output/Language
Granul
arity

Technique Merits Limitations Envir
onment

Robust
to
Noise

Inductive Learning Based Approaches

ERA

Map of area
and error models
that determine how
robots actions will
behave in different
terrain conditions

Action Models/
Simulation based

− Regression tree
induction

Ability to model
noise and predict
continuous variables
in data

Cannot make
multi-variate
predictions

D, FO Y

LOCM
Action
Sequences

Action Models/
PDDL

i

Inductive learning
on state machine
representation
of objects.

Does not
require
background
information

(i) Induced models
may contain
detectable flaws
(ii) Static background
information not
analysed by system

D, FO N

LOCM2
Action Sequences/
Action Schema

Action Models/
PDDL

i

Allows many
possible solutions
to same problem,
further using
heuristic criteria
to select a
single solution.

Does not
require
background
information

Does not work in case
of domains with:
(i) Dynamic many-many
relationships
(ii) Same object more
than once in
action arguments

D, FO N

NLOCM
Action Sequences/
Action Schema

Action
Models/PDDL

+
Inductive Logic
Programming

Requires only final plan cost
as additional information

Not equipped to
handle complex domains

D, FO N

OpMaker
Partial Model,
Action
sequences

Operators/OCL − Operator induction by
mixed initiative

(i) Ease of operator
encoding
(ii) Useful for
non-experts

Needs user input
for intermediate state
information

D, FO Y

OPMaker2
PDM, Action
sequences/OCL

Operators +

Computes intermediate
states using
combination of
heuristics, inference
from PDM, training
tasks and solutions

(i) Overcomes drawback
of Opmaker by negating
need for user input
for intermediate state
information
(ii) Does not require too
many examples

Expert required
to transfer heuristic
knowledge

D, FO Y

PELA

Planning problem,
PDM and
action sequences

Enriched action
model/PDDL

i TDIDT
Based on
off-the-shelf planning
and learning components

Assumes correct
initial action model

P, FO N

Genetic Algorithm Based Approaches
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Newton
et al. (2007)

Domain and
example problems

Macros/PDDL + Genetic Algorithms

(i) Allow planning of
several steps at
a time
(ii) Capture action sequences
that help avoid troublesome
regions

Macros, when
replaced by constituent
actions, often result
in longer plans

D, FO N

Reinforcement Learning Based Approaches

LOPE
Number of execution
cycles, possible action set

Operators/
Propositional
Logic

+ Reinforcement Learning

Allows knowledge sharing
among agents,
increasing percentage of
successful plans

Sensor differences
among agents causes
different ways of
perception thus
different biases towards
operator generation

D, FO N

Safaei &
Ghassem-
Sani (2007)

Action sequences
Operators/FOL
without functions

+ Incremental Learning

(i) Removes redundant
predicates in precondition
(ii) Doesnt need
prior knowledge

Conditional effects
not supported in
learned operators

P, FO N

Relational Reinforcement Learning (RRL) Based Approaches

MARLIE
Episodes
(Action Sequences)

Transition and
reward function/
Expressive
relational
language

+
Learning Relational
Decision Trees

Relational thus
widely applicable

Decision tree not
restructured when new
examples appear

P, FO N

Uncertainty Based Approaches

AMAN Action Sequence Operators/STRIPS +
PGM,
Reinforcement Learning

No background knowledge
needed, can learn
directly from traces

Model sampling
mechanism unclear

D, PO Y

LAMP
State-Action
Interleavings

Action Models/PDDL +
Markov
Logic
Network (MLN)

More expressive models with
quantifiers
and logical implications

Looses efficiency
with increasing
domain size

D, FO N

Pasula et al.
(2007)

State-Action
Interleavings

Probabilistic
STRIPS-like rules/
STRIPS-like

i
Learn action structure,
action outcomes
and parameter estimation

Allows learning of models
of more realistic worlds

Rules cannot
be applied
in parallel

P, FO N

Surprise Based Learning (SBL) Approaches

ARTUE

Initial state,
goal state,
model

Expectations,
discrepancies
and goals/PDDL+

i GDA

Integrates AI research
in planning, environment
monitoring, explanation, goal
generation, and
goal management.

Cannot be applied
to complex
environments

D, FO N

EXPO
PDM,
traces of state sequences

New preconditions,
effects, conditional
effects, operators,
attribute values/PDL

−
Learning-by-
experimentation
for operator refinement

(i) Learns conditional effects
(ii) Methods are goal-directed
and learning is incremental

Rules learnt from
general to specific

D, FO N

LGDA

Initial state,
dummy goal,
dummy discrepancy,
policy

Expectations,
discrepancies
and goals

i

Uses case-based
reasoning and intent
recognition in order
to build GDA agents
that learn from
demonstrations

Case-based reasoning (CBR)
and Reinforcement
Learning (RL)

Lacks capabilities
to learn explanations
of discrepancies

D, FO N

Surprise Based Learning (SBL) Approaches
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LIVE
Sequence of states,
actions and predictions

Prediction rule
(condition, action
and precondition)/
CNF of condition,
action and precondition

i

Surprise and explanation
generation. Uses a set
of domain-dependent
search heuristics
during planning

Hidden predicates can
also be determined.

Exploration method is
brute force

D, FO N

OBSERVER
Action Sequences, practice
problems

Operators/
STRIPS-like

i

Conservative
specific-to-general
inductive generalization
process

(i) Can find out
negated preconditions
(ii) Does not require
strong background
knowledge.

May suffer
from incomplete
or incorrect
domain knowledge

D, FO N

Transfer Learning Based Approaches

TRAMP

Action schemas,
predicate set,
small set of
plan traces T
from the target
domain, set of
action models from
source domain.

Action models in
target domain Dt/
STRIPS

i Transfer Learning
Minimum training examples
needed to learn
target action model

Possibility of
negative transfer

D, FO N

MAX-SAT Based Approaches

ARMS

Action sequence
with partial/no
state information

Operators/STRIPS i

Builds weighted
propositional satisfiability
problem and solves
it using weighted
MAX-SAT solver

Can handle
cases when intermediate
state observations
are difficult to acquire

(i) Cannot learn action
models with quantifiers
or implications
(ii) Cannot learn
complex action models

D, FO N

LAWS

Action models,
predicate set,
small set of
plan traces T
from the target
domain, set of
action models from
source domain.

Action models in
target domain Dt/
STRIPS

i
Transfer Learning+
KL divergence

Web can be exploited
as knowledge source

Possibility of
negative transfer

D, FO N

Lammas Action sequences
Operators/
MA-STRIPS

i

Builds inter-agent and
intra-agent constraints and
solves it using
weighted MAX-SAT solver

Can capture interactions
between agents

Not tested exhaustively D, FO N

Supervised Learning Based Approaches
Mourao
et al. (2008)

Actions and states Operators/PPDDL +
Kernel perceptrons+
sequential covering

Can handle noisy
domains

Cannot handle
incomplete observations

P, FO Y
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