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Abstract. In this paper, we analyze the behavior of viscous shock profiles of one-dimensional com-
pressible Navier-Stokes equations with a singular pressure law which encodes the effects of congestion.
As the intensity of the singular pressure tends to 0, we show the convergence of these profiles towards
free-congested traveling front solutions of a two-phase compressible-incompressible Navier-Stokes sys-
tem and we provide a refined description of the profiles in the vicinity of the transition between the
free domain and the congested domain. In the second part of the paper, we prove that the profiles are
asymptotically nonlinearly stable under small perturbations with zero integral, and we quantify the
size of the admissible perturbations in terms of the intensity of the singular pressure.

Keywords. Compressible Navier-Stokes equations, singular limit, free boundary problem, viscous
shock waves, nonlinear stability.

AMS subject classifications. 35Q35, 35L67.

1. Introduction
This paper is concerned with the analysis of viscous shock waves for the fol-

lowing compressible Navier-Stokes system written in Lagrangian mass coordinates
(t,x)∈R+×R (we refer to [20, Section 1.2] for details concerning the passage from
Eulerian coordinates to Lagrangian mass coordinates)

∂tv−∂xu= 0, (1.1a)

∂tu+∂xpε(v)−µ∂x
(

1

v
∂xu

)
= 0, (1.1b)

where v is the specific volume (the inverse of the density), u is the velocity, µ is a
viscosity coefficient and pε is the pressure. This latter is assumed to be singular close
to the critical value v∗= 1,

pε(v) =
ε

(v−1)γ
γ >0, (1.2)

with ε�1. We supplement system (1.1) with initial data

(v,u)(0,·) = (v0,u0)(·),

and far-field condition

(v,u)(t,x) −→
x→±∞

(v±,u±). (1.3)

System (1.1) was introduced in [4] (and [7] for the inviscid case µ= 0) in the context
of congested flows, that is in the modeling of flows satisfying the maximal density

∗Received date, and accepted date (The correct dates will be entered by the editor).
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2 PARTIALLY CONGESTED PROPAGATION FRONTS

constraint ρ= 1
v ≤1. Equations (1.1)-(1.3) represent an approximation of the following

free-congested Navier-Stokes equations
∂tv−∂xu= 0, (1.4a)

∂tu+∂xp−µ∂x
(

1

v
∂xu

)
= 0, (1.4b)

v≥1, (v−1)p= 0, p≥0, (1.4c)

with the far-field condition

(v,u,p)(t,x) −→
x→±∞

(v±,u±,p±).

System (1.4) consists of a free boundary problem between a free phase {v>1} satisfy-
ing compressible pressureless dynamics, and a congested incompressible phase {v= 1}.
The pressure p which is activated in the congested domain can be seen as the Lagrange
multiplier associated with the incompressibility constraint ∂xu= 0 satisfied in the con-
gested domain. Precisely, the study [4] (extended to the multi-dimensional case in [19])
shows that from a sequence of global strong solutions (vε,uε,pε(vε))ε to (1.1) (cast on
R+×(0,M)), one can extract a subsequence converging weakly as ε→0 to a global
weak solution (v,u,p) of (1.4). Note that this convergence result does not imply the
existence of solutions which couple effectively both compressible and incompressible dy-
namics. In other words, it is not excluded that the solutions of (1.4) obtained as limits
of those of (1.1) all satisfy p≡0 or v≡1. Note also, that the present problem is quite
different from “classical” free boundary problems between two immiscible compressible
and incompressible phases studied for instance in [6, 8, 22]. Indeed, the interface be-
tween the compressible and the incompressible domains for the congestion problem is
not closed since there are mass exchanges between the free and the congested phases.
This considerably complicates the analysis of the equations. To the knowledge of the
authors, nothing seems to be known concerning the local well-posedness of the gen-
eral free-congested Navier-Stokes equations (1.4), except the recent results of Lannes et
al. [3, 13] concerning the one-dimensional floating body problem which can be viewed
as a particular inviscid congestion problem.

Although the rigorous justification of singular limit ε→0 is, to the knowledge of the
authors, an open problem in the inviscid case µ= 0 (in the case of two immiscible fluids
a similar singular limit has been studied in [6,9] but, as explained before, the congestion
problem in the present paper is rather different since the phases cannot be considered
here as immiscible), the formal link between models (1.1) and (1.4) has been used from
the numerical point of view in [5,7] to investigate the transition at the interface between
the congested domain and the free domain. The study of Bresch and Renardy [5] pro-
vides numerical evidence of apparition of shocks on v and u at the interface when a con-
gested domain is created in the system. The paper of Degond et al. [7] contains an anal-
ysis of the asymptotic behavior of approximate solutions (vε,uε) of the inviscid Riemann
problem associated with the initial data (vε,uε)(0, ·) = (vε−,u−)1{x<0}+(v+,u+)1{x>0}
where vε−→1 and v+>v

ε
− remains far from 1. Both studies present free-congested

solutions for the compressible-incompressible Euler equations obtained from the singu-
lar compressible Euler equations (1.1) (µ= 0) via the formal limit ε→0. Up to our
knowledge, nothing seems to be known regarding the stability of such congestion fronts.
Furthermore, no explicit free-congested solution to (1.4) for µ>0 has been exhibited so
far.

The goal of this paper is two-fold. On the one hand, we study the asymptotic
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behavior of traveling wave solutions of (1.1) connecting an almost congested left state
vε−= 1+ε1/γ , to a non-congested right state v+>1. On the other hand, we prove the
non-linear asymptotic stability of such profiles uniformly with respect to the parame-
ter ε.

The first result of stability of traveling waves for the standard compressible Navier-
Stokes equations {

∂tv−∂xu= 0 (1.5a)

∂tu+∂xP (v)−∂x
(µ
v
∂xu

)
= 0 (1.5b)

with the pressure P (v) = a
vγ , γ≥1 and a>0, was obtained by Matsumura and Nishi-

hara in [16]. Matsumura and Nishihara showed that there exists a unique (up to a
shift) traveling wave (v,u)(t,x) = (v,u)(x−st) connecting the two limit states (v±,u±)
at ±∞, provided that 0<v−<v+ and u+<u− where v±,u± are related to the shock
speed s through the Rankine-Hugoniot conditions (see (2.6) below). Under some re-
striction on the amplitude of the shock |p(v+)−p(v−)|≤C(v−,γ), they established
next the asymptotic stability of (v,u) with respect to small initial perturbations
(v0−v,u0−u)∈H1(R)∩L1(R) with zero integral, i.e. perturbations for which there
exists (V0,U0)∈H2(R) with

v0−v=∂xV0∈L1
0(R), u0−u=∂xU0∈L1

0(R).

The restriction on the amplitude of the shock amounts to assuming that (γ−1)×(total
variation of the initial data) is small. In particular for γ= 1 there is no restriction on
the amplitude of the shock. The result is achieved by means of suitable weighted energy
estimates on the integrated quantities V and U .

Later on, several works generalized this result by considering non-zero mass per-
turbations and shocks with larger amplitude [12, 14, 15]. Besides, the numerical study
carried out in [12] seems to indicate that the profiles should be stable independently of
the shock amplitude. In the case of viscosities depending in a non-linear manner on 1/v,
i.e. µ(v) =µv−(α+1), Matsumura and Wang [17] managed to adapt the weighted energy
method for suitable parameters α. Without any smallness assumption on the amplitude
of the shock, they proved the non-linear asymptotic stability for perturbations with zero
mass provided that α≥ 1

2 (γ−1).
The constraint on the parameter α was finally removed in the recent paper of Vasseur
and Yao [23]. The originality of their method consists in rewriting the system (1.5)
with the new velocity (also called effective velocity) w=u− µ

α∂xv
−α if α 6= 0 and

w=u−µ∂x lnv if α= 0: {
∂tv−∂xw−∂x

( µ

vα+1
∂xv
)

= 0, (1.6a)

∂tw+∂xP (v) = 0, (1.6b)

where the specific volume v satisfies now a parabolic equation. The regularization effect
on v induced by this change of unknown was previously identified by Shelukhin [21]
in the case α= 0 and by Bresch, Desjardins [1, 2], Mellet, Vasseur [18], Haspot [10, 11]
for more general viscosity laws. It enables the derivation of an entropy estimate (also
called BD entropy estimate) in addition to the classical energy estimate. In the non-
linear stability study of Vasseur and Yao, the introduction of the effective velocity helps
for the treatment of the non-linear terms (see F and G in (3.1) below) and consequently
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it allows to consider any coefficient α∈R which was not the case in [17].
We show in this paper that the new formulation in (v,w) turns out to be also interesting
when considering singular pressure laws like (1.2). Although our study is restricted to
linear viscosity coefficients (α= 0), which corresponds to the case initially treated in [4],

we could a priori extend our result to viscosities
µ

vα+1
like in [23] without any substantial

difficulty.

Main results. Our first result concerns the existence and qualitative asymptotic
behavior of solutions of (1.1)-(1.3):

Proposition 1.1 (Description of partially congested profiles). Assume that the pres-
sure law is given by (1.2).

1. Let 1<v−<v+, and let u+,u− such that

(u+−u−)2 =−(v+−v−)(pε(v+)−pε(v−)).

Then there exists a unique (up to a shift) traveling front solution of (1.1)-(1.3)
(u,v)(t,x) = (uε,vε)(x−sεt). The shock speed sε satisfies the Rankine-Hugoniot
condition

s2
ε =−pε(v+)−pε(v−)

v+−v−
.

2. Take v−= 1+ε1/γ , v+>1 (independent of ε). Let

r :=
v+

µ
√
v+−1

and define the partially congested profile (ū, v̄) such that

v̄(ξ) :=

 1 if ξ <0
v+

1+(v+−1)e−rξ
if ξ≥0

, ū′=−u−−u+

v+−1
v̄′,

which is solution to the limit system (1.4).
Then

lim
ε→0

sup
ξ∈R

inf
C∈R
|vε(ξ+C)− v̄(ξ)|= 0. (1.7)

3. Assume additionally that γ≥1 and fix the shift in vε by choosing vε(0) such

that vε(0)−1∝ε
1
γ+1 . There exist constants C̄,C,σ̄,σ, independent of ε, and a

number ξε such that limε→0 ξε= 0, such that for all ξ <ξε,

Cε1/γ exp(σε−1/γξ)≤vε(ξ)−v−≤ C̄ε1/γ exp(σ̄ε−1/γξ). (1.8)

Remark 1.1.

• We recall that vε is defined up to a shift. Taking the infimum over the parameter
C in (1.7) amounts to fixing this shift.

• Note that the limit profile v̄ is also the specific volume profile for the traveling
wave solution of (1.4).
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• In the last item of the proposition we impose the value vε(0), which amounts
to prescribing the shift C. Thanks to the specific scaling that we have chosen,
we will see that pε(vε) converges towards zero uniformly in [0,+∞[, and that
vε→1 in ]−∞,0]. This means that in the limit the zone ξ <0 corresponds to
the congested zone, in which v̄= 1, while the zone ξ >0 is the free zone. Fixing
vε(0) also enables us to get the explicit control (1.8) of the distance between vε
and the end state v− in the congested zone.

• The end state of the congested zone, v−=vε−= 1+ε1/γ , is chosen so that
pε(v−) = 1 for all ε>0. Of course, any choice of sequence (vε−)ε>0 such that
limε→0pε(v

ε
−)∈ ]0,+∞[ would lead to similar results. We refer to Remark 2.4

below for details.

Actually, we are able to give a more refined description of the behavior close to the
transition zone ξ= 0, and to give a quantitative error estimate. We have the following
proposition, and we refer to Section 2 for more details:

Proposition 1.2. Let v−= 1+ε1/γ and assume that γ≥1. We fix the shift in vε by

setting vε(0)−1∝ε
1
γ+1 .

1. For all R>0, there exists a constant CR such that

‖vε− v̄‖L∞(−R,R)≤CRε
1
γ+1 .

2. Let ṽ be the solution of the ODE

ṽ′= (µs̄)−1(1− ṽ−γ), ṽ(0) = 2,

and let ξ∗<0 be a suitable parameter such that ξ∗=O(ε
1
γ+1 ). Then∣∣∣∣vε(ξ)− v̄(ξ)−ε1/γ ṽ

(
ξ−ξ∗

ε1/γ

)∣∣∣∣≤Cε 1
γ+1 |ξ| ∀ξ∈ [ξmin,0].

where the number ξmin<0 is such that ξmin∼−Cε
1
γ+1 .

The proofs of Propositions 1.1 and 1.2 rely on ODE arguments. Combining the two
equations of (1.1), we find an ODE satisfied by vε, for which we prove the existence and
uniqueness of solutions. Compactness of solutions easily follows from the bounds on
vε, and therefore on its derivative (using the equation), and we pass to the limit in the
ODE in order to find the limit equation satisfied by v̄. We then use barrier functions
to control the behavior of vε in the congested zone (ξ→−∞), and energy estimates (in
this case, a simple Gronwall lemma) to control the error between vε and vapp in the
transition zone.

The second part of this paper is devoted to the analysis of the stability of the
profiles (uε,vε) := (uε,vε)(x−sεt) in the regimes where ε is very small. To that end, we
follow the overall strategy of [23] and introduce the effective velocity w=u−µ∂x lnv.
Equations (1.1) rewrite in the new unknowns (w,v)

∂tw+∂xpε(v) = 0,

∂tv−∂xw−µ∂xx lnv= 0.
(1.9)

The profile (wε=uε−µ∂x lnvε,vε) is then a solution of (1.9).
The second ingredient that we need for the derivation of suitable energy estimates
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is the passage to the integrated quantities. Consider an initial data (w0,v0)∈
((wε)|t=0,(vε)|t=0)+L1

0∩L∞(R)2, where L1
0(R) is the set of L1 functions of zero mass.

