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ROTATION INVARIANT CNN USING SCATTERING TRANSFORM
FOR IMAGE CLASSIFICATION

Rosemberg Rodriguez, Eva Dokladalova

ESIEE Paris, University Paris-Est
LIGM UMR 8049
2 Bd Blaise Pascal, Noisy le Grand, France

ABSTRACT

Deep convolutional neural networks accuracy is heavily im-
pacted by rotations of the input data. In this paper, we pro-
pose a convolutional predictor that is invariant to rotations in
the input. This architecture is capable of predicting the an-
gular orientation without angle-annotated data. Furthermore,
the predictor maps continuously the random rotation of the
input to a circular space of the prediction. For this purpose,
we use the roto-translation properties existing in the Scatter-
ing Transform Networks with a series of 3D Convolutions.
We validate the results by training with upright and randomly
rotated samples. This allows further applications of this work
on fields like automatic re-orientation of randomly oriented
datasets.

Index Terms— Rotation, invariant, covariant, convolu-
tional neural network, image classification.

1. INTRODUCTION

Deep learning has become state of the art solution for image
classification problems having impressive accuracy but it is
heavily impacted by objects characteristics like symmetry and
rotations.

Most of the state of the art Convolutional Neural Net-
works (CNNs) were designed for training and classification
using upright orientation [1, 2]. Their accuracy is heavily re-
duced if the objects in the image are rotated. While some data
is naturally upright oriented (faces [3] or numbers[4]) other
presents random orientations (plankton [5], galaxies [6], food
[7D).

To tackle the rotation problem, the majority of published
approaches integrates rotated samples in the preparation of
the training database. It is the case of MNIST-rot [8] that
contains random rotations on each sample of the training
and validation set. Only some works, like ORNs [9] and
the Rotationally-Invariant Convolution Module [10], include
results from networks trained with upright samples (MNIST)
and validated on randomly rotated samples (MNIST-rot).

In addition, the rotation problem has particular impor-
tance for some applications like automatic handling of in-
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Fig. 1. Examples of upright and un-oriented datasets.

dustrial components by robotic arms require angular covari-
ance [11]. Here, the main challenge is not only classifying
the rotated object but also to predict the angle without angle-
annotated datasets.

In this paper, we present a rotation invariant architec-
ture based on a Scattering Transform [12]. Having oriented
wavelet feature space, we make use of the roto-translation
properties it presents. Our architecture predicts the maximum
probability class and its rotation. Furthermore, the network
is able to continuously map the random rotation of the in-
put to an output circular space. This circular space outputs
the predicted angle despite being trained only with upright
samples.

Our main contribution consists of an invariant and covari-
ant CNN capable of predicting the class and the angle without
angular labeling. We validate this feature by training the net-
work with upright and randomly oriented samples achieving
near the state of the art accuracy while reducing drastically
the number of parameters.

This paper organization is: Section 2 discusses existing
approaches and related work, in Section 3 we present the
filter stage based on the Scattering Transform and discuss
its roto-translational properties. Section 4 introduces the de-
scription of the convolutional architecture predictor, and fi-
nally we present the results of experiments in Section 5.

2. RELATED WORK

In the existing approaches that try to tackle the rotation prob-
lem, we can find two groups: i) transforming the input and ii)
rotating the internal filters.



From the first group, data augmentation [13] is the most
used method. It consists on generating random transforma-
tions of the input image, including change of size and rota-
tions but it comes with some limitations. The number of filters
increased when having sparse data to be able to capture the
main features correctly. Also, the model still needs to learn a
different filter set for each variation in the data. For example,
different filters to detect horizontal and vertical edges.

We can cite other approaches included in this first group.
The Spatial Transformer Network [14] and its variants, which
apply a spatial transformation to feature maps. TI-Pooling
[15] makes use of rotated versions of the same image as input
and the network chooses the right rotation. Multi-Column
Deep Neural Networks [16], train a model for each trans-
formation and obtain the results by averaging and taking the
winner-take-all output. Polar Transformer Networks [17]
achieve rotation invariance by transforming the input into
polar coordinates with the origin learned as the centroid of
a single channel. The main limitation of these methods is
to find a balance between the size of the network and the
variations of the data.

The general objective of the approaches in the second
group is to achieve rotation invariance by mean of internal
filter rotations. They try to find a trade-off between required
computational resources and the number of trainable param-
eters. Harmonic Networks [18] achieve equivariance to rota-
tion by using steerable filters constructing any angular filter
by the linear combination of base filters. Oriented Response
Networks [9] propose the Active Rotating Filters that actively
rotate during convolution and produce maps with location
and orientation explicitly encoded. Rotation Equivariant Vec-
tor Field Networks [19] perform convolutions with several
rotated instances of the same canonical filter but they rely
on test-time data augmentation to improve their results. Re-
cently, the Rotationally-Invariant Convolution Module [10]
achieves rotation invariance by generating features that are
rotationally invariant.

