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Abstract

We propose new machine learning schemes for solving high dimensional nonlinear
partial differential equations (PDEs). Relying on the classical backward stochastic
differential equation (BSDE) representation of PDEs, our algorithms estimate simulta-
neously the solution and its gradient by deep neural networks. These approximations
are performed at each time step from the minimization of loss functions defined recur-
sively by backward induction. The methodology is extended to variational inequalities
arising in optimal stopping problems. We analyze the convergence of the deep learning
schemes and provide error estimates in terms of the universal approximation of neural
networks. Numerical results show that our algorithms give very good results till di-
mension 50 (and certainly above), for both PDEs and variational inequalities problems.
For the PDEs resolution, our results are very similar to those obtained by the recent
method in [EHJ17] when the latter converges to the right solution or does not diverge.
Numerical tests indicate that the proposed methods are not stuck in poor local minima
as it can be the case with the algorithm designed in [EHJ17], and no divergence is ex-
perienced. The only limitation seems to be due to the inability of the considered deep
neural networks to represent a solution with a too complex structure in high dimension.
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problem, backward stochastic differential equations.
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1 Introduction

This paper is devoted to the resolution in high dimension of nonlinear parabolic partial
differential equations (PDEs) of the form

(1.1)

ou+ Lu+ f(.,.,u,0"Dyu) =0, on [0,T) x R,
u(T,.) =g, on RY,

with a non-linearity in the solution and its gradient via the function f(¢,x,y, z) defined on
[0,T] x R? x R x R?, a terminal condition g, and a second-order generator £ defined by

1
Lu = 3 Tr (JUTDg,u) + pn.Dyu.

Here 4 is a function defined on [0, 7] x R? with values in R, o is a function defined on
[0,7] x R? with values in M? the set of d x d matrices, and £ is the generator associated
to the forward diffusion process:

¢ ¢
X = xo +/ (s, Xs)ds +/ o(s, Xg)dW,, 0<t<T, (1.2)
0 0

with W a d-dimensional Brownian motion on some probability space (2, F,P) equipped
with a filtration F = (F})o<t<7 satisfying the usual conditions.

Due to the so called “curse of dimensionality”, the resolution of nonlinear PDEs in
high dimension has always been a challenge for scientists. Until recently, only the BSDE
(Backward Stochastic Differential Equation) approach first developed in [PP90]| was avai-
lable to tackle this problem: using the time discretization scheme proposed in [BT04], some
effective algorithms based on regressions manage to solve non linear PDEs in dimension
above 4 (see |GLWO05; LGWO06]). However this approach is still not implementable in
dimension above 6 or 7 : the number of basis functions used for the regression still explodes
with the dimension.

Quite recently some new methods have been developed for this problem, and several
methodologies have emerged:

e Some are based on the Feyman-Kac representation of the PDE. Branching tech-
niques [HL+16] have been studied and shown to be convergent but only for small
maturities and some small nonlinearities. Some effective techniques based on nes-
ting Monte Carlo have been studied in [Warl8b; Warl8a|: the convergence is proved
for semi-linear equations. Still based on this Feyman-Kac representation some ma-
chine learning techniques permitting to solve a fixed point problem have been used
recently in [CWNMW19|: numerical results show that it is efficient and some partial
demonstrations justify why it is effective.

e Multilevel Picard methods have been developed in [E+18] and [Hut+18] with algo-
rithms based on Picard iterations, multi-level techniques and automatic differentia-
tion. These methods permit to handle some high dimensional PDEs with non linearity
in v and its gradient D,u, with convergence results as well as numerous numerical
examples showing their efficiency in high dimension.

e Another class of methods is based on the BSDE approach and the curse of dimen-
sionality issue is partially avoided by using some machine learning techniques. The



pioneering papers [HJE18; EHJ17| propose a neural-networks based technique called
Deep BSDE, which was the first serious attempt for using machine learning methods
to solve high dimensional PDEs. Based on an Euler discretization of the forward un-
derlying SDE X}, the idea is to view the BSDE as a forward SDE, and the algorithm
tries to learn the values u and z = o7 Du at each time step of the Euler scheme by
minimizing a global loss function between the forward simulation of « till maturity
T and the target g(X7). This deep learning approximation has been extended to the
case of fully nonlinear PDE and second order BSDE in [BEJ19].

e At last, using some machine learning representation of the solution, |SS18| proposes
with the so-called Deep Galerkin Method to use the automatic numerical differenti-
ation of the solution to solve the PDE on a finite domain. The authors prove the
convergence of their method but without information on the rate of convergence.

Like the second methodology, our approach relies on BSDE representation of the PDE
and deep learning approximations: we first discretize the BSDE associated to the PDE by
an Euler scheme, but in contrast with [EHJ17], we adopt a classical backward resolution
technique. On each time step, we propose to use some machine learning techniques to
estimate simultaneously the solution and its gradient by minimizing a loss function defined
recursively by backward induction, and solving this local problem by a stochastic gradient
algorithm. Two different schemes are designed to deal with the local problems:

(1) The first one tries the estimate the solution and its gradient by a neural network.

(2) The second one tries only to approximate the solution by a neural network while its
gradient is estimated directly with some numerical differentiation techniques.

The proposed methodology is then extended to solve some variational inequalities, i.e., free
boundary problems related to optimal stopping problems. We mention that the related
recent paper [BCJ19] also proposes deep learning method for solving optimal stopping
problems, but differently from our method, it relies on the approximation of (randomised)
stopping decisions with a sequence of multilayer feedforward neural networks.

Convergence analysis of the two schemes for PDEs and variational inequalities is pro-
vided and shows that the approximation error goes to zero as we increase the number of
time steps and the number of neurons/layers whenever the gradient descent method used
to solve the local problems is not trapped in a local minimum. Notice that similar conver-
gence result for the deep BSDE method has been also obtained in [HL18] with a posteriori
error estimation of the solution in terms of the universal approximation capability of global
neural networks.

In the last part of the paper, we test our algorithms on different examples. When the
solution is easy to represent by a neural network, we can solve the problem in quite high
dimension (at least 50 in our numerical tests). We show that the proposed methodology
improves the algorithm proposed in [HJE18] that sometimes does not converge or is trapped
in a local minimum far away from the true solution. We then show that when the solution
has a very complex structure, we can still solve the problem but only in moderate dimension:
the neural network used is not anymore able to represent the solution accurately in very
high dimension. Finally, we illustrate numerically that the method is effective to solve some
system of variational inequalities: we consider the problem of American options and show
that it can be solved very accurately in high dimension (we tested until 40).



The outline of the paper is organized as follows. In Section [2| we give a brief and useful
reminder for neural networks. We describe in Section [B] our two numerical schemes and
compare with the algorithm in [HJE18]. Section 4| is devoted to the convergence analysis
of our machine learning algorithms, and we present in Section [5| several numerical tests.