We can then introduce (W0,V0) such that

W0(x) =

∫ x

−∞
(w0(z)−wε(z)) dz, V0(x) =

∫ x

−∞
(v0(z)−vε(z)) dz. (1.10)

Assuming that this property remains true for all time, that is (w−wε,v−vε)(t)∈L1
0(R)

∀t≥0, we define

W (t,x) =

∫ x

−∞
(w(t,z)−wε(t,z)) dz, V (t,x) =

∫ x

−∞
(v(t,z)−vε(t,z)) dz.

Then (W,V )(t,x)→0 as |x|→∞, and (W,V ) is a solution of the system

∂tW +pε(vε+∂xV )−pε(vε) = 0,

∂tV −∂xW −µ∂x ln
vε+∂xV

vε
= 0,

(W,V )|t=0 = (W0,V0).

(1.11)

In the rest of the paper, we shall assume that ε<ε0 for a constant ε0 small enough
(depending only on v+,µ,γ).

Theorem 1.1 (Existence of a global strong solution (W,V )). Assume that (W0,V0)∈
(H2(R))2 with

2∑
k=0

ε
2k
γ

∫
R

[
|∂kxW0|2

−p′ε(vε)
+ |∂kxV0|2

]
dx≤ δ2

0ε
5
γ (1.12)

for some δ0 small enough, depending only on v+, γ and µ. Then there exists a unique
global solution (W,V ) to (1.11) satisfying

W ∈C([0;+∞);H2(R)),

V ∈C([0;+∞);H2(R))∩L2(R+;H3(R)).

Moreover there exists C>0 depending only on v+,µ,γ,δ0, such that

2∑
k=0

ε
2k
γ

[
sup
t≥0

∫
R

(
|∂kxW |2

−p′ε(vε)
+ |∂kxV |2

)
dx+

∫
R+

∫
R

(
∂xvε|∂kxW |2 + |∂k+1

x V |2
)
dx dt

]
≤Cε

5
γ .

(1.13)

Remark 1.2.

• The weight (−p′ε(vε))−1 is of order ε1/γ in the congested zone (in which vε−1 =
O(ε1/γ)), and of order ε−1 in the non-congested zone (in which vε−1 is bounded
away from zero). Hence the presence of this weight induces an additional loss
of control on W in the congested zone.

• The control by Cε
5
γ with C small enough in (1.13) ensures in particular the

lower bound v=vε+∂xV >1. Indeed,

‖∂xV ‖L∞x ≤
√

2‖∂xV ‖1/2L2
x
‖∂2
xV ‖

1/2
L2
x

(1.14)
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≤
√

2
(
C1/2ε

5
2γ−

1
γ

)1/2(
C1/2ε

5
2γ−

2
γ

)1/2

≤
√

2C1/2ε1/γ .

Hence, if C<1/2, we have vε+∂xV >1.

Under the previous assumptions, we show the following stability result on the vari-
able (u,v).

Theorem 1.2 (Nonlinear asymptotic stability of partially congested profiles). Assume
that the initial data (u0,v0) is such that

u0−(uε)t=0∈W 1,1
0 (R)∩H1(R), v0−(vε)t=0∈W 2,1

0 (R)∩H2(R),

and the associated couple (W0,V0)∈H2×H3(R) satisfies (1.12). Then there exists a
unique global solution (u,v) to (1.1) which satisfies

u−uε∈C([0;+∞);H1(R)∩L1
0(R)),

v−vε∈C([0;+∞);H1(R)∩L1
0(R))∩L2(R+;H2(R))

and

v(t,x)>1 for all t,x. (1.15)

More precisely, there exists C1>0 only depending on v+,µ,γ and the initial data, such
that

‖u−uε‖L∞(R+;H1(R)) +‖v−vε‖L∞(R+;H1(R)) +‖v−vε‖L2(R+;H2(R))≤C1

and on any finite time interval [0,T ], there exists another positive constant C2 depending
additionally on T and ε, such that

‖u−uε‖L∞(0,T ;L1(R)) +‖v−vε‖L∞(0,T ;L1(R))≤C2(T,ε).

Finally

sup
x∈R

∣∣∣((u,v)(t,x)−(uε,vε)(t,x)
)∣∣∣ −→
t→+∞

0. (1.16)

Remark 1.3. Note that the theorem states that (u−uε)(t) and (v−vε)(t) are functions
of L1

0(R) which justifies a posteriori the passage to the integrated system (1.11).

Remark 1.4. If the previous theorem states the stability of the approximate profiles
(vε,uε), the stability of the limit profile (v̄, ū) remains open. Indeed, the estimates (in
particular (1.14)) that we derive all degenerate as ε→0 and therefore do not give any
information in the limit.

The proofs of Theorem 1.1 and Theorem 1.2 rely on several ingredients. First, we
derive weighted H2 estimates for equations (1.11), using the structure of the linearized
system. We then obtain L1 bounds by a method similar to the one used by Haspot
in [11]. Eventually, the long-time stability of (uε,vε) follows easily.

Remark 1.5. Note that the assumption γ≥1 is used only in the last point of the
Proposition 1.1 and 1.2. The other results still hold for γ >0 and more generally for
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pressure laws defined on ]1,+∞[ which are singular close to v= 1 (provided that v−
is well-chosen for the second point), strictly decreasing and convex on ]v−,v+[. The
convexity of the pressure law on the interval ]v−,v+[ is crucial for the existence of
monotone profiles (vε,uε) joining the states (v−,u−) and (v+,u+) (cf. Proposition 1.1).
The monotonicity of the profiles is then an essential property for the stability results
which follow (cf. Theorem 1.1 and 1.2). The specific form of the pressure (1.2) (which
blows up close to 1 like a power law) is used in all the results of this paper to exhibit
the small scales associated to the singular limit ε→0. Nevertheless, we expect similar
results for more general (strictly decreasing, convex on ]1,v+[, singular at 1) pressure
laws. All the estimates will then depend on the specific balance between the parameter ε
and the type of the singularity close to v= 1 encoded in the pressure law.

The paper is organized as follows. Section 2 is concerned with the description
of partially congested solutions of (1.4) and the proof of Propositions 1.1 and 1.2.
Sections 3 and 4 are devoted to the proof of the stability Theorems 1.1 and 1.2. Finally,
we have postponed to the last section 5 the proof of some technical lemmas.

2. Partially congested profiles
This section is devoted to the proof of Propositions 1.1 and 1.2. In the first para-

graph, we study the existence and properties of traveling fronts of the limit system
(1.4). We then investigate the asymptotic behavior of traveling fronts for the system
with singular pressure (1.1). Classically, we prove that such traveling fronts solve an
ODE, and we compute an asymptotic expansion for solutions of this ODE.

2.1. Traveling fronts of (1.4). Let v−= 1<v+, u−>u+ and (u,v,p) be a
solution of (1.4) of the form (u,v,p)(x−st) satisfying the far-field condition

(v,u,p)(t,x) −→
x→±∞

(v±,u±,p±),

with p± determined below. We look for a profile (u,v,p) whose congested zone is exactly
(−∞,ξ∗) for some ξ∗∈R (we will justify this simplification in Remark 2.2 below).

In the free zone, i.e. in the domain {v>1}, we have p= 0 and
−sv′(ξ)−u′(ξ) = 0

−su′(ξ)−µ
(
u′

v

)′
(ξ) = 0

∀ ξ >ξ∗,

which by integration yields sv(ξ)+u(ξ) =sv+ +u+

su(ξ)+µ
u′(ξ)

v(ξ)
=su+

∀ ξ >ξ∗ (2.1)

using the fact that u′→0 as ξ→+∞. As a consequence, in the free zone, u is a solution
of the logistics equation

u′=
1

µ
(u+−u)(sv+ +u+−u) . (2.2)

Using the relation −sv′(ξ) =u′(ξ) and (2.1), we find that v satisfies in the free zone

v′=
s

µ
v(v+−v).
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Now, in the congested domain we have v= 1 and{
u′(ξ) = 0

−su′(ξ)+p′(ξ)−µu′′(ξ) = 0
∀ξ <ξ∗.

Since u is constant in the congested domain, the previous equations are rewritten as
v(ξ) =v−= 1

u(ξ) =u−

p(ξ) = cst =:p−

∀ξ <ξ∗.

We now find the value of p− by making the following requirements, which ensure that
(u,v,p) is a solution of (1.4) in the whole domain:

• u and v are continuous at ξ= ξ∗;

• p−µu
′

v
is continuous at ξ= ξ∗.

These conditions lead to the Rankine-Hugoniot condition

s=
u−−u+

v+−1
>0, (2.3)

and to the initial condition u((ξ∗)+) =u− for the logistics equation (2.2). We infer that

p−=−µ lim
ξ→(ξ∗)+

u′(ξ)

=s2(v+−1)

=
(u−−u+)2

v+−1
. (2.4)

Remark 2.1. The expression of the pressure (2.4) does not depend on the viscosity µ
and is actually the same as the one obtained by Degond, Hua and Navoret [7] for the
free-congested Euler system (cf. Case 2 of Proposition 5 in [7]).

We emphasize that in the limit system, there is no constraint between u−,u+ and
v+ (as long as p− is free). Conversely, instead of imposing the far-field condition u−,
we could fix the pressure p in the congested domain and deduce the corresponding u−
by (2.4).

Remark 2.2. Let us now prove that restricting the analysis to profiles whose congested
zone is of the form (−∞,ξ∗) is legitimate. By continuity, the non-congested zone {v>1}
is an open set, and therefore a countable union of disjoint open intervals. Let I⊂R
be one of these intervals. We argue by contradiction and assume that I=]a,b[ with
a,b∈R. Then, reasoning as above, we infer that u satisfies a logistics equation on
the interval ]a,b[. Furthermore v(a) =v(b) = 1 (otherwise I could be extended), and
thus u(a) =u(b). We deduce that u is constant on I, and as a consequence v is also
constant - and therefore identically equal to 1 - on I: contradiction. Therefore a=−∞
or b= +∞. Since v(−∞) = 1 and v(+∞) =v+>1, we deduce that {v>1}= ]ξ∗,+∞[
for some ξ∗∈R.
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2.2. Existence and uniqueness (up to a shift) of traveling fronts. Assume
that (u,v) is a solution of (1.1) of the form (uε,vε)(x−sεt). Plugging this expression
into (1.1), we find 

−sεv′ε(ξ)−u′ε(ξ) = 0

−sεu′ε(ξ)+
(
pε(vε)

)′
(ξ)−µ

(
1

vε
u′ε

)′
(ξ) = 0

(2.5)

where ξ :=x−sεt. We integrate the previous equations over (±∞,ξ) to get
sεvε+uε=sεv±+u± (2.6a)

−sεuε+pε(vε)−µ
u′ε
vε

=−sεu±+pε(v±) (2.6b)

using the fact that u′ε→0 as |ξ|→∞. This leads to the condition

u+−u−
v+−v−

=−pε(v+)−pε(v−)

u+−u−
,

and therefore (u+−u−)2 =−(pε(v+)−pε(v−))/(v+−v−). The shock speed is then

sε=±

√
−pε(v+)−pε(v−)

v+−v−
. (2.7)

If sε>0 (resp. sε<0), the traveling front is moving to the right (resp. to the left). The
ODE satisfied by vε follows from the relation u′ε=−sv′ε inserted in (2.6b)

v′ε=
vε
µsε

(
s2
ε(v+−vε)+pε(v+)−pε(vε)

)
(2.8)

=
vε
µsε

(
s2
ε(v−−vε)+pε(v−)−pε(vε)

)
.

Now, assume that v−<v+, and let v0∈]v−,v+[ be arbitrary, and consider the Cauchy
problem (2.8) endowed with the initial data vε(0) =v0. It has a unique maximal solu-
tion according to the Cauchy-Lipschitz theorem. Since v=v± is a constant solution of
(2.8), we infer that vε∈]v−,v+[, and therefore the solution is global. Since the function
pε is convex, it is easily proved that s2

ε(v+−v)+pε(v+)−pε(v)>0 for all v∈]v−,v+[.
Therefore vε is a monotone function. Since we require that v−<v+, this implies that vε
is necessarily increasing, and consequently sε>0. Hence vε :R 7→]v−,v+[ is one-to-one
and onto. Classically, all other solutions of (2.8) satisfying the far-field conditions (1.3)
are translations of this profile. This proves the first statement of Proposition 1.1.

2.3. Qualitative asymptotic description of traveling fronts. In the rest of
this paper, we are interested in the case when v+>1 is a fixed number, independent
of ε (the zone on the right is not congested), and limε→0v

ε
−= 1 (the zone on the left

is asymptotically congested, see Figure 2.1). We focus on traveling fronts such that
sε→ s̄∈]0,+∞[, or equivalently liminf pε(v−)>0. It is easily checked that this implies
vε−= 1+C0ε

1/γ +o(ε1/γ) for some positive constant C0. This justifies our choice vε−=

1+ε1/γ which yields s̄2 = (v+−1)−1. In the sequel, we will abusively write v− in place
of vε− in order to alleviate the notation.
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Fig. 2.1. Asymptotic behavior of the profiles vε with vε−= 1+ε1/γ , v+ = 1.5 and γ= 2. The shift

is fixed by prescribing vε(0)= 1+ε
1
γ+1 .

Remark 2.3. Note that if we choose v−= 1+C0ε
1/γ , we obtain a different asymptotic

speed s̄, namely

s̄2 =
1

Cγ0 (v+−1)
.