All of these approaches reach a good accuracy in terms
of equivariance or invariance to the input and try to enhance
the feature part of the network. In comparison to them, we
present a new architecture that enhances the predictor part,
allowing not only to predict class but also rotation. Also,
we demonstrate the capability of the network to continuously
map random rotations from training to a circular space con-
taining the angle prediction.

3. ROTO-TRANSLATIONAL FEATURE SPACE

A wavelet scattering network computes a translation covari-
ant image representation which is stable to deformations
and preserves high-frequency information for classification.
This network can provide the first layer of deep convolution
networks [12]. We use the Scattering Transform to get an
oriented-wavelet feature space (Fig. 2). Translation in this
space is covariant to rotation of the input (Fig. 3a).
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Fig. 2. Oriented-wavelet feature space for an upright input of
the letter X product of the scattering transform (parameters
M=2J=1,L=16).

3.1. Scattering wavelets

Using the real part of the Morlet wavelet described on [12]
we transform the input into an oriented-wavelet feature space
(Fig. 3b). This transformation outputs a series of wavelet
samples with different energy each one. Angles that are col-
inear with edges in the input contain higher energy. For exam-
ple, the letter X feature space will contain wavelets with more
energy on the angles 33° and 146° and almost no energy at 0°.
Furthermore, the distance between the angular strokes in the
oriented wavelet feature space is proportional to the angular
distance between the input edges.

3.2. Roto-translation

An important property of this space is the covariance between
the rotation of the input and translation over the feature space.
This translation is proportional to the angle 6. Angular step
df can be calculated by dividing the number of wavelet ori-
entations (ns = 16) present on the feature space by the an-
gular range of the transform (180°). Another property of this
transform is the capability of mapping the angular distance
between the two image edges to a linear distance between the
angular samples. Let the sample be the letter X containing
an angle of 112° and other of 68° between the strokes. We
can observe a linear distance of 10 steps between the angular
samples for the bigger angle and of 6 steps for the smaller
one. This linear distance remains constant for every rotation
of the input image. The angular distance can be recovered by
multiplying these numbers by df = 11.25.

3.3. Horizontally aligned wavelets

While having the oriented wavelet space is important, the scan
order of the image represents a crucial factor to achieve the
rotation invariance and covariance over it, the wavelet angu-
lar sample should be scanned in the same orientation that it
represents.

To achieve this we implemented a custom weight dense
layer which makes a re-indexing process over the feature
space samples. This dense layer makes a bi-linear un-rotation
that compensates the angle present in the wavelet using the
oriented wavelet value calculated in the previous steps.
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Fig. 3. Network architecture stages. First row, roto-translation features. Second row, overall predictor architecture. Output

shape of each stage in brackets.

The output result of this custom layer is an horizontally-
oriented wavelet feature space (Fig. 3c) that contains the un-
rotated version of each angular sample and that matches cor-
rectly with the horizontal scan order.

4. CONVOLUTIONAL PREDICTOR
ARCHITECTURE

As a result of the roto-translation covariance, the wavelet fea-
ture space contains all the possible rotations of the input in
the form of translations. To obtain all the translations we first
apply periodic padding to the oriented wavelet feature space.
The result of this periodic padding (Fig. 3d) is an augmented
wavelet feature space with shape (14, 14, 31) containing all
the possible translations.

To enhance the horizontally aligned wavelets information
we apply a MaxPooling layer with size (2, 2, 1) (Fig. 3e).
This reduces the number of parameters needed in the next
layers. The output of this step is a tensor with shape (7, 7, 31).

To obtain information of each translation the predictor
needs to span over the augmented wavelet feature space. This
is, apply the predictor to the first 16 wavelet orientations and
then move one step ahead. By applying the predictor in this
way we obtain 16 different wavelet feature spaces of shape
(7,7, 16). Each one of these spaces contains one translation
of the feature space.

The first stage of the predictor consists of five 3D Con-
volutions with kernel size (2, 2, 4) and 10 filters each one
(Fig. 3f). These convolutions capture the underlying features
between the wavelet orientations. One of these features being
the distance between them. This predictor is applied to each
one of the spaces containing the translations. The importance
of being a shared weight predictor spanning over them is to
learn the features of the translation corresponding to the up-
right position. This upright position translation can appear
on any of the translation spaces. The output of this stage are

16 spaces of (2, 2, 1, 10) containing the information of each
translation.

The second stage of the predictor is a shared dense layer
(Fig. 3g). This shared dense layer will be applied to each one
of the output spaces from the first stage. The output shape of
this dense layer is equal to the number of classes. This layer
will make a prediction for each one of the translations and
store it in a tensor. The output will be a probability distribu-
tion P with as many columns as classes and rows as transla-
tions.