2 Neural networks as function approximators

Multilayer (also called deep) neural networks are designed to approximate unknown or
large class of functions. In contrast to additive approximation theory with weighted sum
over basis functions, e.g. polynomials, neural networks rely on the composition of simple
functions, and appear to provide an efficient way to handle high-dimensional approximation
problems, in particular thanks to the increase in computer power for finding the “optimal”
parameters by (stochastic) gradient descent methods.

We shall consider feedforward (or artificial) neural networks, which represent the basic
type of deep neural networks. Let us recall some notation and basic definitions that will
be useful in our context. We fix the input dimension dy = d (here the dimension of the
state variable x), the output dimension d; (here d; = 1 for approximating the real-valued
solution to the PDE, or d; = d for approximating the vector-valued gradient function), the
global number L +1 € N\ {1,2} of layers with my, £ = 0, ..., L, the number of neurons
(units or nodes) on each layer: the first layer is the input layer with my = d, the last layer
is the output layer with my = d;, and the L — 1 layers between are called hidden layers,
where we choose for simplicity the same dimension my =m, ¢ =1,...,L — 1.

A feedforward neural network is a function from R? to R% defined as the composition

reRY— ApopoAr_j0...000A(x) € RYL, (2.1)

Here Ay, ¢ = 1,..., L are affine transformations: A; maps from R? to R™, A, ..., A1
map from R™ to R™, and A;, maps from R™ to R, represented by

Ay(x) = Wy + By,

for a matrix W, called weight, and a vector 5, called bias term, ¢ : R — R is a nonlinear
function, called activation function, and applied component-wise on the outputs of Ay,

ie, o(x1,...,2m) = (o(x1),...,0(xy)). Standard examples of activation functions are the
sigmoid, the RelLu, the Elu, tanh.
All these matrices W, and vectors B¢, £ = 1,..., L, are the parameters of the neural

network, and can be identified with an element # € RV, where N,,, = Zé::_ol me(l+mey1)
=d(1+m)+m(l+m)(L—2)+m(1+d;) is the number of parameters, where we fix dy, di,
L, but allow growing number m of hidden neurons. We denote by ©,, the set of possible
parameters: in the sequel, we shall consider either the case when there are no constraints
on parameters, i.e., ©,, = RV or when the total variation norm of the neural networks
is smaller than ~,,, i.e.,

0, =0]) = {9:(Wg,ﬁg)g:|Wl\§’ym, Ezl,...,L}, with v, ' 00, as m — oo.

We denote by ®,,(.;0) the neural network function defined in (2.1)), and by NN7, | (Om)
the set of all such neural networks ® _(.;0) for § € O,,, and set

NNdQ,d1,L = U NNidl,L,m(@m) = U NNCl‘Q’dLL’m(RNm)J

meN meN



as the class of all neural networks within a fixed structure given by d, dy, L and p.
The fundamental result of Hornick et al. [HSW89] justifies the use of neural networks
as function approximators:

Universal approximation theorem (I): NN7,; | is dense in L?(v) for any finite measure
v on RY, whenever p is continuous and non-constant.

Moreover, we have a universal approximation result for the derivatives in the case of a
single hidden layer, i.e. L = 2, and when the activation function is a smooth function, see
[HSW90).

Universal approximation theorem (IT): Assume that g is a (non constant) C* function.
Then, NN dg 4y 2 APProximates any function and its derivatives up to order k, arbitrary well

on any compact set of RY.
3 Deep learning-based schemes for semi-linear PDEs

The starting point for our probabilistic numerical schemes to the PDE (1.1)) is the well-
known (see [PP90]) nonlinear Feynman-Kac formula via the pair (Y, Z) of F-adapted pro-
cesses valued in R x R?, solution to the BSDE

T T
Y;—g(XT)+/ f(s,XS,YS,ZS)ds—/ ZTdW,, 0<t<T, (3.1)
t t

related to the solution u of via
Yi=u(t,xy), 0<t<T,
and when u is smooth:
Zy = o"(t, X)Dyu(t, Xy), 0<t<T.

3.1 The deep BSDE scheme of [HJE18]|

The DBSDE algorithm proposed in [HJE18; [EHJ17] starts from the BSDE representation
(3.1) of the solution to (1.1)), but rewritten in forward form as:

t
u(t, %) = (0, 30) — / F(5, Xoru(s, &), 07 (5, Xs) Dyuls, Xy)) ds (3.2)
0
t
+/ Dou(s, X)o(s, Xo) dWs,  0<t<T.
0

The forward process X in equation (1.2, when it is not simulatable, is numerically
approximated by an Euler scheme X = X7 on a time grid: m = {t(n =0<t; < ... <ty =
T}, with modulus |7| = max;—o,. n—1 At;, At; := ti11 — t;, and defined as

Xtv',+1 = Xy, + M(tiaXti)Ati + U(tivXti)AWt” 1=0,....,N—1, Xg = =z, (33)

where we set AWy, := Wy, ., — Wy,. To alleviate notations, we omit the dependence of X
= X7 on the time grid 7 as there is no ambiguity (recall that we use the notation X for



the forward diffusion process). The approximation of equation (|1.1)) is then given formally
from the Euler scheme associated to the forward representation (3.2]) by

u(tH_l, Xti+1> ~ F(ti, Xti, u(ti, Xti), UT(ti, Xti)Dxu(ti, Xti), At;, AWti) (3.4)
with
F(tvxayaz7h7A) =Y - f(th?y?Z)h + ZTA'

In [HJE18; EHJ17|, the numerical approximation of u(t¢;, X;,) is designed as follows:
starting from an estimation Uy of (0, Xy), and then using at each time step ¢;, 7 =0, ..., N—
1, a multilayer neural network z € R? — Z;(x;0;) with parameter 6; for the approximation
of & — o7(t;, x)Dyu(t;, z):

Zi(x;0;) = o™ (ti, x) Dyu(t;, x), (3.5)
one computes estimations U; of u(t;; Xy,) by forward induction via:
ui-‘rl == F(tu Xtiaui7 ZZ(Xt“ 61)7 Atz; AWti)v

fort =0,...,N — 1. This algorithm forms a global deep neural network composed of the
neural networks of each period, by taking as input data (in machine learning language)
the paths of (Xy,)i—o,.. v and (W,)i=o,... N, and giving as output Uy = Un(0), which is a
function of the input and of the total set of parameters 6 = (Up, by, ...,0n_1). The output
aims to match the terminal condition ¢g(X;,) of the BSDE, and one then optimizes over
the parameter 6 the expected square loss function:

0 — E|g(Xiy) —Un(0)]".

This is obtained by stochastic gradient descent-type (SGD) algorithms relying on training
input data.