In that case, the pressure p− := limε→0pε(v−) is equal to C−γ0 . These relations should
be compared with (2.3), (2.4).

In order to fix the shift, let us consider the solution of (2.8) with vε(0) = (1+v+)/2∈
]v−,v+[ for ε small enough. Then according to the previous paragraph, we have

vε(ξ)∈ ]v−,v+[ ⊂ ]1,v+[ ∀ξ∈R, ∀ε>0.

Thus vε is uniformly bounded in L∞(R), and 0≤pε(vε)≤1. Looking back at (2.8), we
deduce that vε is uniformly bounded in W 1,∞(R). Therefore, using Ascoli’s theorem,
we infer that there exists v̄∈W 1,∞(R) such that up to a subsequence

vε⇀ v̄ in w∗−W 1,∞(R),

vε→ v̄ in C(−R,R) ∀R>0.

Furthermore, v̄ is nondecreasing, v̄∈ [1,v+], and v̄(0) = (1+v+)/2>1. We define

ξ̄ := inf{ξ∈R, v̄(ξ)>1}∈ [−∞,0[.

Since v̄(ξ)>1 for ξ > ξ̄, using the above convergence result, we deduce that pε(vε)→0
in L∞loc(]ξ̄,+∞[). Hence we can pass to the limit in (2.8), and we obtain that on ]ξ̄,+∞[,
v̄ is a solution of the logistic equation

v̄′=
s̄

µ
v̄(v+− v̄). (2.9)

Consequently, we have an explicit formula for v̄, namely

v̄(ξ) = 1 ∀ ξ≤ ξ̄,

v̄(ξ) =
v+

1+ae−rξ
∀ ξ > ξ̄,
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where r := s̄v+/µ and a is determined by the initial condition. Since v̄(0) = (1+v+)/2,
we have a= (v+−1)/(v+ +1). This allows us to find an explicit expression for ξ̄, namely

ξ̄=− ln(v+ +1)

r
.

Translating the profile v̄ by ξ̄ (i.e. ξ 7→ ξ− ξ̄) and keeping the same notation v̄ for the
new shifted profile, we recover the expression given in Proposition 1.1, that is

v̄(ξ) = 1 ∀ ξ≤0,

v̄(ξ) =
v+

1+(v+−1)e−rξ
∀ ξ >0.

2.4. Control in the congested zone thanks to barrier functions. In this

paragraph, we fix the shift in vε by choosing vε(0) such that vε(0)−1∝ε
1
γ+1 , which will

be compatible with our ansatz in the next subsection1.
In the domain ξ≤0, we have, since vε is a monotonous function, v−≤vε(ξ)≤vε(0).
Define

ṽε(ζ) :=ε−1/γ
(
vε(ε

1/γζ)−1
)
.

Then

ṽε(−∞) = 1, ṽε(0) = (vε(0)−1)ε−
1
γ (2.10)

and ṽε satisfies the ODE

ṽ′ε=
1+ε1/γ ṽε

µsε

(
s2
εε

1/γ(1− ṽε)+1− 1

ṽγε

)
.

Now, for ζ ∈R−, we have

1+ε1/γ≤1+ε1/γ ṽε(ζ)≤vε(0),

1− ṽε(ζ)≤0.

Furthermore, since the function v 7→vγ is convex (γ≥1), for all v>1, we have

1− 1

vγ
=
vγ−1

v−1

v−1

vγ
≥γ v−1

vγ
.

Therefore, for all ζ≤0,

∣∣∣ε1/γ(1− ṽε(ζ))
∣∣∣≤ ε− γ−1

γ (vε(0)−1)γ

γ

(
1− 1

ṽγε (ζ)

)
.

Note that thanks to the assumption on vε(0), ε−
γ−1
γ (vε(0)−1)γ�1. Gathering all the

inequalities, we infer that for ζ <0,

ρ̄ε

(
1− 1

ṽγε (ζ)

)
≤ ṽ′ε(ζ)≤ρ

ε

(
1− 1

ṽγε (ζ)

)
,

1Actually, the results of this subsection remain true as long as v−−1<vε(0)−1� ε
γ−1

γ2 .
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where

ρ̄ε :=
1+ε1/γ

µsε

(
1−s2

ε

ε−
γ−1
γ (vε(0)−1)γ

γ

)
, ρ

ε
:=

vε(0)

µsε
,

so that limε→0 ρ̄ε= limε→0ρε= (µs̄)−1.
Now, consider the barrier functions v̄ε, vε, defined as solutions of the ODEs

v̄′ε= ρ̄ε

(
1− 1

v̄γε

)
, v′ε=ρ

ε

(
1− 1

vγε

)
,

v̄ε(0) =vε(0) = 2.

According to the Cauchy-Lipschitz theorem, these two ODEs have unique solutions on
R such that v̄ε>1, vε>1. Furthermore, v̄ε, vε are increasing on R and it is easily proved
that the two functions have the following asymptotic behavior

lim
ζ→−∞

v̄ε(ζ) = lim
ζ→−∞

vε(ζ) = 1,

v̄ε(ζ)∼ ρ̄εζ, vε(ζ)∼ρ
ε
ζ as ζ→+∞.

As a consequence, there exist ζ̄ε, ζε such that

v̄ε(ζ̄ε) =vε(ζε) = ṽε(0) = (vε(0)−1)ε−
1
γ .

Note that ζ̄ε∼ ζε∼µs̄(vε(0)−1)ε−
1
γ �1 since vε(0)−1�ε1/γ . We also stress that as

ε→0, v̄ε and vε both converge uniformly on sets of the form ]−∞,a] for all a∈R
towards the solution of

v′=
1

µs̄

(
1− 1

vγ

)
, v(0) = 2.

We conclude our analysis of the barrier functions by investigating more precisely
their behavior as ζ→−∞. Using once again the inequalities

γ2−γ≤γv−γ<
(

1− 1

vγ

)
1

v−1
≤γv−1≤γ ∀v∈]1,2],

we infer that there exist constants C̄,C,σ̄,σ, independent of ε such that

v̄ε(ζ)−1≤ C̄ exp(σ̄ζ), vε(ζ)−1≥C exp(σζ) ∀ζ <0.

Note furthermore that it is possible to take σ=ρ
ε
γ because of the inequality

vγ−1

vγ(v−1)
≤γ.

Indeed, we have

v′ε≤ρεγ(vε−1), vε(0) = 2,

and therefore, for all ζ <0,

(vε(ζ)−1)exp(−ρ
ε
γζ)≥1.
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However, concerning v̄ε, the control on σ̄ is not as good, because the reverse inequality
reads

vγ−1

vγ(v−1)
≥γv−γ≥γ2−γ ∀v∈ (1,2).

Of course, as v̄ε converges to 1, the constant in the exponential bound improves.
Let us now go back to the bounds on ṽε. We have constructed Lipschitz functions

F̄ε, F ε, such that ṽε, v̄ε(·+ ζ̄ε), vε(·+ζ
ε
) satisfy, for all ζ <0

F̄ε(ṽε)≤ ṽ′ε≤F ε(ṽε),
v̄′ε(·+ ζ̄ε) = F̄ε(v̄ε(·+ ζ̄ε)), v′ε(·+ζ

ε
) =F ε(vε(·+ ζ̄ε)),

ṽε(0) = v̄ε(ζ̄ε) =vε(ζε).

Classical arguments then ensure that for all ζ <0,

vε(ζ+ζ
ε
)≤ ṽε(ζ)≤ v̄ε(ζ+ ζ̄ε).

Going back to the original variables, the statement of Proposition 1.1 follows, tak-

ing ξε :=−ε
1
γ max(ζ̄ε,ζε). We recall that ε

1
γ ζ̄ε∼ε

1
γ ζ

ε
∼µs̄(vε(0)−1)�1, and therefore

limε→0 ξε = 0.

Remark 2.4. The above construction can easily be generalized to the case where
limε→0pε(v−)∈]0,+∞[. In that case, (2.10) must be replaced by

ṽε(−∞) =
v−−1

ε1/γ
=: ṽ−, ṽε(0) = (vε(0)−1)ε−

1
γ .

After straightforward computations, one can check that

ρ̄ε :=
1+ε1/γ

µsε

(
1−s2

ε

ε−
γ−1
γ (vε(0)−1)γ

γṽ−

)
.

Note that the property limε→0 ρ̄ε= (µs̄)−1 remains true, so that the rest of the analysis
is unchanged.

2.5. Finer description in the transition zone. We now compute a more
precise asymptotic expansion of vε in the vicinity of 0. Indeed, there is no explicit
formula for vε and therefore our purpose is to exhibit an approximation of vε which
highlights its small scale dependencies in the vicinity of the transition zone ξ= 0. Our
goal is two-fold: firstly, since vε has C1 (and even C∞) regularity for all ε>0, it is
natural to look for a C1 approximation of vε, while the derivative of v̄ has a jump at
ξ= 0. Secondly, the convergence in Paragraph 2.3 is only qualitative, whereas we wish
to derive a quantitative error estimate.

We define an approximate solution vapp by taking the following ansatz

vapp := v̄(ξ)+

{
ε1/γ ṽ

(
ξ−ξ∗
ε1/γ

)
if ξ≤0,

Kε
1
γ+1χ(ξ) if ξ >0,

(2.11)

where ξ∗, K are real numbers that remain to be determined, together with the corrector
ṽ, χ∈C∞0 (R) is an arbitrary cut-off function such that χ(0) = 1 and χ′(0) =−1, and v̄
is the profile defined in Proposition 1.1. We make the following requirements on these
three unknowns (K, ξ∗ and ṽ):
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1. vapp must be a C1 function on R;
2. vapp must be an approximate solution of (2.8) (in the sense that it satisfies the

equation with a small, quantifiable remainder).
We first identify K,ξ∗ and ṽ, and then prove a quantitative error estimate between vε
and vapp.

Remark 2.5.
• The cut-off profile in the non-congested zone ξ≥0 is merely a technical correc-

tor, which has no actual physical or mathematical relevance.

• One important choice in the ansatz above is that vapp(0)−1∝ε
1
γ+1 . This choice

is justified by mainly two arguments. Firstly, this ensures that p′ε(v) remains
bounded for all v≥vapp(0), which will be crucial in the energy estimates. Sec-
ondly, another natural ansatz would be to choose vapp(ξ) = v̄(ξ+ϕε) in the re-
gion ξ >0, with 0<ϕε�1. Keeping ϕε as an unkown and writing the continuity

of vapp, v′app at ξ= 0 leads to ϕε∝ε
1
γ+1 in the case s̄>1 (i.e. v+<2), which is

compatible with the ansatz (2.11). However, this alternative Ansatz fails when
s̄<1 (i.e. v+>2), and therefore we have chosen to work only with (2.11).

Definition of the approximate solution. Let us first identify the corrector ṽ.
Plugging the Ansatz (2.11) for ξ <0 into equation (2.8) and identifying the main order
terms leads to

ṽ′=
1

µs̄

(
1− 1

ṽγ

)
.

We endow this ODE with an initial condition in ]1,+∞[, say ṽ(0) = 2 (this arbitrary
choice will simply modify the definition of ξ∗ hereafter). Following the same reasoning
as in the previous paragraph, it is easily proved that the ODE has a unique global
solution ṽ, which is increasing on R. Furthermore, there exists a constant σ>0 such
that ṽ exhibits the following asymptotic behavior at ±∞

ṽ(ζ) = 1+O(exp(σζ)) as ζ→−∞, ṽ(ζ)∼ ζ

µs̄
as ζ→+∞. (2.12)

Now, the parameters ξ∗ and K are determined by requiring that vapp is continuous
at ξ= 0, with a continuous first derivative. This leads to the system

1+ε1/γ ṽ

(
−ξ∗

ε1/γ

)
= 1+Kε

1
γ+1 ,

ṽ′
(
−ξ∗

ε1/γ

)
=

1

µs̄
−Kε

1
γ+1 .

(2.13)

Let us set

ωε := ṽ

(
−ξ∗

ε1/γ

)
.

Then, using the ODEs satisfied by ṽ and v̄, the system becomes

ε1/γωε=Kε
1
γ+1 ,

1

ωγε
=µs̄Kε

1
γ+1 .
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We therefore obtain

ωε :=
1

(µs̄)
1
γ+1

ε−
1

γ(γ+1) , K :=
1

(µs̄)
1
γ+1

. (2.14)

Eventually, let us compute the asymptotic behavior of ξ∗. Note that ωε�1 as ε→0,
so that limε→0−ε−1/γξ∗= +∞. As a consequence, using (2.12), we infer that

−ξ∗

µs̄ε1/γ
∼ωε,

and thus

−ξ∗∼ (µs̄)
γ
γ+1 ε

1
γ+1 . (2.15)

Error estimate in the non-congested and transition zones. In the vicinity
of ξ= 0, the idea is the following: we write equation (2.8) in the form

v′ε=Aε(vε),

where Aε(v) = (µsε)
−1v(s2

ε(v+−v)+pε(v+)−pε(v)), and we write vapp as an approxi-
mate solution of (2.8), namely

v′app =Aε(vapp)+rε,

for some small remainder rε. We then use the form of Aε to estimate vε−vapp close to
ξ= 0 through a Gronwall-type Lemma.

Let us first compute rε. By definition of v̄ and ṽ, we have

v′app =

{
1
µs̄ (1−pε(vapp)) if ξ <0,
s̄
µ v̄(v+− v̄)+Kε

1
γ+1χ′ if ξ≥0,

so that

rε=

(
1

s̄
− vapp

sε

)
1−pε(vapp)

µ
+(v−−vapp)

vappsε
µ

if ξ <0,

and

rε= − vapp

µsε
(pε(v+)−pε(vapp))− sε− s̄

µ
v̄(v+− v̄)

− sεχKε
1
γ+1

µ

[
v+−2v̄−χKε

1
γ+1

]
+Kε

1
γ+1χ′ if ξ >0.