Let the case be ng, = 16 and 10 classes. The shared weight
dense layer makes a prediction for each one of the 16 trans-
lations. Each one of these predictions is stored on the output
tensor. This tensor has a shape of (16 x 10). The 10 columns
of this tensor will contain the predicted class information and
the 16 rows the angular information (Fig. 3h). After this, a
GlobalMaxPooling layer (Fig. 3i) applied to the columns out-
puts the maximum probability class and its row index. Mul-
tiplying the row index by df plus a constant results in the
predicted angle.

5. EXPERIMENTS

Following existing implementations of the state of the art, we
validate the proposed architecture using the MNIST dataset.
We made experiments with upright oriented samples and then
with randomly oriented samples. Both of them validated
on randomly rotated samples. To generate this variation of
MNIST dataset we implemented a random rotation between
[-90 and 90] for each sample of the original MNIST taking
inspiration from MNIST-R [14].

5.1. Scattering transform parameters

We use a second order scattering transform M = 2, as sug-
gested in [12]; higher order transforms are not useful because
they have negligible energy.



The scale parameter was fixed on J = 1 as we are work-
ing with 28 x 28 pixels size images and the factor 27 makes
the output image 14 x 14 pixels, further scaling of this param-
eter will reduce significantly the information available to the
network. The last parameter was fixed at L = 16 allowing us
to have 16 angular samples over -90° to 90° degrees range.

5.2. Rotation invariant class prediction

Rotation invariance is validated by the capability of the ar-
chitecture to predict the class correctly despite the rotation of
the input. We test this property by training the network with
MNIST-R (Table 1) and original MNIST (Table 2). Both tests
are validated on the randomly rotated dataset MNIST-R.

Table 1. Obtained error rate (training/validation=MNIST-R)

Method Error rate
SVM [8] 10.38%
Harmonic Networks [18] 1.69%

TI-Pooling [15] 1.2%
Rotation Eq. Vector field networks[19] 1.09%
ORN [9] 0.76%
RP_RF_1*[10] 3.51%
Covariant CNN(Ours) 2.69%
Table 2. Obtained error rate (training=MNIST;

validation=MNIST-R)

Method Error rate
ORN-8(ORPooling)[9] 16.67%
ORN-8(ORAlign)[9] 16.24%
RotInv Conv. (RP_RF_1) [10] 19.85%
RotInv Conv. (RP_RF_1_32)* [10] 12.20%
Covariant CNN (Ours) 17.21%

We can observe in Table 1 that some accuracy is lost over
the invariance as a cost of preserving the covariance over the
network. However, this value is still approximate to state of
the art implementations that are bigger in terms of trainable
parameters and time to train.

Table 2 demonstrates we have reached state of the art val-
ues in error rate with our method while using only 7,022 train-
able parameters on the predictor stage. Is also worth to men-
tion that RP_RF_1 has 130,050 parameters and RP_RF_1_32
contains over 1 Million of trainable parameters.

5.3. Prediction of the angle

Due to variations in the data the predictor is tolerant to slight
variations of 6. Consequently, it will output the maximum
probability at the row corresponding to # and a non-zero prob-
ability before and after (corresponding to 6+46). This allows
the predictor to map continuously the random rotation of the
input to a circular space of the predicted angle.
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Fig. 4. The predicted rotation angle is mapped into a contin-
uous, circular space.

We test this by rotating an input sample in steps of df =
11.25° from [-90° to 78.75°] and plotting the output circular
space represented by the rows of the output prediction (Fig.4).
The rotation is mapped to the rows of the output tensor de-
scribed previously. The output exhibits a self-organizing be-
havior of mapping consecutive angular values as consecu-
tive rows in the table. This comes as a result of non-zero
class probability on 4406 with maximum probability on 6
and lower on the previous and next angular steps. When the
absolute angular reference is unknown (e.g. for plankton up-
right position does not exist) the network maps one of the
rotation values to one point of the linear space and then the
consecutive angles are linearly mapped.

The linear output space contains the angular information
of the input. This space has the same properties and behav-
ior when trained with upright oriented datasets and randomly
rotated datasets. This leads to generating a linear relationship
from the consecutive angles without any reference existing on
the angular rotation input space.

6. CONCLUSIONS

We demonstrate the capability of obtaining rotation invari-
ance by training the network with only upright samples. The
network is capable of predicting angles unseen on the train-
ing phase. In addition, when the input data is naturally ran-
dom oriented the architecture is able to infer the orientation of
the samples and generate a linear relationship between them.
This allows further applications of this architecture for auto-
matic alignment of randomly oriented datasets.

We reached near state of the art error rate values while
using one feature calculated by the scattering transform. We
expect to have a relatively small size in the network for input
images bigger than the presented on this work (28 x 28), tests
in bigger images have shown increased inference time caused
by the scanning and prediction of every translation contained
in the feature space.

The next step to improve the error rate is to replace the
scattering transform by a trainable feature stage that pre-
serves this roto-translational property and validate it on other
datasets like plankton, food or faces.
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