3.2 New schemes: DBDP1 and DBDP2

The proposed scheme is defined from a backward dynamic programming type relation, and
has two versions:

(1) First version:

- Initialize from an estimation Z:{\](\}) of u(ty,.) with 1:{\](\}) =y

- Fori=N-1,...,0, given LA{i(l)l, use a pair of deep neural networks (U;(.; ), Z;(.;0))
€ NNiI’L’m(RN’”) XNNidﬁL’m(RNm) for the approximation of (u(t;,.), o (¢, .) Dyu(t;, .)),
and compute (by SGD) the minimizer of the expected quadratic loss function
. ~ 2
L) = BUD, (Xe,,y) — F(ti, Xoy, Us( X33 0), Zi( X0, 0), Aty AW,) 6

0 € arg min L}(6).
9eRNm

Then, update: H}” = U;(;07), and set ZAi(l) = Z;(.;07).

(2) Second version:



~ Tnitialize with iy = g

— Fori=N-1,...,0, givenﬁi(i)l, use a deep neural network U (;0) e NNJ, ;. (Or,),

and compute (by SGD) the minimizer of the expected quadratic loss function

f’§2) (‘9) =E Z:{\i(—?—)l (Xti+1)_

~ 2
F<tl7 th 9 u’L(tha 9)7 JT(tZ7 th)Dqu(Xt“ 0)7 Atu AWQ) (37)

0r € in L2(6),
i € arg min L;(0)

where Dzl/{i(.; 0) is the numerical differentiation of U;(.;6). Then, update: ﬂi@)
= U;(;07), and set 22-(2) = o7 (¢, )ﬁxuz(,ﬁj)

Remark 3.1. For the first version of the scheme, one can use independent neural networks,
respectively for the approximation of u(¢;,.) and for the approximation of o7(¢;,.)Dyu(t;, .).
In other words, the parameters are divided into a pair § = (£,7) and we consider neural
networks U;(.; &) and Z;(.; 7). O

In the sequel, we refer to the first and second version of the new scheme above as
DBDP1 and DBDP2, where the acronym DBDP stands for deep learning backward dynamic
programming.

The intuition behind DBDP1 and DBDP2 is the following. For simplicity, take f =
0, so that F(t,x,y,z,h,A) = y + zTA. The solution u to the PDE (1.1]) should then

approximately satisfy (see (3.4]))

u(ti+1, X ) ~ u(ti, Xti) + Dxu(ti, Xti)TO'(ti, Xti)AWti-

41

Consider the first scheme DBDP1, and suppose that at time ¢ + 1, Z/Ali(i)l is an estimation of

u(ti+1,.). The quadratic loss function at time ¢ is then approximately equal to

~ 2
LO0) % Efultivn, Xopw) = U Xei30) = Z:(Xo,30) AW,
~~ E[‘u(ti, Xti) — uz‘(Xti; 9)‘2 + Atz’|UT(tia Xti)Dﬂcu(t% Xti) - Zi(th‘; 0)‘2:| :

Therefore, by minimizing over 6 this quadratic loss function, via SGD based on simulations
of (Xy,, Xt,,,, AWy,) (called training data in the machine learning language), one expects
the neural networks U; and Z; to learn/approximate better and better the functions wu(t;, .)
and o7 (t;, ) Dyu(t;, ) in view of the universal approximation theorem [HSW90|. Similarly, the
second scheme DPDP2, which uses only neural network on the value functions, learns u(;, .)
by means of the neural network U;, and o7(t;,)Dyu(t;,) via UT(ti,)ﬁ$Ui. The rigorous
arguments for the convergence of these schemes will be derived in the next section.

The advantages of our two schemes, compared to the Deep BSDE algorithm, are the
following;:

e by decomposing the global problem into smaller ones, we may expect to help the gra-
dient descent method to provide estimations closer to the real solution. The memory
needed in [HJE1§| can be a problem when taking too many time steps.



e at each time step, we initialize the weights and bias of the neural network to the
weights and bias of the previous time step treated : this trick is commonly used in
iterative solvers of PDE, and allows us to start with a value close to the solution,
hence avoiding local minima which are too far away from the true solution. Besides
the number of gradient iterations to achieve is rather small after the first resolution
step.

The small disadvantage is due to the Tensorflow structure. As it is done in python, the
global graph creation takes much time as it is repeated for each time step and the global
resolution is a little bit time consuming : as the dimension of the problem increases, the
time difference decreases and it becomes hard to compare the computational time for a
given accuracy when the dimension is above 5.

3.3 Extension to variational inequalities: scheme RDBDP
Let us consider a variational inequality in the form
min [ — dyu — Lu — f(t,z,u,0"Dyu),u — g| =0, tel0,7), z € RY,
{ uw(T,z) = g(z), =eR?, (3.8

which arises, e.g., in optimal stopping problem and American option pricing in finance. It
is known, see e.g. [EK+97], that such variational inequality is related to reflected BSDE of
the form

T T
Y, = g(XT)+/ f(s,XS,YS,ZS)ds—/ ZTdWs + Kp — K, (3.9)
t ¢

Vi> g(Xy), 0<t<T,

where K is an adapted non-decreasing process satisfying

T
/ (Vi — 9(X))dE, = 0.
0
The extension of our DBDP1 scheme for such variational inequality, and refereed to as
RDBDP scheme, becomes
e Initialize Uy = g
e Fori=N—1,...,0, given U1, use a pair of (multilayer) neural network (4;(.; 8), Z;(.; 6))

e NN¢, . (RN™) x NN, (RV), and compute (by SGD) the minimizer of the
expected quadratic loss function

Li(0) = E|Ui1(Xe,,) — F(ti, Xo, Us(Xei30), Zi(Xi30), Aty, AW,)

0F € arg min L;(h).
feRNm

Then, update: if; = max [U;(:67), 9], and set Zi = Z(.;67).

2

i+1)

(3.10)

4 Convergence analysis

The main goal of this section is to prove convergence of the DBDP schemes towards the
solution (Y, Z) to the BSDE (or reflected BSDE for variational inequalities),
and to provide a rate of convergence that depends on the approximation errors by neural
networks.



4.1 Convergence of DBDP1

We assume the standard Lipschitz conditions on 4 and o, which ensures the existence and
uniqueness of an adapted solution X to the forward SDE (1.2) satisfying for any p > 1,

E[ sup |X[P] < Cp(1+ |olP), (4.1)
0<t<T

for some constant C), depending only on p, b, o and T. Moreover, we have the well-known
error estimate with the Euler scheme X = X7 defined in with a time grid « =
{to =0 < t1 < ... <ty = T}, with modulus |7| s.t. N|x| is bounded by a constant
depending only on T (hence independent of N):

_max E[l%,, - X, P+ s |4 - X, 2] = o). (4:2)
1=0,...,N—1 tE[tiatiJrl]

Here, the standard notation O(|x|) means that limsupi, o |7|7'O(|7|) < occ.
We shall make the standing usual assumptions on the driver f and the terminal data g.

(H1) (i) There exists a constant [f], > 0 such that the driver f satisfies:
| f(t2, 22,2, 22) — f(t1, 21,91, 21)] < [f], (’tz — 1|7+ s — 1| + [y — 1| + |22 — Zl|) ;

for all (t1,z1,y1,21) and (t2, T2, Y2, 22) € [0,T] x R? x R x R%. Moreover,
sup |f(¢,0,0,0)] < co.