Now, note that vapp is bounded in L∞, uniformly in ε, and that there exists a
constant C>0 such that

|s̄−sε|≤Cε1/γ ,

∀ξ≥0, pε(vapp(ξ))≤Cε
1
γ+1 ,

∀ξ≤0, 0≤vapp(ξ)−1≤Cε
1
γ+1 .

Gathering these estimates, we deduce that ‖rε‖∞≤Cε
1
γ+1 .
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We now perform the error estimate. Without loss of generality, we can always fix the
shift in vε by requiring that (vε−vapp)(0) = 0. We treat separately the non-congested
and the transition zone. Indeed, Aε is uniformly Lipschitz in the non-congested zone,
whereas the estimates on A′ε(vapp) degenerate in (ξ∗,0).

• Non-congested zone (ξ≥0): First, recall that χ is compactly supported. As a
consequence, if ε is small enough, vapp is strictly increasing in (0,+∞), and we recall
that vε is also a monotone increasing function. Hence, in the non-congested zone, we
have vε≥vapp(0), vapp≥vapp(0). Using the computations of the previous paragraph,
we infer that |p′ε(v)|≤C for all v≥vapp(0), and thus |A′ε(v)|≤C for all v≥vapp(0). We
deduce that

|(vε−vapp)′|= |Aε(vε)−Aε(vapp)−rε|

≤Cε
1
γ+1 +C|vε−vapp|.

The Gronwall lemma then implies that

|vε−vapp|≤Cε
1
γ+1 [exp(Cξ)−1],

which leads to a good estimate on compact intervals.

• Transition zone (ξ∈ (ξ∗,0)): In this zone, the situation is more complicated be-
cause the derivative of the pressure might become singular. We use a bootstrap argu-
ment together with a Gronwall-type lemma to control the error |vε−vapp|.

First, note that as long as ξ−ξ∗≥Mε1/γ , where M is some large but fixed constant,
independent of ε (say M = 100) and ξ∗ is defined by (2.13) and satisfies (2.15), then
vapp(ξ)−1∼ (µs̄)−1(ξ−ξ∗). Therefore, we introduce the following bootstrap assump-
tions

|vε−vapp|≤ (4µs̄)−1(ξ−ξ∗),
ξ−ξ∗≥Mε1/γ .

(2.16)

As long as the assumptions (2.16) are satisfied, we have

vapp−1≥ (2µs̄)−1(ξ−ξ∗), vε−1≥ (4µs̄)−1(ξ−ξ∗)

and therefore there exists a constant C, depending only on µ and γ, such that

|p′ε(v)|≤ Cε

(ξ−ξ∗)γ+1
∀v∈ [vε(ξ),vapp(ξ)].

We infer that as long as the assumptions (2.16) are satisfied, we have

|(vε−vapp)′(ξ)|≤C
(

1+
ε

(ξ−ξ∗)γ+1

)
|vε−vapp|(ξ)+Cε

1
γ+1 .

Note furthermore that the assumptions (2.16) are satisfied at ξ= 0, and therefore, by
continuity, they are also satisfied on a small interval in the vicinity of 0. Hence, as long
as the assumptions (2.16) are satisfied, the Gronwall Lemma ensures that

vε(ξ)−vapp(ξ)≤Cε
1
γ+1

∫ 0

ξ

exp

(
C(ξ′−ξ)+

Cε

(ξ−ξ∗)γ
− Cε

(ξ′−ξ∗)γ

)
dξ′.
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A similar bound holds from below. We infer that as long as the inequalities (2.16) hold,

|vε(ξ)−vapp(ξ)|≤Cε
1
γ+1 |ξ|exp

(
Cε

(ξ−ξ∗)γ

)
≤C exp

(
C

Mγ

)
ε

1
γ+1 |ξ|.

Without loss of generality, we choose the constant M so that exp
(
C
Mγ

)
≤2, and we

obtain

|vε(ξ)−vapp(ξ)|≤Cε
1
γ+1 |ξ| (2.17)

on the interval on which assumptions (2.16) are valid. Using classical bootstrap argu-
ments, we deduce that inequalities (2.16), and therefore (2.17), are valid as long as ξ
satisfies

Cε
1
γ+1 (−ξ)≤ 1

2µs̄
(ξ−ξ∗) and ξ−ξ∗≥Mε1/γ ,

or equivalently

ξ−ξ∗≥max

(
Mε1/γ ,

−Cξ∗ε
1
γ+1

Cε
1
γ+1 +(2µs̄)−1

)
. (2.18)

Using the estimate(2.15) on ξ∗ of the previous paragraph and the inequality γ≥1, we
infer that the estimate (2.17) is valid on an interval [ξmin,0], where ξmin := ξ∗+Mε1/γ .

Note that in the interval [ξmin,0], vapp is a good approximation, in the sense that
vε−vapp is smaller than all terms appearing in vapp (namely the main order term 1 and

the corrector term of order ε
1
γ+1 ).

For ξ≤ ξmin, the singularity in p′ε becomes too strong to apply the Gronwall lemma.
However, we can use the control by barrier functions from the previous paragraph to
estimate v−vapp.

3. Global well-posedness of small solutions (W,V ) of (1.11)

The goal of this section is to prove Theorem 1.1, that is the existence of a global
strong solution (W,V ) to the system

∂tW +pε(vε+∂xV )−pε(vε) = 0,

∂tV −∂xW −µ∂x ln
vε+∂xV

vε
= 0,

(W,V )|t=0 = (W0,V0),

where vε(t,x) =vε(x−sεt), under a smallness assumption on (W0,V0). As explained in
the introduction, we follow the overall strategy of [23], tracking the dependency of all
estimates with respect to ε. Of course, the main difficulty lies in the singularity of the
pressure term in the congested zones. The main ideas are the following:

• Since we are working close to a congested profile, it is natural to investigate
the stability properties of the linearized system close to this congested profile.
Therefore we rewrite the previous system as

∂tW +p′ε(vε)∂xV =Fε(∂xV ),

∂tV −∂xW −µ∂x
(
∂xV

vε

)
=Gε(∂xV ),

(3.1)
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where

Fε(f) :=−[pε(vε+f)−pε(vε)−p′ε(vε)f ] ,

Gε(f) :=µ∂x

[
ln

(
1+

f

vε

)
− f

vε

]
.

(3.2)

Hence the main order part of the energy and of the dissipation term is the
one associated with the linearized system. The nonlinear part of the operator,
contained in Fε and Gε, is then treated as a perturbation, assuming that the
distance between the congested profile and the actual solution remains small
enough (in a way that needs to be quantified in terms of ε).

• In order to close the estimates thanks to a fixed point argument, we need to
work in a high regularity space. Therefore we differentiate the equation and
derive estimates on the first-order derivatives. However, the system is not stable
by differentiation, and we will need to compute some commutators.

3.1. Properties of the linearized system. As announced above, the starting
point lies in the derivation of energy estimates for the linearized system. Therefore we
define the linearized operator

Lε
(
W
V

)
=

(
p′ε(vε)∂xV

−∂xW −µ∂x
(
∂xV
vε

))
.

The cornerstone of our analysis is the following energy estimate.

Lemma 3.1 (Energy estimates for the linearized system). Let T >0,

f ∈L∞(0,T ;L2(R)), g∈L∞(0,T ;L2(R))∩L2(0,T ;H1(R)),

and Sf ,Sg ∈L1(0,T ;L2(R)) such that

∂t

(
f
g

)
+Lε

(
f
g

)
=

(
Sf
Sg

)
. (3.3)

Then∫
R

[
− 1

p′ε(vε)
|f(T )|2 + |g(T )|2

]
+sε

∫ T

0

∫
R

p′′ε (vε)

(p′ε(vε))
2
∂xvε|f |2 +2µ

∫ T

0

∫
R

(∂xg)2

vε

=

∫
R

[
−1

p′ε(vε)
|f0|2 + |g0|2

]
+2

∫ T

0

∫
R

[
Sf
−f
pε(vε)

+Sgg

]
. (3.4)

Proof. To get (3.4), we test Equation (3.3) against

 −f
p′ε(vε)
g

 and we obtain

1

2

d

dt

∫
R

[
− |f |

2

p′ε(vε)
+ |g|2

]
−
∫
R
∂t

(
− 1

p′ε(vε)

)
|f |2

2
−
∫
R
∂xgf−

∫
R
∂xfg

−µ
∫
R
∂x

(
∂xg

vε

)
g=

∫
R

[
Sf
−f
pε(vε)

+Sgg

]
.
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Using then integration by parts and ∂tvε=−sε∂xvε, this equality is rewritten as

d

dt

∫
R

[
− |f |

2

p′ε(vε)
+ |g|2

]
+sε

∫
R

p′′ε (vε)

(p′ε(vε))
2
∂xvε|f |2 +2µ

∫
R

(∂xg)2

vε

= 2

∫
R

[
Sf
−f
pε(vε)

+Sgg

]
.

which leads to (3.4) after integration in time.

We will apply Lemma 3.1 with (f,g) =∂kx(W,V ) and with k= 0,1,2. Therefore it is
important to compute the commutator of Lε with the differential operator ∂x.

Lemma 3.2 (Properties of the commutator [Lε,∂x]). For all (f,g)∈L2
loc(R+,H

1(R))2,

[Lε,∂x]

(
f
g

)
=

(
−∂xvεp′′ε (vε)∂xg

−µ∂x
(
∂xvε
v2ε

∂xg
))

and

[Lε,∂2
x]

(
f
g

)
= 2[Lε,∂x]

(
∂xf
∂xg

)
−

(
∂x(∂xvεp

′′
ε (vε))∂xg

−µ∂x
(
∂x

(
∂xvε
v2ε

)
∂xg
))

.

As a consequence, we have the following bound: there exists a constant C1 depending
only on µ,v+ and γ such that for all δ>0, for all T >0,∣∣∣∣∣∣
∫ T

0

∫
R

[Lε,∂x]

(
f
g

)
·

−∂xfp′ε(vε)
∂xg

∣∣∣∣∣∣≤ δ
∫ T

0

∫
R
∂xvε|∂xf |2 +

C1

δ
ε−2/γ

∫ T

0

∫
R
|∂xg|2. (3.5)

Lemma 3.2 will be proved in Paragraph 5.1.

Remark 3.1. Let us stress that the term ∂xvεp
′′
ε (vε)∂xg in the commutator [Lε,∂x]

is responsible for a loss of ε2/γ in the second integral of (3.5). It means that we will
have to multiply our energy estimate at each iteration by ε2/γ . In other words, our total
energy will be

2∑
k=0

ε2k/γ

∫
R

[
−1

p′ε(vε)
|∂kxW (t)|2 + |∂kxV (t)|2

]
.

3.2. Construction of global strong solutions of (1.11). In this paragraph,
we construct global smooth solutions of (1.11) under a smallness assumption. Following
Lemma 3.1, we derive successive estimates on (V,W ) and their space derivatives up to
order 2. Hence, we define

Ek(t;V,W ) :=

∫
R

[
−1

p′ε(vε)
|∂kxW (t)|2 + |∂kxV (t)|2

]
dx,

Dk(t;V,W ) :=

∫
R
∂xvε|∂kxW |2dx+

∫
R

(∂k+1
x V )2dx.

Note that

p′′ε (vε)

p′ε(vε)
2

=
(γ+1)(vε−1)γ

γε
=

γ+1

γpε(vε)
≥ γ+1

γ
.
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As a consequence, there exists a constant C2, depending only on γ, µ and v+, such that
for ε small enough, for all (W,V )∈Hk(R)×Hk+1(R),

Dk(t;V,W )≤C2

(
sε

∫
R

p′′ε (vε)

(p′ε(vε))
2
∂xvε|∂kxW |2 +2µ

∫
R

(∂k+1
x V )2

vε

)
.

The goal is to prove, by a fixed point argument, existence and uniqueness of global
smooth solutions of (1.11), under the assumption that Ek(0) is small enough for k=
0,1,2. Given the couple (W1,V1), we introduce the following system

∂t

(
W2

V2

)
+Lε

(
W2

V2

)
=

(
Fε(∂xV1)
Gε(∂xV1)

)
(W2,V2)|t=0 = (W0,V0)

(3.6)

and the application

Aε : (W1,V1)∈X 7→ (W2,V2)∈X ,

where

X :={(W,V )∈L∞(R+;H2(R))2; Dk(t;W,V )∈L1(R+) for k= 0,1,2}.

We endow X with the norm

‖(W,V )‖2X := sup
t∈[0,+∞[

[
2∑
k=0

ckε2k/γ

[
Ek(t,W (t),V (t))+

∫ t

0

Dk(s,W (s),V (s))ds

]]
,

(3.7)
where c is a constant to be determined, which is meant to be small but independent of
ε, and for δ>0, we denote by Bδ the ball

Bδ ={(W,V )∈X , ‖(W,V )‖X <δε
5
2γ }. (3.8)

The result of Theorem 1.1 will be achieved with the proof of the following proposi-
tion.

Proposition 3.1. Assume that

E0(0;W0,V0)+ε2/γE1(0;W0,V0)+ε4/γE2(0;W0,V0)≤ δ2
0ε

5
γ .

for some δ0>0. There exist two positive constants δ∗ and c0, depending only on v+,µ
and γ, such that if 0<δ0<δ

∗, 0<c<c0, then there exists δ= δ(δ0,v+,µ,γ) such that
• The ball Bδ is stable by Aε.
• The application Aε is a contraction on Bδ.

