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A numerical satisfaction problem (NCSP) consists in finding the vari-
ables values x € R™ in a given box domain [z] € IR" satisfying equality
constraints h(z) = 0, with i : R"™ — R"™ where n, is the number of equality
constraints, and inequality constraints g(z) < 0, with A : R™ — R"™ where n;
is the number of inequality constraints. The solution set to be computed is
denoted ¥ := {z € [z] : h(x) =0, g(z) < 0}. Computing exactly ¥ is impos-
sible in general, and numerical constraint solvers usually compute a paving
P C IR", i.e., a finite set of boxes, consisting of inner boxes and unknown
boxes, i.e., P =ZUU and ZNU = (). Inner boxes are proved to contain so-
lutions, but the exact interpretation of these boxes actually depends on the
structure of the problem. No information is available for unknown boxes,
but the solver looses no solution therefore ¥ C UP. Constraint solvers han-
dle efficiently NCSPs where there is no equality constraint, in which case
an inner boxe contains only solution (see the right graphic of Figure 1),
and well constrained systems of equations, i.e., n, = n, where inner boxes
contain one unique solution (see the left graphic of Figure 1). This twofold
interpretation of inner boxes with respect to the problem structure seems
not homogeneous. Intermediate cases with less equations than variables,
where the ¥ is a manifold of dimension n —n, € {1,...,n — 1}, have been
the topic of several works but where not included in the general framework
of NCSPs. In this case, constraint solvers typically output a large number
of unknown boxes, which cover the solution set.

In order to tackle solution sets of arbitrary dimension, we generalize the
interpretation of inner boxes as follows: A box [z] is called inner if we can
choose n — n, coordinates xp with P C N := {1,...,n}, called parameters,
such that for each zp € [zp] there exists a unique choice of the other n.
coordinates zy\p € [z N\ p|, such that x is a solution. This indeed generalizes
the classical two fold interpretation of inner boxes since for n, = 0 we obtain
Vey € [zn],3ag € [zg],2 € X, which simplifies to Vz € [z],2 € X, while
for ne = n we obtain Vay € [zg],any € [zn],x € X, which simplifies to
dlz € [z],z € ¥. When the solution set is of dimension n — n, it crosses the
box in parallel to the subspace zp (see the middle graphic of Figure 1).



Figure 1: From left to right: Zero, one and full dimensional solution sets.
Inner boxes are shown in green and unknown boxes are shown in red. The
unknown box of the zero dimensional NCSP contains a singular solution.
Dark and light green inner boxes of the one dimensional NCSP correspond
to P = {1} and P = {2} respectively.

Classically, proving that a box [z] is inner for full dimensional NCSPs
that contain only inequality constraints g(x) < 0 is done by checking that
the interval evaluation [g]([x]) is nonpositive; proving that a box is inner
for zero-dimensional NCSPs that contain n equality constraints is done by
using the interval Newton operator. For positive but not full dimensional
NCSP, we use a parametric interval Newton operator, whose success exactly
matches the semantic of inner boxes. Parameters are chosen dynamically
by studying the Jacobian of the equality constraints in order to determinate
the direction of the solution set (typically by applying a LU-decomposition
with pivoting to discover a square sub-matrix with good conditioning). It is
critical to allow the interval Newton to perform some inflation of the box by
removing the intersection with the previous iterate in the Newton iteration:
Indeed, splitting may create solutions on the boundary of variable domains
that will never be selected as parameters, and which therefore require an
inflation for the parametric interval Newton to succeed. This solving process
has been implemented in the solver 1BEX, which is available to download at
http://www.ibex-1ib.org/. Several case studies will be presented from
geometry, robotics and phase diagrams computation.

Finally, handling carefully the interaction between manifolds defined by
equality constraints and inequality constraints, i.e., manifolds with bound-
ary, is nontrivial. While the current theory and implementation allow build-
ing an atlas of a manifold without boundary (each inner box giving rise to
a chart of the atlas), currently only necessary conditions for a box to be a
boundary box have been implemented.