0<t<T
(ii) The function g satisfies a linear growth condition.

Recall that Assumption (H1) ensures the existence and uniqueness of an adapted so-
lution (Y, Z) to (3.1) satisfying

T
E[ sup |Yt|2+/ |Zt]2dt} < .
0

0<t<T

From the linear growth condition on f in (H1), and (4.1]), we also see that

T
0
Moreover, we have the standard L?-regularity result on Y:
E| A . 4.4
g sup |Y; — V5| O(|=l) (4.4)

te€[tistita]

Let us also introduce the L2-regularity of Z:

N-—1 tiv1 B ~ 1 t
eZ(n) = E[Z/t ]Zt—Zti]th], with Z;, := AtEi[/t
i=0 Vi ! i

where E; denotes the conditional expectation given ;.. Since Z is a L2-projection of Z, we
know that £ () converges to zero when || goes to zero. Moreover, as shown in [Zha04],
when the terminal condition ¢ is also Lipschitz, we have

e?(r) = O(|x]).

tht} ,



Let us first investigate the convergence of the scheme DBDP1 in (3.6, and define
(implicitly)

]7ti = K [ul(+)l(th+l):| + f(t%thi}thti)Ati (4.5)
Zy; = E [uz(—il—)l( z+1)AWtz} ) '

fori =0,...,N — 1. Notice that ]7151. is well-defined for |7| small enough (recall that f is
Lipschitz) by a fixed point argument. By the Markov property of the discretized forward
process (Xy,)i—o,....N, we note that there exists some deterministic functions 9; and 2; s.t.

V,, = 0(Xs), and Z, = 5(Xy), i=0,...,N—L (4.6)

(3

Moreover, by the martingale representation theorem, there exists an R%valued square in-
tegrable process (Z;); such that

~ ~ ~ = tiv1
uz(Jlr)l(Xt’+1) = Vti — f(tz', Xti, Vti, Zti)Ati + /t Z; dWs, (47)

i

and by Ito isometry, we have
= 1 tiv1 .
Zti:AtiEi[/ti sts], i=0,... ,N—1.

Let us now define a measure of the (squared) error for the DBDP1 scheme by

a5 [ 2t

E[UD,Z0), (v, 2)] = max  E|Y;, - U (x,)

1=0,...,

Our first main result gives an error estimate of the DBDP1 scheme in terms of the L?-
approximation errors of 0; and 2Z; by neural networks U; and Z;, i =0,..., N — 1, assumed
to be independent (see Remark , and defined as

eV = inf B[;(X,,) —U(Xp; )P, N = inf E[%(Xy,) - Zi( X
Here, we fix the structure of the neural networks with input dimension d, output dimension
dy = 1 for U;, and dy = d for Z;, number of layers L, and m neurons for the hidden layers,
and the parameters vary in the whole set RV™ where N,, is the number of parameters.
From the universal approximation theorem (I) ([HSW89]), we know that e """ and &' "*
converge to zero as m goes to infinity, hence can be made arbitrary small for sufﬁmently
large number of neurons.

Theorem 4.1. (Consistency of DBDP1) Under (H1), there exists a constant C' > 0,
independent of 7, such that

(@AM, 20, (v, 2)] < c( — g(X7)|* + |7| + % (m)
N— 1
+

NZ)). (4.8)

=0

10



Remark 4.1. The error contributions for the DBDP1 scheme in the r.h.s. of estimation
consists of four terms. The first three terms correspond to the time discretization of
BSDE, similarly as in [BT04], [GLWO05], namely (i) the strong approximation of the terminal
condition (depending on the forward scheme and the terminal data g), and converging to
zero, as || goes to zero, with a rate || when g is Lipschitz by (see [Avi09| for irregular
g), (ii) the strong approximation of the forward Euler scheme, and the L?-regularity of Y,
which gives a convergence of order ||, (iii) the L2-regularity of Z, which converges to
zero, as || goes to zero, with a rate |7| when g is Lipschitz. Finally, the better the neural
networks are able to approximate/learn the functions ¢; and 2; at each timei =0,..., N—1,
the smaller is the last term in the error estimation. Moreover, given a prescribed accuracy
for the neural network approximation error, the number of parameters of the employed deep
neural networks grows at most polynomially in the PDE dimension, as recently proved in
[Hut+19] in the case of semi-linear heat equations. O

Proof of Theorem [4.1l
In the following, C' will denote a positive generic constant independent of 7, and that may
take different values from line to line.

Step 1. Fix i € {0,..., N — 1}, and observe by (3.1)), (4.5) that

~

~ tit1 ~ =
Yti - Vti = L [}/ti+1 - ui(—&l-)l(Xtiﬂ)] + El[/ f(t, X, Y, Zt) - f(ti’ Xti? Vti’ Zti) dt]'
t;

By using Young inequality: (a + b)? < (1 +~At)a® + (1 + ﬁ)b2 for some v > 0 to be
chosen later, Cauchy-Schwarz inequality, the Lipschitz condition on f in (H1), and the
estimation (4.2) on the forward process, we then have

—~ ~ 2
E‘K?z - Vti ‘2 < (1 + ’VAti)E E; [Ytz‘+1 - ui(-il—)l(th‘ﬂ)] ‘

2 ) 1 12 bt 512
+4[f]LAtl(1+7Ati){]Atz] —HE[/M Y, -V, dt}

tit1 =9
+ E[/ 12— 2, ] |
t

i
’ 2

< (1+~7AL)E

2 t; =<
4l qan (it + 2y, -9+ [ 14~ 7 al] ),
t

i

Ei[Yin — Ui (X)) (4.9)

i+1 i+1

where we use in the last inequality the L?-regularity (4.4]) of Y.
Recalling the definition of Z as a L2-projection of Z, we observe that

tit1 —_—
E| / 2, — 7,
t;

By multiplying equation (3.1) between t; and ¢;41 by AW, and using It6 isometry, we

‘ 2

2 b = 12 5 B
dt} - E[ / |2, — 7| dt} + ALE|Z, — 7, (4.10)
ti

11



have together with (4.5))

_ - tit1
A (Z, ~ Z0) = Ei[ AW, (Yay, — G0 (X0,,)] + B [AW, /t £ X0, Y2, Z2) ]

K2

= B[ AW (Vi — Ui (Ke) = BalYo, — U0 (X)) )|
+E [AWti / o f(t, Xt,Yt,Zt)dt}.
t;
By Cauchy-Schwarz inequality, and law of iterated conditional expectations, this implies
i[Y;fiH - Z:l\z(i)l (Xti+1)] ’2>

t7,+1
+ 2dAtiE[/ 7.2, Y2, Z0)P a]. (4.11)
ti

ALE|Zy, - Zi,* < 24(E[Vs., U (X,

z+1)‘ -

Then, by plugging (4.10) and (]4.11|) into (£.9), and choosing v = 8d[f]?, we have

E[Y;, — V" < CALE|Y;, — U (X )+ Ol

z+1

(1+~A4)E|Y;

i+1
tz+1 _ 9 i1

+ CE[/ }Zt—zti\ dt| +CAtiE[/ (6.2 Y5, 20 ],
t; 4

and thus for || small enough:

E|Y, - V|* < (1+ Clr)E[Yi,, — U (X)) + Claf?