As a consequence, Aε has a unique fixed point in Bδ.

Note that we are able to prove a global result. This comes from the fact that our
system is dissipative, which allows us to circumvent the use of the Gronwall Lemma.

As a preliminary, let us recall that∥∥∥∥ 1

vε−1

∥∥∥∥
∞
≤ε−1/γ , (3.9)

so that |p′ε(vε)|≤γε−1/γ . Additionally, differentiating (2.8), we have

|∂2
xvε|≤Cε−1/γ∂xvε. (3.10)



22 PARTIALLY CONGESTED PROPAGATION FRONTS

Hence, if (W,V )∈X then for k= 0,1, m= 0,1,2,

‖∂mx V ‖L∞t (L2
x)≤Cε−m/γ‖(W,V )‖X , ‖∂mx W‖L∞t (L2

x)≤Cε−
1+2m

2γ ‖(W,V )‖X , (3.11)

‖∂kxV ‖L∞t,x ≤C‖∂
k
xV ‖

1/2
L∞t L

2
x
‖∂k+1
x V ‖1/2L∞t L

2
x

≤Cε−
k
2γ ‖(W,V )‖1/2X ε−

k+1
2γ ‖(W,V )‖1/2X

≤Cε−
2k+1
2γ ‖(W,V )‖X , (3.12)

‖∂m+1
x V ‖L2

t,x
≤Cε−

m
γ ‖(W,V )‖X , (3.13)

‖∂kxW‖L∞t,x ≤Cε
− k+1

γ ‖(W,V )‖X ,, (3.14)

where the constant C depends only on c and γ. We will use this remark repeatedly
when estimating the source term (Fε,Gε).
Note in addition that if

‖(W,V )‖X ≤ δε
5
2γ

then the following inequality holds

‖∂xV ‖L∞t,x ≤Cδε
5
2γ−

3
2γ ≤Cδε

1
γ <ε

1
γ (3.15)

provided that δ is small enough. In other words, for sufficiently small δ the perturbation
v=vε+∂xV will never reach the critical value v∗= 1.

In order to prove Proposition 3.1, we rely on the energy estimate from Lemma 3.1,
and we treat the right-hand side (Fε(∂xV1),Gε(∂xV1)), defined in (3.2), as a perturbation
that we estimate thanks to Lemmas 3.3 and 3.4 below. The largest part of the proof
is devoted to the stability of the ball Bδ by the application Aε. We derive successive
estimates for Ek(t;W2,V2) in terms of ‖(W1,V1)‖X and ‖(W2,V2)‖X . Note that we
cannot close the estimates before performing the estimate on E2. Furthermore, when
addressing the bound on E1 (resp. E2), we will use the commutator result of Lemma 3.2
together with the control on ∂xV (resp. ∂2

xV ) in L2
t,x coming from lower order estimates.

Eventually, we prove that Aε is a contraction on Bδ.

Tools and heuristics for the control of non-linear terms. One of the main
technical difficulties of the estimates comes from the nonlinear terms Fε and Gε. We
will rely on the following Lemma (see also Lemma 3.4):

Lemma 3.3. Let us write Gε(f) =µ∂x(Hε(f)), where

Hε= ln

(
1+

f

vε

)
− f

vε
,

and recall that Fε(f) =−[pε(vε+f)−pε(vε)−p′ε(vε)f ]. Provided that |f |≤ ε1/γ

2 , there
exists a constant C, independent of ε, such that the following estimates hold:

|Fε(f)|≤Cpε(vε)
f2

(vε−1)2
,

|∂xFε(f)|≤C∂xvε|p′ε(vε)|
f2

(vε−1)2
+Cpε(vε)

|f | |∂xf |
(vε−1)2

,

|∂2
xFε(f)|≤Cε−1/γ∂xvε|p′ε(vε)|

f2

(vε−1)2
+Cpε(vε)

(∂xf)2

(vε−1)2
+Cpε(vε)

|f | |∂2
xf |

(vε−1)2
,
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and

|Hε(f)|≤C|f |2,
|∂xHε(f)|≤C|f ||∂xf |+C|f |2,

|∂2
xHε(f)|≤C|f ||∂2

xf |+C
(
|f |+ |∂xf |

)
|∂xf |+C

(
1+ |∂2

xvε|
)
|f |2.

When we perform L2 estimates, taking into account Lemma 3.3, we need to control
terms of the type ∫ t

0

∫
R
fε[vε]|∂kxU1| |∂lxU1| |∂mx U2|,

with k,l,m∈{0,1,2}, Ui=Vi or Wi, and fε[vε] is a function of vε and its derivatives.
In order to guide the reader, we establish the following (ordered) rules to control such
terms:

1. If a term contains a factor of the form ∂xvε∂
k
xWi, this factor is controlled

through Dk;
2. The (remaining) term with the smallest number of derivatives is controlled in
L∞x , and the other(s) in L2

x;
3. Note that ‖∂kxV ‖L2

x
for k≥1 could be controlled either through Ek or through

Dk−1. Nevertheless we will always use Dk−1 to ensure uniform-in-time esti-
mates.

Estimate for k= 0. For k= 0, the estimate from Lemma 3.1 applied to f =W2,
g=V2, Sf =Fε(∂xV1) and Sg =µ∂xHε(∂xV1), entails that for all t≥0,

E0(t;W2,V2)+C−1
2

∫ t

0

D0(s;W2,V2)ds

≤E0(0;W0,V0)+2

∫ t

0

(∣∣∣∣∫ Fε(∂xV1)
1

p′ε(vε)
W2

∣∣∣∣+ ∣∣∣∣µ∫ ∂xHε(∂xV1)V2

∣∣∣∣) .
Using estimate (3.9) and Lemma 3.3, we infer that∫ ∞

0

∫
R

(∣∣∣∣Fε(∂xV1)
1

p′ε(vε)
W2

∣∣∣∣+ |µ∂xHε(∂xV1)V2|
)

≤C
∫ ∞

0

∫
R

(
(∂xV1)2

vε−1
|W2|+ |∂xV1||∂2

xV1||V2|+ |∂xV1|2|V2|
)

≤C
(
ε−1/γ‖W2‖L∞t,x‖∂xV1‖2L2

t,x
+‖V2‖L∞t,x‖∂xV1‖L2

t,x
‖∂2
xV1‖L2

t,x
+‖V2‖L∞t,x‖∂xV1‖2L2

t,x

)
.

Using estimates (3.12) and (3.14) together with the assumption (W1,V1)∈Bδ, we infer
that the right-hand side above is bounded by

Cε−
2
γ ‖(W2,V2)‖X ‖(W1,V1)‖2X ≤Cδ2ε

3
γ ‖(W2,V2)‖X .

Therefore we obtain

sup
t∈[0,+∞[

(
E0(t;W2,V2)+

∫ t

0

D0(s;W2,V2)ds

)
≤C

(
E0(0;W0,V0)+δ2ε

3
γ ‖(W2,V2)‖X

)
.

(3.16)
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Estimate for k= 1. We apply now Lemma 3.1 to

f =∂xW2, g=∂xV2,

(
Sf
Sg

)
=

(
∂xFε(∂xV1)
µ∂2

xHε(∂xV1)

)
+[Lε,∂x]

(
W2

V2

)
,

and get, for all t≥0,

E1(t;W2,V2)+C−1
2

∫ t

0

D1(s;W2,V2)ds

≤E1(0;W0,V0)+2

∫ t

0

∣∣∣∣∫
R

1

p′ε(vε)
∂xFε(∂xV1)∂xW2

∣∣∣∣+2µ

∫ t

0

∣∣∣∣∫
R
∂xHε(∂xV1)∂2

xV2

∣∣∣∣
(3.17)

+2

∫ t

0

∫
R

∣∣∣∣∣∣[Lε,∂x]

(
W2

V2

)
·

−∂xW2

p′ε(vε)
∂xV2

∣∣∣∣∣∣
The term involving the commutator is controlled via inequality (3.5), and is bounded
by

C−1
2

2

∫ t

0

D1(s;W2,V2)ds+8C1C2ε
−2/γ

∫ t

0

D0(s,W2,V2)ds.

The first integral can be absorbed in the left-hand side of (3.17).
By using Lemma 3.3 we can estimate the integrals of nonlinear terms of the right-

hand side of (3.17), namely∫ t

0

∣∣∣∣∫
R

1

p′ε(vε)
∂xFε(∂xV1)∂xW2

∣∣∣∣+µ

∫ t

0

∣∣∣∣∫
R
∂xHε(∂xV1)∂2

xV2

∣∣∣∣
≤C

∫ t

0

∫
R
∂xvε

∣∣∣∣ ∂xV1

vε−1

∣∣∣∣2 |∂xW2|+C

∫ t

0

∫
R

|∂xV1| |∂2
xV1|

vε−1
|∂xW2|

+C

∫ t

0

∫
R
|∂xV1||∂2

xV1||∂2
xV2|+C

∫ t

0

∫
R
|∂xV1|2|∂2

xV2|.

We follow the guidelines stated at the beginning of the proof, and use estimates (3.9)-
(3.12) repeatedly. We infer that these nonlinear terms are bounded by∫ t

0

∣∣∣∣∫
R

1

p′ε(vε)
∂xFε(∂xV1)∂xW2

∣∣∣∣+µ

∫ t

0

∣∣∣∣∫
R
∂xHε(∂xV1)∂2

xV2

∣∣∣∣
≤C

[(∫ t

0

D1(s;W2,V2)ds

)1/2

ε−2/γ‖∂xV1‖L∞t,x‖∂xV1‖L2
t,x

+ε−1/γ‖∂xW2‖L∞t,x‖∂xV1‖L2
t,x
‖∂2
xV1‖L2

t,x

+‖∂xV1‖L∞t,x‖∂
2
xV1‖L2

t,x
‖∂2
xV2‖L2

t,x
+‖∂xV1‖L∞t,x‖∂xV1‖L2

t,x
‖∂2
xV2‖L2

t,x

]
≤Cε−

9
2γ ‖(W2,V2)‖X ‖(W1,V1)‖2X
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≤Cδ2ε
1
2γ ‖(W2,V2)‖X .

Therefore

sup
t≥0

[
E1(t;W2,V2)+

C−1
2

2

∫ t

0

D1(s;W2,V2)ds

]
≤E1(0;W0,V0)+8C1C2ε

−2/γ

∫ ∞
0

D0(s;W2,V2)+Cδ2ε
1
2γ ‖(W2,V2)‖X .

Note that without loss of generality, we can always choose C2≥1/2, so that the above
inequality becomes

sup
t≥0

[
E1(t;W2,V2)+

∫ t

0

D1(s;W2,V2)ds

]
≤2C2E1(0;W0,V0)+16C1C

2
2ε
−2/γ

∫ ∞
0

D0(s;W2,V2)+Cδ2ε
1
2γ ‖(W2,V2)‖X .

Hence, choosing c≤ c0≤ (32C1C
2
2 )−1 and using (3.16)

sup
t∈R+

[
E0(t;W2,V2)+cε2/γE1(t;W2,V2)

]
+

∫
R+

(
D0(s;W2,V2)+cε2/γD1(s;W2,V2)

)
ds

≤C
[
E0(0;W0,V0)+ε2/γE1(0;W0,V0)+δ2ε

5
2γ ‖(W2,V2)‖X

]
. (3.18)

Estimate for k= 2. We apply once again Lemma 3.1 to

f =∂2
xW2, g=∂2

xV2

with the source term (see Lemma 3.2)(
Sf
Sg

)
=

(
∂2
xFε(∂xV1)

µ∂3
xHε(∂xV1)

)
+[Lε,∂2

x]

(
W2

V2

)
=

(
∂2
xFε(∂xV1)

µ∂3
xHε(∂xV1)

)
+2[Lε,∂x]

(
∂xW2

∂xV2

)
−

(
∂x(p′′ε (vε)∂xvε)∂xV2

−µ∂x
(
∂x

(
∂xvε
v2ε

)
∂xV2

))
.

Observe first that from (3.5), we have

4

∣∣∣∣∣∣
∫ t

0

∫
R

[Lε,∂x]

(
∂xW2

∂xV2

)
·

−∂2
xW2

p′ε(vε)
∂2
xV2

∣∣∣∣∣∣
≤ C

−1
2

4

∫ t

0

∫
R
∂xvε|∂2

xW2|2 +84C1C2ε
−2/γ

∫ t

0

∫
R
|∂2
xV2|2.

Concerning the additional commutator term, we have on the one hand, using the con-
trol (3.10) on ∂2

xvε,

2

∣∣∣∣∫ t

0

∫
R
∂x(p′′ε (vε)∂xvε)∂xV2

−∂2
xW2

p′ε(vε)

∣∣∣∣
≤2

∫ t

0

∫
R
(γ+1)

(
(γ+2)

(∂xvε)
2

(vε−1)2
+
|∂2
xvε|

vε−1

)
|∂xV2| |∂2

xW2|
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≤C3ε
−2/γ

∫ t

0

∫
R
∂xvε|∂xV2| |∂2

xW2|

≤ C
−1
2

4

∫ t

0

∫
R
∂xvε|∂2

xW2|2 +C2
3C2ε

−4/γ

∫ t

0

D0(s;W2,V2)ds,

for some constant C3 depending only on µ,v+ and γ. On the other hand

2

∣∣∣∣∫ t

0

∫
R
µ∂x

(
∂x

(
∂xvε
v2
ε

)
∂xV2

)
∂2
xV2

∣∣∣∣
≤2µ

∫ t

0

∫
R

∣∣∣∣∂x(∂xvεv2
ε

)∣∣∣∣ |∂xV2| |∂3
xV2|

≤ C
−1
2

4

∫ t

0

∫
R
|∂3
xV2|2 +Cε−2/γ

∫ t

0

D0(s;W2,V2)ds.

