Tangent bundles of hyperbolic spaces and proper affine actions on $L^p$ spaces

Abstract : We define the notion of a negatively curved tangent bundle of a metric measured space. We prove that, when a group $G$ acts on a metric measured space $X$ with a negatively curved tangent bundle, then $G$ acts on some $L^p$ space, and that this action is proper under suitable assumptions. We then check that this result applies to the case when $X$ is a CAT(-1) space or a quasi-tree.
Type de document :
Pré-publication, Document de travail
IF_PREPUB. 2019
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-02006189
Contributeur : Thomas Haettel <>
Soumis le : lundi 4 février 2019 - 14:36:33
Dernière modification le : jeudi 14 février 2019 - 01:26:18

Lien texte intégral

Identifiants

  • HAL Id : hal-02006189, version 1
  • ARXIV : 1901.07462

Citation

Indira Chatterji, François Dahmani, Thomas Haettel, Jean Lecureux. Tangent bundles of hyperbolic spaces and proper affine actions on $L^p$ spaces. IF_PREPUB. 2019. 〈hal-02006189〉

Partager

Métriques

Consultations de la notice

45