1+1

th} +C|W|E[/t . ]f(t,Xt,Yt,Zt)th].(4.12)

i

i+1

ti+1 B
+CE| / 20— 7,
t;

Step 2. By using Young inequality in the form: (a + )2 > (1 — |7])a® + (1 — )b >

I
(1 —|7|)a® — ‘—i‘bQ, we have

E’Ytz - ? = Elnz _Z;{\i(l)(Xti) +Z:{\i(1)(Xti) - 91‘/2"2

> (1- |n)E|Y, — U (X,)|

I SHE
- HE\UZ.“)(X“) -V.P @13)
By plugging this last inequality into (4.12)), we then get for || small enough

a0 (x

i+l z+1 z+1

Y, - UM (X)) < (14 Clx)E|Y, )|? + Clx?

tit1 _ it1
+ CE[/ 20— 2, dt} +C|7T|E[/ If(t, Xt,yt,zt)pdt]
t;

+ CNE|V, — U (X))

From discrete Gronwall’s lemma (or by induction), and recalling the terminal condition Y},
= g(Xr), Z:{\i(l)(XtN) = g(Xr), the definition £ () of the L?-regularity of Z, and (4.3)), this

yields

max  E|Y;, - U (x,)

i=0,...,N— F< CE|g(Xr) — Q(XT)|2 + Clr| + Ce?(n)

N—-1
+ ON S EW, UV (x)[ (4.14)
=0

12



Step 3. Fix i € {0,..., N — 1}. By using relation (4.7) in the expression of the expected

quadratic loss function in (3.6]), and recalling the definition of Zi as a L2-projection of Z,
we have for all parameters 0 = (£,7) of the neural networks U;(.;£) and Z;(.;n)

190 = Lo e[ [ |7 Z (4.15)
t;
with
E ( E‘Vt (Xt ,§) (f(tz‘,Xti7uz‘(Xti§§)aZz’(Xti§77)) _f(tivthf)tin))

+ ALE|Z,, — Zi(Xiim)|.

By using Young inequality: (a 4+ b)? < (1 + vAt;)a® + (1 + wAt )b?, together with the
Lipschitz condition on f in (H1), we clearly see that

Li(0) < (1+ CAHEV, —U O + CALE|Z;, — Zi(Xism)|. (4.16)
On the other hand, using Young inequality in the form: (a+b)? > (1—yAt;)a® + (1— ﬁ)b2
> (1 — yAt;)a? — ng together with the Lipschitz condition on f, we have
~ 2At[f12 =
Li(8) = (1= 7AL)E[V, —Ui(X4,;6)|” - J](Em (X" +E| 2, - Zi(Xism)[°)
+ AtiE‘Zi — Zi(Xu,; 77)‘2-
By choosing v = 4[f]?, this yields
Li(0) = (1= CALIE|V, —Us(Xe56)[” Zy - Z(Xum)| (4a7)

Step 4. Fix i € {0,...,N — 1}, and take 8 = (£, n) € argming f)gl)(ﬁ) so that LAIZ-(l) =
Ui(:€), and ZAZ.(I) = Z;i(;;n?). By (&15), notice that 6} € argming L;(0). From (&.17) and
(4.16]), we then have for all = (&, n)

2

(1 - CALE|D, — UV (X)) + ”(Xt)}

<Li(0) <Li(®) < (1 +CAt,- E|Vy, — O + cAt, E\Zt Zi(Xysm)|*.
For |r| small enough, and recalling , this implies
E[V, — U (X)) + AGE| 2y, — 20(X,)]P < ceN + cane)E . (418)
Plugging this last inequality into , we obtain

_max_ E[Y, — UM (x> < CE|g(xr) — 9(X7)|? + Cla| + C%(x)

+ Y (N e, (4.19)
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which proves the consistency of the Y-component in

Step 5. Let us finally prove the consistency of the Z-component. From ) and -,
we have for any ¢ = 0,...,N — 1:

ti+1 =9 ti+1
E[/ 12— 2, at] < E[/ 12, -
t; t;

+2d<E‘Y2i+1 uz(qlt)l( z+1)‘2_

] +2d|7rua[/:m £, Y3, ) di]

Wi A K]

By summing over i = 0,..., N — 1, we get (recall (4.3))

Z/Z+1 2 — Z,,|” dt} < &%(m) + Cln| + 2dE|g(Xr) — g(X7)|* (4.20)

N-1

+ 24y (B[, — UV (x3,) [

=0

~(1) 2
% [Y%Hd - ui+1(Xti+1)] )
where we change the indices in the last summation. Now, from (4.9)), (4.13]), we have

i[Ytz‘H ul(-il-)l( z+1)]’2)

< (1+’y!7r[ _1)
T\ 17|

2d(E|v;, - U (x,)[*

N 2
i [}/ti+1 - ui(-il-)l (th‘+1)] ‘

8d[f]? 1 ~ tits =
1- | | t;
2d (1) 512
+ ——E ui (X z) - vi
|| (1= |l) | t t
We now choose v = 24d[f]? so that [f} —L 1 4+~|n|)/(1 = |x]) < 1/2 for |r| small enough,

and by plugging into (4.20]), we obtain (note also that [(1+|x[)/(1 - |x]) — 1] = O(|x])):

1+1 1
Z/ 2, — 7| dt] < eZ(m)+Cln|+ C max E|Y;, — U (X))

— N-—1
1 52 (1) 502
+ §|W\ZE\YQ—VQ\ +CN2%E\L{1. (X1,) =V,
< C(m) + Olx| + O max E|y,, —U47(X,)["

+ CN Z EUY (X)) — V|

=0
< CE\g XT — g(Xr) \2 + Olr| + Ce4 ()
+C Z + e, (4.21)

where we used (4.12) and (4.3 in the second inequality, and (4.18]) and (4.19) in the last
inequality.
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By writing that

)

ti ~ ti = - ~
E[/ " 12— 20X, at] < 215[/ o 12— Z,, | at] + 28| Z,, - 210 (x,,) [
t; t

i

and using (4.18)), (4.21)), we obtain after summation over i = 0,..., N — 1, the required
error estimate for the Z-component as in (4.19)), and this ends the proof. O

4.2 Convergence of DBDP2

We shall consider neural networks with one hidden layer, m neurons with total variation
smaller than ~,, (see Section , a C3 activation function p with linear growth condition,
and bounded derivatives, e.g., a sigmoid activation function, or a tanh function: this class
of neural networks is then represented by the parametric set of functions