We now address the nonlinear terms. From Lemma 3.3, we have, concerning the re-
mainder involving Fε, ∫ t

0

∣∣∣∣∫
R

1

p′ε(vε)
∂2
xFε(∂xV1)∂2

xW2

∣∣∣∣
≤Cε−1/γ

∫ t

0

∫
R
∂xvε

(∂xV1)2

(vε−1)2
|∂2
xW2|

+C

∫ t

0

∫
R

(∂2
xV1)2

vε−1
|∂2
xW2|

+C

∫ t

0

∫
R

1

vε−1
|∂xV1| |∂3

xV1| |∂2
xW2|.

Using the inequalities (3.9)-(3.12) together with classical Sobolev embeddings, we infer
that the remainder involving Fε is bounded by

Cε−3/γ

(∫ t

0

D2(s;W2,V2)ds

)1/2

‖∂xV1‖L∞t,x‖∂xV1‖L2
t,x

+Cε−1/γ

∫ t

0

(
‖∂2
xV1‖2L4

x
+‖∂xV1‖L∞x ‖∂

3
xV1‖L2

x

)
‖∂2
xW2‖L2

x

≤Cε−3/γ×ε−2/γ‖(W2,V2)‖X ×ε−
3
2γ ‖(W1,V1)‖2X

+Cε−1/γ‖∂2
xW2‖L∞t (L2

x)

(
‖∂2
xV1‖3/2L2

t,x
‖∂3
xV1‖1/2L2

t,x
+‖∂xV1‖1/2L2

t,x
‖∂2
xV1‖1/2L2

t,x
‖∂3
xV1‖L2

t,x

)
≤Cε−

13
2γ ‖(W2,V2)‖X ‖(W1,V1)‖2X

≤Cδ2ε−
3
2γ ‖(W2,V2)‖X .

Now we deal with the integral coming from Hε, namely

µ

∫ t

0

∫
R
|∂2
xHε(∂xV1)||∂3

xV2|

≤C
∫ t

0

∫
R
|∂xV1||∂3

xV1| |∂3
xV2|+C

∫ t

0

∫
R

(
|∂xV1|+ |∂2

xV1|
)
|∂2
xV1||∂3

xV2|

+C

∫ t

0

∫
R

(
1+ |∂2

xvε|
)
|∂xV1|2|∂3

xV2|
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≤C‖∂3
xV2‖L2

t,x

(
‖∂xV1‖L∞t,x(‖∂3

xV1‖L2
t,x

+‖∂2
xV1‖L2

t,x
+ε−1/γ‖∂xV1‖L2

t,x
)

+‖∂2
xV1‖3/2L2

t,x
‖∂3
xV1‖1/2L2

t,x

)
≤Cε−

11
2γ ‖(W1,V1)‖2X ‖(W2,V2)‖X

≤Cδ2ε−
1
2γ ‖(W2,V2)‖X .

Gathering all the terms, we obtain, for all t≥0,

E2(t;W2,V2)+C−1
2

∫ t

0

D2(s;W2,V2) ds

≤E2(0;W0,V0)+
C−1

2

2

∫ t

0

D2(s;W2,V2) ds+84C1C2ε
−2/γ

∫ t

0

D1(s;W2,V2)ds

+(C2
3C2ε

−4/γ +Cε−2γ)

∫ t

0

D0(s;W2,V2)ds+Cδ2ε−
3
2γ ‖(W2,V2)‖X .

Therefore, for ε small enough and recalling that C2≥1,

sup
t≥0

[
E2(t;W2,V2)+

∫ t

0

D2(s;W2,V2) ds

]
≤2C2E2(0;W0,V0)+Cδ2ε−

3
2γ ‖(W2,V2)‖X

+128C1C
2
2ε
−2/γ

∫ t

0

D1(s;W2,V2)ds+4C2
3C

2
2ε
−4/γ

∫ t

0

D0(s;W2,V2)ds.

Now, choose c0 = 1
2 min((128C1C

2
2 )−1,(4C2

3C
2
2 )−1/2). If c≤ c0, using (3.18), we obtain

sup
t≥0

2∑
k=0

ckε2k/γ

[
Ek(t;W2,V2)+

∫ t

0

Dk(s;W2,V2) ds

]

≤C
2∑
k=0

ε2k/γEk(0;W0,V0)+Cδ2ε
5
2γ ‖(W2,V2)‖X . (3.19)

Recalling the definition of the ‖·‖X norm and using Young’s inequality, we infer that

‖(W2,V2)‖2X ≤C4

2∑
k=0

ε2k/γEk(0;W0,V0)+Cδ4ε
5
γ ,

where the constant C4 depends only on γ,v+ and µ. Hence, if initially

E0(0;W0,V0)+ε2/γE1(0;W0,V0)+ε4/γE2(0;W0,V0)<δ2
0ε

5
γ

with δ0,δ such that C4δ
2
0 +Cδ4<δ2<1, we ensure by (3.19) that

‖(W2,V2)‖2X ≤ δ2ε
5
γ . (3.20)

Therefore the ball Bδ is stable by Aε.
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Aε is a contraction. Consider (W1,V1)∈Bδ, (W ′1,V
′
1)∈Bδ, and the associ-

ated solutions (W2,V2) =Aε(W1,V1), (W ′2,V
′
2) =Aε(W ′1,V ′1). Then (W2−W ′2,V2−

V ′2) is a solution of (3.3) with the source term Sf =Fε(∂xV1)−Fε(∂xV ′1), Sg =
µ∂x [Hε(∂xV1)−Hε(∂xV

′
1)]. The next lemma provides bounds on the new source terms.

Lemma 3.4. For all f1,f2∈H2
loc(R) such that |f1|+ |f2|≤ ε1/γ

2 ,

|Fε(f1)−Fε(f2)|≤C pε(vε)

(vε−1)2
|f1−f2|(|f1|+ |f2|)

|∂x(Fε(f1)−Fε(f2))|≤C pε(vε)

(vε−1)2

[
∂xvε
vε−1

|f1−f2|(|f1|+ |f2|)

+ |∂x(f1−f2)| |f1|+ |∂xf2| |f1−f2|

]

|∂2
x(Fε(f1)−Fε(f2))|≤C pε(vε)

(vε−1)2

[
ε−1/γ∂xvε
vε−1

|f1−f2|(|f1|+ |f2|)

+
1

vε−1

(
|∂x(f1−f2)||f1|+ |f1−f2||∂xf1|

)
+ |∂x(f1−f2)| (|∂xf1|+ |∂xf2|)+ |f1−f2| |∂2

xf1|

+ |∂2
x(f1−f2)| |f2|+

1

vε−1
(∂xf2)2|f1−f2|

]

and

|Hε(f1)−Hε(f2)|≤C|f1−f2|(|f1|+ |f2|)
|∂x(Hε(f1)−Hε(f2))|≤C [|f1| |∂x(f1−f2)|+ |f1| |f1−f2|+(|∂xf2|+ |f2|)|f1−f2|]
|∂2
x(Hε(f1)−Hε(f2))|≤C|f1|((1+ |∂2

xvε|)|f1−f2|+ |∂x(f1−f2)|+ |∂2
x(f1−f2)|)

+C((1+ |∂2
xvε|)|f2|+ |∂xf2|+ |∂2

xf2|)|f1−f2|
+C|∂x(f1−f2)| (|∂xf1|+ |∂xf2|)+C(|f2|2 + |∂xf2|2)|f1−f2|.

We postpone the proof of the lemma to Paragraph 5.2. Using these estimates,
the control of Ek(t;W2−W ′2,V2−V ′2) for k= 0,1 follows the same lines as the one of
Ek(t;W2,V2) above. In particular, since (W2−W ′2,V2−V ′2)|t=0 = 0, we find that for
c≤ c0≤ (32C1C

2
2 )−1,

sup
t∈R+

1∑
k=0

ckε2k/γ

[
Ek(t;W2−W ′2,V2−V ′2)+

∫ t

0

Dk(s;W2−W ′2,V2−V ′2)ds

]
≤Cδ‖(W1−W ′1,V1−V ′1)‖X ‖(W2−W ′2,V2−V ′2)‖X .

However, concerning the estimate for k= 2, there is a difference, stemming from the
term

C
pε(vε)

(vε−1)3
(∂2
xV
′
1)2|∂xV1−∂xV ′1 |

(resp. C((∂xV
′
1)2 +(∂2

xV
′
1)2)|∂xV1−∂xV ′1 |)
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coming from ∂2
x(Fε(∂xV1)−Fε(∂xV ′1)) (resp. from ∂2

x(Hε(∂xV1)−Hε(∂xV
′
1))), see

Lemma 3.4. As a consequence, following the estimates of the case k= 2 above, we
find that for all t≥0,

E2(t;W2−W ′2,V2−V ′2)+C−1
2

∫ t

0

D2(s;W2−W ′2,V2−V ′2)ds

≤ C
−1
2

2

∫ t

0

D2(s;W2−W ′2,V2−V ′2) ds+64C1C2ε
−2/γ

∫ t

0

D1(s;W2−W ′2,V2−V ′2)ds

+(C2
3C2ε

−4/γ +Cε−2γ)

∫ t

0

D0(s;W2−W ′2,V2−V ′2)ds

+Cδε−
4
γ ‖(W1−W ′1,V1−V ′1)‖X ‖(W2,V2)‖X

+C

∫ t

0

∫
R

1

(vε−1)2
(∂2
xV
′
1)2|∂xV1−∂xV ′1 | |∂2

x(W2−W ′2)|

+C

∫ t

0

∫
R

((∂xV
′
1)2 +(∂2

xV
′
1)2)|∂xV1−∂xV ′1 | |∂3

x(V2−V ′2)|.

The first additional nonlinear term is bounded as follows, using (3.9)-(3.12)∫ t

0

∫
R

1

(vε−1)2
(∂2
xV
′
1)2|∂xV1−∂xV ′1 | |∂2

x(W2−W ′2)|

≤Cε−2/γ‖∂xV1−∂xV ′1‖L∞t,x‖∂
2
x(W2−W ′2)‖L∞t (L2

x)‖∂2
xV
′
1‖2L2

t (L
4
x)

≤Cε−2/γ‖∂xV1−∂xV ′1‖L∞t,x‖∂
2
x(W2−W ′2)‖L∞t (L2

x)‖∂2
xV
′
1‖

3/2

L2
t,x
‖∂3
xV
′
1‖

1/2

L2
t,x

≤Cε−
17
2γ ‖(W1−W ′1,V1−V ′1)‖X ‖(W2−W ′2,V2−V ′2)‖X ‖(W ′1,V ′1)‖2X

≤Cδ2ε−
7
2γ ‖(W1−W ′1,V1−V ′1)‖X ‖(W2−W ′2,V2−V ′2)‖X .

For the second additional nonlinear term, we have in a similar way∫ t

0

∫
R

((∂xV
′
1)2 +(∂2

xV
′
1)2)|∂xV1−∂xV ′1 | |∂3

x(V2−V ′2)|

≤C‖∂xV1−∂xV ′1‖L∞t,x‖∂
3
x(V2−V ′2)‖L2

t,x
(‖∂xV ′1‖2L4

t,x
+‖∂2

xV
′
1‖2L4

t,x
)

≤C‖∂xV1−∂xV ′1‖L∞t,x‖∂
3
x(V2−V ′2)‖L2

t,x
‖∂xV ′1‖

1/2

L2
t,x
‖∂xV ′1‖L∞t (L2

x)‖∂2
xV
′
1‖

1/2

L2
t,x

+C‖∂xV1−∂xV ′1‖L∞t,x‖∂
3
x(V2−V ′2)‖L2

t,x
‖∂2
xV
′
1‖

1/2

L2
t,x
‖∂2
xV
′
1‖L∞t (L2

x)‖∂3
xV
′
1‖

1/2

L2
t,x

≤Cε−7/γ‖(W1−W ′1,V1−V ′1)‖X ‖(W2−W ′2,V2−V ′2)‖X ‖(W ′1,V ′1)‖2X
≤Cδ2ε−

2
γ ‖(W1−W ′1,V1−V ′1)‖X ‖(W2−W ′2,V2−V ′2)‖X .

As a consequence, gathering all the terms, we infer that

‖(W2−W ′2,V2−V ′2)‖X ≤Cδ‖(W1−W ′1,V1−V ′1)‖X ,

and therefore, Aε is a contraction on Bδ for δ<δ∗ small enough. This concludes the
proof of Proposition 3.1.
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4. Asymptotic stability of the profiles (uε,vε)

Our goal in this paragraph is to prove the existence and uniqueness of solutions of
the original system (1.1) (rather than the integrated system (1.11)), and to investigate
their long-time behavior. At this stage, we have proved the following:

• If (u,v) is a smooth solution of (1.1) such that v−vε,w−wε∈L1
0(R) for all

times, then we can write system (1.11) for the integrated quantities (W,V );

• If the initial energy of the system is small enough, there exists a unique strong
solution of (1.11) (see Proposition 3.1).

Therefore, our strategy is as follows: we start from the unique solution of (1.11). Under
additional assumptions on the initial data, we derive bounds on u−uε,v−vε. In partic-
ular, we prove that if initially (u−uε)|t=0,(v−vε)|t=0,(w−wε)|t=0∈L1

0, this property
remains true for all times. These local L1 bounds rely on arguments similar to the
ones used by Haspot in [11]. This justifies the equivalence between the original system
(1.1) and the integrated system (1.11). Eventually, we prove that (u−uε)(t)→0 and
(v−vε)(t)→0 as t→∞ in L2∩L∞(R).

Initial perturbations. Let u0, v0 satisfy the hypotheses of Theorem 1.2 and
introduce the integrated quantity U0 such that ∂xU0(·) =u0(·)−uε(0, ·). We have then
(recall that vε|t=0 =vε)

W0 =U0−µ
∂xV0

vε
−µ
[
ln

(
1+

∂xV0

vε

)
− ∂xV0

vε

]
.

By assumption (U0,V0)∈H2(R)×H2(R) and condition (1.12) in Theorem 1.1 is fulfilled,
that is

2∑
k=0

ε
2k
γ

∫
R

[
|∂kxW0|2

−p′ε(vε)
+ |∂kxV0|2

]
≤ δ2

0ε
5
γ .

Moreover, since V0∈H3(R), we have

‖(u−uε)(0)‖L2
x

=

∥∥∥∥∂xW0 +µ∂x

(
∂xV0

vε

)
+∂xHε(∂xV0)

∥∥∥∥
L2
x

≤‖∂xW0‖L2
x

+C(‖∂2
xV0‖L2

x
+‖∂xV0‖L2

x
)+‖∂xHε(∂xV0)‖L2

x

≤C
[
‖∂xW0‖L2

x
+‖∂2

xV0‖L2
x

+‖∂xV0‖L2
x

+‖∂xV0‖L∞x
(
‖∂xV0‖L2

x
+‖∂2

xV0‖L2
x

)]
≤Cδ0ε

1
2γ , (4.1)

and

‖∂x(u−uε)(0)‖L2
x
≤‖∂2

xW0‖L2
x

+C‖∂2
xHε(∂xV0)‖L2

x

+C(‖∂3
xV0‖L2

x
+‖∂2

xV0‖L2
x

+ε−1/γ‖∂xV0‖L2
x
)

≤‖∂2
xW0‖L2

x
+C

(
1+‖∂xV0‖L∞x

)
‖∂3
xV0‖L2

x
+C‖∂2

xV0‖2L4
x

+Cε−1/γ‖∂xV0‖L∞x ‖∂xV0‖L2
x

≤‖∂2
xW0‖L2

x
+C

(
1+‖∂xV0‖L∞x

)
‖∂3
xV0‖L2

x
+C‖∂2

xV0‖3/2L2
x
‖∂3
xV0‖1/2L2

x
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+Cε−1/γ‖∂xV0‖L∞x ‖∂xV0‖L2
x

≤Cδ0 +C‖∂3
xV0‖L2

x
(4.2)

using the result of Lemma 3.3.

Stability of the velocity profile uε. The perturbation u−uε satisfies the
parabolic equation

∂t(u−uε)−µ∂x
(

1

v
∂x(u−uε)

)
=−∂x(pε(v)−pε(vε))+µ∂x

((
1

v
− 1

vε

)
∂xuε

)
, (4.3)

where v=vε+∂xV , and (W,V ) is a solution of (1.11).

Lemma 4.1. Assume that initially (U0,V0)∈H2(R)×H3(R) is such that (1.12) is sat-
isfied by the couple (W0,V0) and consider the solution (W,V )∈Bδ⊂X of (1.11) given
by Theorem 1.1. Then there exists a unique regular solution u−uε to (4.3) which is
such that

u−uε∈C([0,+∞);H1(R))∩L2([0,+∞),H2(R)), ∂t(u−uε)∈L2([0,+∞)×R). (4.4)

Moreover the following estimate holds

sup
t∈R+

[
‖(u−uε)(t)‖2H1 +

∫ t

0

‖∂x(u−uε)(s)‖2H1 ds

]
≤C

(
‖(u−uε)(0)‖2H1 +δ2ε

1
γ
)
. (4.5)

Proof. Under the initial condition (1.12), Theorem 1.1 applies and yields the exis-
tence of a unique couple (W,V )∈Bδ. For this V , we define v=vε+∂xV . Then inf v≥1+
cε1/γ for some positive constant c, and using (3.12), we also have ‖v‖L∞(R+,W 1,∞(R))≤C.

First, we test the equation (4.3) against u−uε to get∫
R

|(u−uε)(t)|2

2
−
∫
R

|(u−uε)(0)|2

2
+µ

∫ t

0

∫
R

1

v
|∂x(u−uε)|2

=

∫ t

0

∫
R

(pε(v)−pε(vε))∂x(u−uε)−µ
∫ t

0

∫
R

(
1

v
− 1

vε

)
∂xuε ∂x(u−uε)

where the right-hand side can be estimated as follows, using the relation ∂xuε=−sε∂xvε
to bound |∂xuε|∣∣RHS

∣∣≤ µ
2

∫ t

0

∫
R

1

v
|∂x(u−uε)|2 +C

∫ t

0

∫
R

∣∣pε(vε+∂xV )−pε(vε)
∣∣2

+C

∫ t

0

∫
R

∣∣∣∣ 1

vε+∂xV
− 1

vε

∣∣∣∣2 ∣∣∂xuε∣∣2
≤ µ

2

∫ t

0

∫
R

1

v
|∂x(u−uε)|2 +Cε−2/γ‖∂xV ‖2L2

t,x
+C‖∂xV ‖2L2

t,x

≤ µ
2

∫ t

0

∫
R

1

v
|∂x(u−uε)|2 +Cδ2ε3/γ .

Therefore we have

sup
t∈R+

[
‖(u−uε)(t)‖2L2

x
+
µ

2

∫ t

0

‖∂x(u−uε)(s)‖2L2
x
ds

]
≤‖(u−uε)(0)‖2L2

x
+Cδ2ε3/γ . (4.6)
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To obtain an estimate at the next order, we test equation (4.3) against −∂2
x(u−uε):∫

R

|∂x(u−uε)(t)|2

2
−
∫
R

∂x|(u−uε)(0)|2

2
+µ

∫ t

0

∫
R

1

v
|∂2
x(u−uε)|2

=µ

∫ t

0

∫
R

∂xv

v2
∂x(u−uε) ∂2

x(u−uε)+

∫ t

0

∫
R
∂x(pε(vε+∂xV )−pε(vε)) ∂2

x(u−uε)

−µ
∫ t

0

∫
R
∂x

((
1

vε+∂xV
− 1

vε

)
∂xuε

)
∂2
x(u−uε).

As previously we estimate the right-hand side by means of Cauchy-Schwarz and Young’s
inequalities

∣∣RHS
∣∣≤ µ

2

∫ t

0

∫
R

1

v
|∂2
x(u−uε)|2 +C

∫ t

0

∫
R
|∂x(u−uε)|2

+Cε−4/γ‖∂xV ‖2L2
t,x

+Cε−2/γ‖∂2
xV ‖2L2

t,x

+Cε−2/γ‖∂xV ‖2L2
t,x

+C‖∂2
xV ‖2L2

t,x

≤ µ
2

∫ t

0

∫
R

1

v
|∂2
x(u−uε)|2 +C

∫ t

0

∫
R
|∂x(u−uε)|2 +Cδ2ε1/γ

using the relation ∂xuε=−sε∂xvε to deduce that |∂2
xuε|≤Cε−1/γ . Combining this in-

equality with the previous estimate (4.6) we obtain (4.5). As a consequence, we also
deduce from equation (4.3) that

‖∂t(u−uε)‖L2
t,x

≤C
(
‖∂2
x(u−uε)‖L2

t,x
+‖∂x(u−uε)‖L2

t,x
+ε−2/γ‖∂xV ‖L2

t,x
+ε−1/γ‖∂2

xV ‖L2
t,x

)
≤Cδε

1
2γ .

The existence and uniqueness of u derives classically from these a priori estimates.

Remark 4.1. Combining equation (4.3) with (the x derivative of) (1.11), we infer that
the quantity w−u+µ∂x(lnv) is a solution in the sense of distributions of the parabolic
equation

∂t (w−u+µ∂x(lnv))−µ∂x
[

1

v
∂x (w−u+µ∂x(lnv))

]
= 0.

Furthermore, by definition of W0, we also have (w−u+µ∂x(lnv))|t=0 = 0. As a conse-
quence,

w−u+µ∂x(lnv) = 0 for a.e. t>0, x∈R.

L1 estimates. The previous lemma is based on the existence and uniqueness of
a regular v=vε+∂xV and thus on the passage to the integrated quantities (W,V ).
Nevertheless, we did not justify the equivalence between the system∂t(w−wε)+∂x(pε(v)−pε(vε)) = 0 (4.7a)

∂t(v−vε)−∂x(w−wε)−µ∂2
x ln

v

vε
= 0 (4.7b)
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and the system (1.11) satisfied by the integrated quantities. Initially, we assumed that
(w0−wε(0),v0−vε(0))∈L1

0(R) to justify the introduction of (W0,V0) (note that the as-
sumptions of Theorem 1.2, namely u0−uε(0)∈W 1,1

0 and v0−vε(0)∈W 2,1
0 ∩H2, ensure

that w0−wε(0)∈L1
0). The goal of this paragraph is to prove that this property remains

true for all times. This result relies on a combination of estimates on the both velocities
u−uε and w−wε, similar to the estimates in [11].

Lemma 4.2. Assume that the conditions of the previous lemma are satisfied. Suppose
in addition that

u0−uε(0)∈L1
0(R), v0−vε(0)∈W 1,1

0 (R).

Then for all times t≥0, (u−uε)(t) and (w−wε)(t) belong to L1
0(R) and

‖(u−uε)(t)‖L1
x

+‖(w−wε)(t)‖L1
x
≤Cε

[
‖u0−uε(0)‖L1

x
+‖w0−wε(0)‖L1

x

]
eCεt (4.8)

where the constant Cε tends to +∞ as ε→0.

Proof. The functions u−uε and w−wε satisfy the equations

∂t(u−uε)−µ∂x
(

1

v
∂x(u−uε)

)
=−∂x(pε(v)−pε(vε))+µ∂x

((
1

v
− 1

vε

)
∂xuε

)
, (4.9)

∂t(w−wε) =−∂x(pε(v)−pε(vε)). (4.10)

For n>0, we introduce jn∈C2(R) defined by

jn(z) =

√
z2 +

1

n
−
√

1

n
∀z∈R

which is a smooth, convex approximation of the function r 7→ |r| as n→+∞. Note that

j′n(z) =z
(√

z2 +1/n
)−1

is an approximation of the sign function. Testing equations
(4.9)-(4.10) against j′n(u−uε) and j′n(w−wε) respectively, we infer that∫

R
∂t
[
jn(u−uε)+jn(w−wε)

]
+µ

∫
R

1

v
j′′n(u−uε)|∂x(u−uε)|2

=−
∫
R
∂x(pε(v)−pε(vε))

[
j′n(u−uε)+j′n(w−wε)

]
+µ

∫
R
∂x

((
1

v
− 1

vε

)
∂xuε

)
j′n(u−uε).

Since j′′n>0, the second integral of the left-hand side has a positive sign. On the other
hand, since the profile (vε,uε) satisfies ∂kxvε, ∂

k
xuε∈L1(R), k≥1, the right-hand side

can be controlled by

|RHS|≤
∫
R

∣∣∂x(pε(v)−pε(vε)
∣∣+µ

∫
R

∣∣∣∣∂x((1

v
− 1

vε

)
∂xuε

)∣∣∣∣
≤
∫
R

∣∣p′ε(v)∂x(v−vε)+(p′ε(v)−p′ε(vε))∂xvε
∣∣+µ

∫
R

∣∣∣∣∂x(1

v
− 1

vε

)∣∣∣∣ |∂xuε|
+µ

∫
R

∣∣∣∣1v − 1

vε

∣∣∣∣ |∂2
xuε|

≤Cε−1/γ
(
‖∂xv‖L1

x
+‖∂xvε‖L1

x

)
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+C‖v−vε‖L∞(R+,W 1,∞(R))

(
ε−2/γ‖∂xvε‖L1

x
+‖∂xuε‖L1

x
+‖∂2

xuε‖L1
x

)
where

∂xv=
v

vε
∂xvε+

v

µ

[
(u−uε)−(w−wε)

]
so that

‖∂xv‖L1
x
≤C

(
‖∂xvε‖L1

x
+‖u−uε‖L1

x
+‖w−wε‖L1

x

)
.

Hence ∫
R

[
jn(u−uε)(t)+jn(w−wε)(t)

]
−
∫
R

[
|u−uε|(0)+ |w−wε|(0)

]
≤Cε

(
‖∂xvε‖L1 +‖∂2

xvε‖L1 +

∫ t

0

∫
R

[
|u−uε|+ |w−wε|

])
where we have used the fact that jn(r)≤|r|. Passing to the limit n→+∞ and using
Fatou’s lemma, we finally obtain (4.8) thanks to a Gronwall inequality. Since the
equations (4.9)-(4.10) are conservative, we ensure that∫

R
(u−uε)(t) = 0,

∫
R

(w−wε)(t) = 0 ∀t≥0.

Observe that the previous lemma gives L1 bounds on u−uε and w−wε but not on
v−vε. Since v−vε satisfies

∂t(v−vε)−∂x(u−uε) = 0,

the derivation of a L1 estimate requires a control of ∂x(u−uε) in L1
x.

Lemma 4.3. Assume that the conditions of the previous lemmas are satisfied. Suppose
in addition that

∂x(u0−uε(0))∈L1(R), ∂x(w0−wε(0))∈L1(R).

Then for all times t≥0, (v−vε)(t), ∂x(u−uε)(t) and ∂x(w−wε)(t) belong to L1
0(R) and

‖(v−vε)(t)‖L1
x

+‖(u−uε)(t)‖W 1,1
x

+‖(w−wε)(t)‖W 1,1
x

≤Cε
[
‖v0−vε(0)‖L1

x
+‖u0−uε(0)‖W 1,1

x
+‖w0−wε(0)‖W 1,1

x
+1
]
eCεt (4.11)

where the constant Cε tends to +∞ as ε→0.