NN om(O0) = {3: e R — U(x;0) Zc,g a;.x + b;) + by, 0 = (a;,b;,ci,bp)iry € OF
=1

with
@:n = {9 = (ai,biacivbo)gl : I{laX |al| < Ym, Z |Cz‘ < Vm} )
i=1

for some sequence (v, ), converging to oo, as m goes to infinity, and such that

6
Jm (.
N m,N—00 (422)
Notice that the neural networks in NNF, , (07,) have their first, second and third deriva-
tives uniformly bounded w.r.t. the state variable x. More precisely, there exists some
constant C' depending only on d and the derivatives of ¢ s.t. for any U € NN7,,  (0}),

sup Dxl/{(ar;é?)’ < CH2, sup DiU(x;H)) < CO43,
zeR? ™ z€RY, "
€R%,0cO €R%,0cO (4.23)
and sup DgU(m;G)’ < Oyt
zeR? 007,

Let us investigate the convergence of the scheme DBDP2 in (3.7)) with neural networks
in NNZ, 5, (07), and define for i = 0,...,N —1:

i}ti = E; [Z:{\z(i)l(Xtﬁl)] +f(tiaXt¢79t¢72ti)Ati = @i(Xti)’ (4 24)
Zy, = E [ul(i)l( z+1)AWti:| = ‘?z(Xtt) .

A measure of the (squared) error for the DBDP2 scheme is defined similarly as in
DBDP1 scheme:

(AP, 2, (v, 2)] = max  E|Y;, — U2 (x,)

1=0,...,

+E{Z/tl 12— Z2(x,)

15
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Our second main result gives an error estimate of the DBDP2 scheme in terms of the
L?-approximation errors of 9; and its derivative (which exists under assumption detailed
below) by neural networks U € NN7,,, (0}),i=0,...,N —1, and defined as

Mo it {E}@i(xn) — Ui(X0:0)|° + ALE|07 (1, X1,) (Dati(X,) — Dalhi(X1,36)) \2},

which are expected to be small in view of the universal approximation theorem (II), see
discussion in Remark [4.2]

We also require the additional conditions on the coefficients:
(H2) (i) The functions x — u(t,.), o(t,.) are C* with bounded derivatives uniformly w.r.t.
(t,z) € [0,T] x R<.
(ii) The function (z,y, 2) — f(t,.) is C! with bounded derivatives uniformly w.r.t. (¢, z,y, 2)
in [0,7] x R x R x R%.

Theorem 4.2. (Consistency of DBDP2) Under (H1)-(H2), there exists a constant C' > 0,
independent of , such that

N—-1
E[UP,2?),(v,2)] < C(E\g(XT) — g(Xx7)[* + 35” +e(m)+N Y aff»m).(4.25)
=0

Proof. For simplicity of notations, we assume d = 1, and only detail the arguments that
differ from the proof of Theorem From (4.24)), and the Euler scheme (3.3)), we have

@1(1’) = 5Z($) +Atif(ti,x,ﬁi(x),§i(:c)), 277,(1,‘) = E[ﬂi+1(X£+1)], x € Rd,

At; ti+1)AWti]’ Xy,

tit1

= x4 pts, z)At; + o(ti, x) AWy,

Under assumption (H2)(i), and recalling that @11 = Uip1(;6F,,) is C? with bounded
derivatives, we see that ¥; is C' with

Dyii(x) = E [(1 + Dyplts, 2) At + Dyol(ts, x)AWti)DmﬁiH(XfiH)}

= E[D,ai1(X7,,)] + At; Ri(x) (4.26)
Ri(z) := Dyp(ti,z)E[Dytiis1 (X, )] + o(ti, 2) Dyo (ti, 2)E [ D2 (X] )],

x
tit1
where we use integration by parts in the second equality. Similarly, we have

Zi(x) = o(ti, 2)E[ Dyt (X], )],
Dy2i(x) = Dyo(ti, o)E[Dytii1 (X] )] + o(ti,z)E[D2ai1 (X )] + Aty o(ti, 2)Gi(x)
Gi(x) := Dop(ti,x)E[Diii1 (X} )] + o(t, #)Deo(ti, 2)E [ D1 (XE )]
) B (4.27)
Denoting by fi(x) = f(ti,x,0;(x), 2;(x)), it follows by the implicit function theorem, and
for |7| small enough, that 9; is C* with derivative given by

Dyis(w) = Dati(a) + Aty (Dafi(x) + Dy fila) Doi(w) + D i) D))
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and thus by (4.26)-(4.27)

(1 — At;Dy fi(x))o(t;, 2) Dati(x) = Z(x) + Atio(t, ) (Ri(a:) + Dy fi(z) + D, fi(x)DxZ(x)>.

Under (H2), by the linear growth condition on o, and using the bounds on the derivatives
of the neural networks in NN7, , (©},) in , we then have

=2
E|o(ts, Xo,)Dati(X1) = 2| < COS, + a5l (4.28)

Next, by the same arguments as in Steps 3 and 4 in the proof of Theorem (see in
particular (4.18))), we have for |7| small enough,

E[V, — UP (X)) + ALE|Z,, — 2P (X,,)|
< CE[|6:(Xs,) — Ui(Xe,;0)|°] + CAY, E}Zt o(ti, X0,) Dalhi(X4,;0)|

Y

for all # € ©V, and then with (4.28), and by definition of 5£VN’U’2:

E[V, — U (X:)|* + ALE|Z,, — 2P(X,)[P < CeMNU2 L C(8, + |x 248w [P (4.29)

On the other hand, by the same arguments as in Steps 1 and 2 in the proof of Theorem

(see in particular (4.14])), we have

max E|Y;, — U7 (Xy,)

i=0,..,N—1 ' < CE|g(Xr) — g(Xp)|* + Clr| + Ce%(n)

N-1
+ ON S EW, U2 (X))
=0

Plugging (4.29) into this last inequality, together with (4.22)), gives the required estimation
(4.25) for the Y-component. Finally, by following the same arguments as in Step 5 in the
proof of (4.1)), we obtain the estimation (4.25]) for the Z-component. O

Remark 4.2. The universal approximation theorem (II) [HSW90] is valid on compact sets,
L . . N.m

and one cannot conclude a priori that the error of network approximation ¢; converge

to zero as m goes to infinity. Instead, we have to proceed into two steps:

(i) Localize the error by considering

NmK . . . .
£ = gé%onE[AZ(Xt“0)1|Xti|§K]7

where we set A;(z;0) := |0;(x) — Ui(z;0)|* + At;|o7(t;, z) (Dadi(z) — Doldi(x;6)) ‘2.

N-1 7 0
(ii) Consider an increasing family of neural networks ©,, C ... C O, C ... C ©;, on
which to minimize the approximation errors by backward induction at times t;, ¢ =
N —1,...,0, and where, v}, is defined by

)

Yim = VpN-1=i(m)
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with ¢ : N — N an increasing function, and where we use the notation ¢* := po...o¢p
(composition k times).