Remark 4.2. The previous estimates (4.8) and (4.11) are local in time and depend on
ε but in fact, we will never use them in a quantitative fashion. Note that the only point
we are interested in is the fact that u(t,·)−uε(t, ·) and v(t,·)−vε(t, ·) are in L1(R) for
all t≥0.

Proof. The proof of this result follows the same lines as before. It relies on a
combination of L1-estimates for the three following equations

∂t(v−vε) =∂x(u−uε),
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∂t∂x(u−uε)−µ∂x
(

1

v
∂2
x(u−uε)

)
=−∂2

x(pε(v)−pε(vε))+µ∂2
x

((
1

v
− 1

vε

)
∂xuε

)
−µ∂x

(
∂xv

v2
∂x(u−uε)

)
,

∂t∂x(w−wε) =−∂2
x(pε(v)−pε(vε)).

As in the previous proof, the key ingredient is the control of ∂2
xv in terms of ∂kxvε,∂

k
x(u−

uε), ∂
k
x(w−wε), k= 0,1:

∂2
xv=

(
∂xv

vε
− v∂xvε

v2
ε

)
∂xvε+

v

vε
∂2
xvε+

∂xv

µ

[
(u−uε)−(w−wε)

]
+
v

µ

[
∂x(u−uε)−∂x(w−wε)

]
and therefore

‖∂2
xv‖L1

x
≤Cε

(
‖∂xvε‖L1

x
+‖∂2

xvε‖L1
x

+‖u−uε‖L1
x

+‖w−wε‖L1
x

+‖∂x(u−uε)‖L1
x

+‖∂x(w−wε)‖L1
x

)
.

Thanks to this bound, we can estimate

∂2
x(pε(v)−pε(vε)) =p′ε(v)∂2

x(v−vε)+p′′ε (v)(∂xv)2−p′′ε (vε)(∂xvε)
2

+(p′ε(v)−p′ε(vε))∂2
xvε

as follows

‖∂2
x(pε(v)−pε(vε))‖L1

x

≤C
[
ε−1/γ‖∂2

x(v−vε)‖L1
x

+ε−2/γ(‖∂xv‖L1
x

+‖∂xvε‖L1
x
)+ε−1/γ‖∂2

xvε‖L1
x

]
≤Cε−2/γ

[
‖∂xvε‖L1

x
+‖∂2

xvε‖L1
x

+‖u−uε‖L1
x

+‖w−wε‖L1
x

+‖∂x(u−uε)‖L1
x

+‖∂x(w−wε)‖L1
x

]
.

Furthermore, using Lemma 4.1,∥∥∥∥∂x(∂xvv2
∂x(u−uε)

)∥∥∥∥
L1((0,t)×Rx)

≤C‖∂xv‖L2((0,t)×Rx)‖∂2
x(u−uε)‖L2((0,t)×Rx)

+C‖∂2
xv‖L2((0,t)×Rx)‖∂x(u−uε)‖L2((0,t)×Rx)

+C‖∂xv‖2L2((0,t),L4(Rx))‖∂x(u−uε)‖L∞((0,t),L2(Rx))

≤C(‖(u−uε)(0)‖H1 +δε
1
2γ )

[
‖∂xvε‖L2((0,t),H1(Rx)) +‖∂2

xV ‖L2((0,t),H1(Rx))

+
(
‖∂xvε‖L2((0,t),L4(Rx)) +‖∂2

xV ‖L2((0,t),L4(Rx))

)2
]

≤Cε.

Equipped with these estimates we easily deduce (4.11).
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Proof of the first part of Theorem 1.2. Let us now recap the conclusion of the
previous steps.

Let (u0,v0) be an initial data satisfying the assumptions of Theorem 1.2, and let
U0,V0,W0 be the associated integrated quantities. Let (V,W ) be the solution of (1.11).
Then according to Lemma 4.1, the associated couple (u,v) := (∂xU+uε,∂xV +vε) is a
solution of (1.1) and belongs to (uε,vε)+C([0,∞),H1(R)2), and v−vε∈L2(R+,H

2).
Lemmas 4.2 and 4.3 ensure that for all t≥0, (u,v,w)(t)∈ (uε,vε,wε)+L1

0(R).
Conversely, let (u,v)∈ (uε,vε)+C(R+,H

1∩L1
0(R)) be any solution of (1.1) such that

v−vε∈L2(R+,H
2), and assume that the initial data (u0,v0) satisfies the assumptions

of Theorem 1.2. Define the integrated quantities

U(t,x) :=

∫ x

−∞
(u(t,z)−uε(t,z))dz, V (t,x) :=

∫ x

−∞
(v(t,z)−vε(t,z))dz,

and

W :=U−µ∂xV
vε
−µ
[
ln

(
1+

∂xV

vε

)
− ∂xV

vε

]
.

Then (V,W ) is a solution of (1.11). Furthermore, ∂xV ∈C(R+,H
1∩L1

0)∩L2(R+,H
2)

and ∂xW ∈C(R+,H
1∩L1

0). In order to conclude that (V,W ) is the unique solution
of (1.11) in Bδ, we first need to prove that (V,W )∈X . The regularity assumptions
on (u,v) ensure that ∂t(V,W )∈C(R+,H

1), and therefore (V,W )∈C(R+,H
2). We infer

that (V,W )∈X . A simple bootstrap argument then ensures that (V,W )∈Bδ, and thus
(V,W ) is uniquely determined as the fixed point of the application Aε, see Proposition
3.1. The uniqueness of (u,v) follows easily.

As a consequence, we have proved that for any initial data (u0,v0) satisfying the
assumptions of Theorem 1.2, there exists a unique solution (u,v) of (1.1) such that

u−uε∈C(R+,H
1∩L1

0),

v−vε∈C(R+,H
1∩L1

0)∩L2(R+,H
2).

Long-time behavior. We have shown in the previous section that

v−vε=∂xV ∈L2([0,+∞);H2(R)).

Combining this bound with the control of

∂t(v−vε) =∂x(u−uε) in L2([0,+∞);H1(R)),

we infer that

‖(v−vε)(t)‖H1
x
−→
t→+∞

0.

As a consequence, we have

|(v−vε)(t,x)|≤C‖(v−vε)(t)‖1/2L2
x
‖∂x(v−vε)(t)‖1/2L2

x
−→
t→+∞

0. (4.12)

Similarly for u−uε, the bounds obtained in Lemma 4.1 yield

‖(u−uε)(t)‖L2
x
−→
t→+∞

0

and therefore

|(u−uε)(t,x)|≤C‖(u−uε)(t)‖1/2L2
x
‖∂x(u−uε)‖1/2L∞L2

x
−→
t→+∞

0. (4.13)
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5. Proofs of Lemmas 3.2, 3.3 and 3.4

5.1. Structure of the commutator. Let us prove the three properties claimed
in Lemma 3.2. A direct calculation gives first

[Lε,∂x]

(
f
g

)
=Lε

(
∂xf
∂xg

)
−∂x

(
Lε
(
f
g

))
=

(
p′ε(vε)∂

2
xg

−∂2
xf−µ∂x

(
∂2
xg
vε

))−( p′′ε (vε)∂xvε∂xg+p′ε(vε)∂
2
xg

−∂2
xf−µ∂x

(
∂2
xg
vε

)
+µ∂x

(
∂xvε
v2ε

∂xg
))

=

(
−p′′ε (vε)∂xvε∂xg

−µ∂x
(
∂xvε
v2ε

∂xg
))

.

Next, we have

[Lε,∂2
x]

(
f
g

)
= [Lε,∂x]∂x

(
f
g

)
+∂x[Lε,∂x]

(
f
g

)
=

(
−p′′ε (vε)∂xvε∂

2
xg

−µ∂x
(
∂xvε
v2ε

∂2
xg
))

+

(
−∂x(p′′ε (vε)∂xvε∂xg)

−µ∂2
x

(
∂xvε
v2ε

∂xg
) )

=

(
−2p′′ε (vε)∂xvε∂

2
xg

−2µ∂x

(
∂xvε
v2ε

∂2
xg
))−( ∂x(p′′ε (vε)∂xvε)∂xg

−µ∂x
(
∂x

(
∂xvε
v2ε

)
∂xg
))

= 2[Lε,∂x]

(
∂xf
∂xg

)
−

(
∂x(p′′ε (vε)∂xvε)∂xg

−µ∂x
(
∂x

(
∂xvε
v2ε

)
∂xg
))

.

For the third point,∫ T

0

∫
R

[Lε,∂x]

(
f
g

)
·

−∂xfp′ε(vε)
∂xg


=

∫ T

0

∫
R

p′′ε (vε)

p′ε(vε)
∂xvε∂xg∂xf−µ

∫ T

0

∫
R
∂x

(
∂xvε
v2
ε

∂xg

)
∂xg

=

∫ T

0

∫
R

p′′ε (vε)

p′ε(vε)
∂xvε∂xg∂xf−

µ

2

∫ T

0

∫
R
∂x

(
∂xvε
v2
ε

)
|∂xg|2

where the right-hand side can be estimated as follows∣∣∣∣∣
∫ T

0

∫
R

p′′ε (vε)

p′ε(vε)
∂xvε∂xg∂xf

∣∣∣∣∣+
∣∣∣∣∣µ2
∫ T

0

∫
R
∂x

(
∂xvε
v2
ε

)
|∂xg|2

∣∣∣∣∣
≤
∥∥∥∥p′′ε (vε)

p′ε(vε)

∥∥∥∥
∞

(∫ T

0

∫
R
∂xvε|∂xf |2

)1/2(∫ T

0

∫
R
|∂xg|2

)1/2

+C

∥∥∥∥∂x(∂xvεv2
ε

)∥∥∥∥
L∞

∫ T

0

∫
R
|∂xg|2

≤ δ
∫ T

0

∫
R
∂xvε|∂xf |2 +

C

δ

(∥∥∥∥ 1

vε−1

∥∥∥∥2

∞
+

∥∥∥∥∂x(∂xvεv2
ε

)∥∥∥∥
L∞

)∫ T

0

∫
R
|∂xg|2.

Using (3.9) and (3.10), we obtain the result announced in Lemma 3.2.
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5.2. Estimates on the nonlinear terms.

Proof of Lemma 3.3. We recall that

Fε(f) =−[pε(vε+f)−pε(vε)−p′ε(vε)f ] ,

and that the function pε is C∞ in ]1,+∞[. As a consequence, we will extensively
use Taylor identities to bound Fε and its derivatives. Let us also mention that we
will only consider functions f such that ‖f‖∞≤ δε1/γ for some constant δ<1, so that
|f |≤ δ(vε−1). As a consequence, for all k∈N and for all δ<1/2, there exists a constant
Ck such that

C−1
k |p

(k)
ε (vε)|≤ |p(k)

ε (vε+f)|≤Ck|p(k)
ε (vε)|.

As a consequence, we infer easily that

|Fε(f)|≤Cp′′ε (vε)f
2≤C pε(vε)

(vε−1)2
f2.

The estimates on ∂kx(Fε(f)) follow from similar arguments after differentiation. We have

∂x(Fε(f)) =−∂xvε [p′ε(vε+f)−p′ε(vε)−p′′ε (vε)f ]

−∂xf [p′ε(vε+f)−p′ε(vε)],

and therefore

|∂x(Fε(f))|≤C
[
∂xvε|p(3)

ε (vε)|f2 +p′′ε (vε)|f ||∂xf |
]
.

In a similar manner, we have for the second derivative

∂2
x(Fε(f)) =−∂2

xvε [p′ε(vε+f)−p′ε(vε)−p′′ε (vε)f ]

−(∂xvε)
2
[
p′′ε (vε+f)−p′′ε (vε)−p(3)

ε (vε)f
]

−2∂xvε∂xf [p′′ε (vε+f)−p′′ε (vε)]

−(∂xf)2p′′ε (vε+f)−∂2
xf [p′ε(vε+f)−p′ε(vε)].

As a consequence, using inequalities (3.9) and (3.10), we obtain

|∂2
x(Fε(f))|≤Cε−1/γ∂xvε|p(3)

ε (vε)|f2

+C∂xvεp
(4)
ε (vε)f

2

+C∂xvε|p(3)
ε (vε)| |f | |∂xf |

+Cp′′ε (vε)(∂xf)2 +Cp′′ε (vε)|f | |∂2
xf |.

Using Young’s inequality, we obtain the estimate announced in the lemma. The esti-
mates on Gε are similar and are left to the reader.

Proof of Lemma 3.4. Once again we focus on Fε. The estimates for
Fε(f1)−Fε(f2), ∂x(Fε(f1)−Fε(f2)) go along the same lines as above and are left to the
reader. The only novelty in ∂2

x(Fε(f1)−Fε(f2)) comes from the term (∂xf2)2p′′ε (vε+
f2)−(∂xf1)2p′′ε (vε+f1), for which we write

(∂xf2)2p′′ε (vε+f2)−(∂xf1)2p′′ε (vε+f1)
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= (∂xf2)2 [p′′ε (vε+f2)−p′′ε (vε+f1)]+(∂xf2−∂xf1)(∂xf2 +∂xf1)p′′ε (vε+f1),

and therefore∣∣(∂xf2)2p′′ε (vε+f2)−(∂xf1)2p′′ε (vε+f1)
∣∣

≤C
(
|p(3)
ε (vε)|(∂xf2)2|f1−f2|+ |p′′ε (vε)||∂xf2−∂xf1| |∂xf2 +∂xf1|

)
.
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