The localized approximation error at time t;, for 0 < ¢ < N — 1, should then be
rewritten as

K .
8?7/]{[% = inf E[Ai(Xe;0)1x, 1<k]
96@7;11
and the non-localized one as

NI = inf E[A(Xy,;6)].
’ 007,

Note that sévj\’,m’K converges to zero, as m goes to infinity, for any K > 0, as claimed by the

universal approximation theorem (II) [HSW90]. On the other hand, from the expressions
of 9;, D;®; in the above proof of Theorem we see under (H1)-(H2), and from (4.23)

that for all z € R, § € ©F,,i=0,...,N — 1:
1Ai(2;0)] < C(1+ [2[*)vpn—1

m)’
for some positive constant C' independent of m,w. We deduce by Cauchy-Schwarz and
Chebyshev’s inequalities that for all K > 0, and 0 € @7,;, i1=0,....,N—1

74N71(m)

I, ,

I %« on ¥ m
T o1+ )
where we used (4.1]) in the last inequality. This shows that

)

E[Az(thv 9)1|Xt2|>K} < HAZ(th; (9)

4
YoN-1
E%m < gi\cva + CWT(m)’ VK > 0,

and thus, in theory, the error 6%{,"1 can be made arbitrary small by suitable choices of large
m and K. g

4.3 Convergence of RDBDP

In this paragraph, we study the convergence of machine learning schemes for the variational

inequality .

We first consider the case when f does not depend on z, so that the component Y; =
u(t, X;) solution to the reflected BSDE admits a Snell envelope representation, and
we shall focus on the error on Y by proposing an alternative to scheme , refereed to
as RDBDPbis scheme, which only uses neural network for learning the function w:

e Initialize QN =g

e Fori=N-1,...,0, given U1, use a deep neural network Ui(;0) e NNT, m(RNm),
and compute (by SGD) the minimizer of the expected quadratic loss function

Li(0) := E|lip1(Xupy,) — Us( X3 0) + f(ti Xop, Ui(Xey;0) At

0F € arg min L;(0).
OeRNm

(4.30)

Then, update: LA{Z = max [Z/{i(~; 07), 9.

18



Let us also define from the scheme (4.30))

{f}ti = E; [Z:[\i+1(Xti+l):| + f(thXtiaf)ti)Ati = f}i(Xti), (4 31)

ﬁti = max[V;,;9(Xy,)], i=0,...,N—1.

Our next result gives an error estimate of the scheme (4.30) in terms of the L2-
approximation errors of 9; by neural networks U;, i = 0,..., N — 1, and defined as

= inf E|6i(X,) - Us(Xe;0)].
HeRNm
Theorem 4.3. (Case f independent of z: Consistency of RDBDPbis) Let Assumption

(H1) hold, with g Lipschitz. Then, there exists a constant C' > 0, independent of w, such
that

=0 N1 V2, — Ui(X,)

|, < C(wy%+§ﬁ)7 (4.32)

where ||.||, is the L*-norm on (Q, F,P).

Remark 4.3. The estimation (4.32) implies that

N—-1
< C(!w[ +NY éZN),
1=0

max 1E‘Yti — Z;{i(Xti)

i=0,...,.N

which is of the same order than the error estimate in Theorem when g is Lipschitz. [
Proof. Let us introduce the discrete-time approximation of the reflected BSDE
Yy = 9(Xiy)
Y7 = EYT, ]+ (i Xe, V)AL (4.33)
Y[ = max [V 9(Xy,)], i=0,...,N—1.
It is known, see [BP03|, [BT04] that

1

amax [[Ye =¥, = O(x]2). (4.34)
Fixi=0,...,N — 1. From (4.31)), (4.33)), we have
D}t? - )}tz’ < Ei‘yzr+1 _Z:l\i+1(Xti+1)‘ —+ Ati‘f(tivthf/t?) - f(ti?Xti‘))}ti)
< Bl Vi, — Uiy (X)) | + 1L ALY = Vi,

from the Lipschitz condition on f in (H1), and then for |7| small enough

IV = Vall, < @+ G, = o (X)),

i+1

By Minkowski inequality, this yields for all 0

Vi — (X0, < (L ClaD|YiT,, = U (Ko, + (Ve — Us( X 0)]],- (4.35)

i+1 2'
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On the other hand, by the martingale representation theorem, there exists an R%valued
square integrable process (Z;); such that

—~ - - titl |
uiJrl (Xti+1) = Vti - f(tivthVti)Ati +/ Z; dWs,
t;
and the expected squared loss function of the DBDP3 scheme can be written as
B _ tiv1 9
L.(0) = Li(6) + E[/ 1/ at)
t;
with

\F Hvt Us(Xe,30) + (f (i X Us(X1,30)) — f(ti, Xiis Vi)

From the Lipschitz condition on f, and by Minkowski inequality, we have for all 8

(1= [f1,At)|| V1, — Ui( X3 0)], < Li(0) < (14 [f],A8)||Vy, — Ui( X5 0)|),-

Take now 0} € argming L;() = arg miny I:z(Q) Then, from the above relations, we have

.,

(1—[f], At Hth Ui (Xy,; 07 H ], At) Hvtz Ui (Xy,50)

for all #, and so

D1 — (X&), < (L+ P/ (4.36)
$07):9(Xe)], Vi =

By taking 6 = 67 in (4.35]), recalling that ﬁi(Xti) = max|U;(Xy,; 0; ;
max[f/t?;g(Xti)], and since | max(a, c) — max(b, c)| < |a — b|, we obtain by using (4.36))

§ (1+ C|n|) (HYtZH _Z;{\i+1(Xti+1)H2 + @)

|V — U(Xy,)

By induction, this yields

ey G, < O VR,
i—
and we conclude with . OJ

We finally turn to the general case when f may depend on z, and study the convergence
of the RDBDP scheme (3.10) towards the variational inequality (3.8)) related to the solution
(Y, Z) of the reflected BSDE (3.9) by showing an error estimate for

E[U,2),(Y,2)] ==  max EY;, —

i=0,..,.N— [ Z / |2 -

Let us define from the scheme ((3.10)

1}ti = E; [Z;l\i+1(Xti+1)] + f(ti7 Xt;, f}ti?Z)Ati = ﬁi(Xti)y
- 1 . )
Zy = B [uiJrl(Xtiﬂ)AWti} = Zi(Xy,), (4.37)

Vi, = max[V;,;9(X3,)], i=0,...,N—1.
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Our final main result gives an error estimate of the RDBDP scheme in terms of the L?-
approximation errors of ¥; and Z; by neural networks U; and Z;, i =0,..., N — 1, assumed
to be independent (see Remark , and defined as

2 : : 5 2
o NE lng\zi(Xti)—Zi(Xti;n)\ :

K3 (2

e = fE[G(X) ~ U(X15)

The result is obtained under one of the following additional assumptions

(H3) g is C', and g, D,g are Lipschitz.
or
(H4) o is C', with o, Do both Lipschitz, and g is C?, with g, D,g, D2g all Lipschitz.

Theorem 4.4. (Consistency of RDBDP) Let Assumption (H1) hold. There exists a con-
stant C > 0, independent of w, such that

N—
e[, 2),(v,2)] < C(a(ﬂ) + 30 (Ve e 72)), (4.38)
=0

[y

with e(m) = O(|7r\%) under (H3), and e(7) = O(|x|) under (H4).

Proof. Let us introduce the discrete-time approximation of the reflected BSDE

Y?;, = Q(XtN)
1

ZW.Z 7Ei Yv7r AW s

P AR (4.39)
Y[ = max [Y;9(Xy,)], i=0,...,N—1.

It is known from |[BCOS8| that
o2 _
nax E[Yi —Yi[" = e(m)
(4.40)

N-1 tig1 ) L
E[Z/ 12 - 2 dt} = O(}*).
i=0 Yt
with e(7) = O(|7T|%) under (H3), and e(7) = O(|x|) under (H4).
Fix ¢ =0,...,N — 1. By writing that
Y/ZT - f}ti = Ei [Y;fi-u - Z:{\i-i-l (Xti+1)] + Ati <f(ti7Xtiu f/;f:r, ZtTZ) - f(tiu Xtiv 1}tiu Zn));

and proceeding similarly as in Step 1 in the proof of Theorem we have by Young
inequality and Lipschitz condition on f

~ ~ ~ 2
E|Y7 - Vi |* < (1+9A)E|E; Y, = Ui (X)) ‘
]2 ‘ ST T (2 olor |2
+2k( +9AL) {ALE[V Vi [P + ALE| 27 - Z,*}. (a41)
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From (4.37), (4.39)), Cauchy-Schwarz inequality, and law of iterated conditional expecta-
tions, we have similarly as in Step 1 in the proof of Theorem

~ 2
i[Yter _Uz‘+1(Xti+1)H )

Then, by plugging into and choosing v = 4d[f]2, we have for |r| small enough:

ALE|ZT - 7| < 2d<E\thH — Uy (X))

E»f@’; - 1\2

2
< ( +C‘7T’ IE| tit1 _ui+1(Xt¢+1)‘ :

Next, by using Young inequality as in Step 2 in the proof of Theorem we obtain for
all § = (€,0):

|V — Us(Xe: )" < 1+ ClaDE|YT, — Uy (X,,)|* + CNEW, — U(Xy5€)](4.42)

On the other hand, by the martingale representation theorem, there exists an R%valued
square integrable process (Z;); such that

—~ - - tit1 _
uz‘+1(th‘+1) = Vti - f(ti’ th" Vti’ Zti)Ati + / Z; dWs,
t;

and the expected squared loss function of the RDBDP scheme can be written as

]

where we notice by Ito isometry that Z = 1 ar Ei [ bt tht} , and

A

Lo = Lo+e[ [ 717

Li(0) := E‘]}ti — Us(X03€) + (F(ts, Xo, Us( X5 €), Zi( X)) — f(ti, Xo,, Vi, ))Atz

+ AtiE‘Z - Zi(Xti;n)‘2'

By the same arguments as in Step 3 in the proof of Theorem using Lipschitz condition
on f and Young inequality, we show that for all 8 = (£, 7)

At 2

(1 - CAt) E‘th Ui( X5 €)

Z(Xtmn)|
< Li() < (1+0Ati E|V, — U; &) +C’AtzE\Zt — Zi( X5 )|

By taking 6 = (£f,nf) € argming L;(f) = argming Li(e), it follows that for |m| small
enough

E[Vi, — U(Xei; €0)[° + AGE|Zy, — Z,(Xusnf)|* < 00 4 Catie,
By plugging into (4.42)), recalling that Ui(Xti) = max([U;(Xy;; & ); 9(Xy,)], YT = max[fﬁ’;; 9(X,)],
and since | max(a,c) — max(b, ¢)| < |a — b, we obtain

E}Y B (Xt ) < (1+Crl) E‘ tit1 _Z:l\'—&-l(Xtiﬂ)f + CN(E'ZMT} + Atﬁé\%),

)

and then by induction

N—-1

N, N,z

max E|VT—U(X,)| < CZ(;(N% T ).
1=

Combining with (4.40]), this proves the error estimate (4.38]) for the Y-component. The
error estimate (4.38) for the Z-component is proved along the same arguments as in Step
5 in the proof of Theorem and is omitted here. O
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5 Numerical results

In the first two subsections, we compare our schemes DBDP1 , DBDP2 and the
scheme proposed by [HJE18] on some examples of PDEs and BSDEs.

We first test our algorithms on some PDEs with bounded solutions and quite a simple
structure (see section , and then try to solve some PDEs with unbounded solutions and
more complex structures (see section . Our goal is to emphasize that solutions with
simple structure easily represented by a neural network can be evaluated by our method
even in very high-dimension, whereas the solution with complex structure can only be
evaluated in moderate dimension.

Finally, we apply the scheme described in section [3.3] to an American option problem
and show its accuracy in high dimension (see section .

If not specified, we use in the sequel a fully connected feedforward network with two
hidden layers, and d+ 10 neurons on each hidden layer, to implement our schemes and
(3.7). We choose tanh as activation function for the hidden layers in order to avoid some
explosion while calculating the numerical gradient Z in scheme and choose identity
function as activation function for the output layer. We renormalize the data before entering
the network. We use Adam Optimizer, implemented in TensorFlow and mini-batch with
1000 trajectories for the stochastic gradient descent.

5.1 PDEs with bounded solution and simple structure

We begin with a simple example in dimension one. It is not hard to find test cases where
the scheme proposed in [HJE18§] fails even in dimension one. In fact the latter scheme works
well for small maturities and with a starting point close to the solution.

It is always interesting to start by testing schemes in dimension one as one can easily
compare graphically the numerical results to the theoretical solution. Then we take some
examples in higher dimensions and show that our method seems to work well when the
dimension increases higher.

5.1.1 An example in 1D
We take the following parameters for the BSDE problem defined by ((1.2]) and ([3.1)):

co=1, =02, T=2,d=1, (5.1)
T—t 2 . T—t 1. T-t\2 | 1 2
ft,z,y,2) = (cos(z)(e 2 +%)+psin(z))ez — 3 (sin(z)cos(z)e? )" + 3(y2)
g(x) = cos(z).
for which, the explicit analytic solution is equal to u(t,z) = el cos(x).

We want to estimate the solution u and its gradient Dju from our schemes. This
example is interesting, because with 7' = 1, the method proposed in [HJE18], initializing
u(0,.) as the solution of the associated linear problem associated (f = 0) and randomly
initializing D,u(0,.) works very well. However, for T' = 2, the method in [HJE18] always
fails on our test whatever the choice of the initialization: the algorithm is either trapped
in a local minimum when the initial learning rate associated to the gradient method is
too small or explodes when the learning rate is taken higher. This numerical failure is
not dependent on the considered network: using some LSTM networks as in [CWNMW19]
gives the same result.
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Because of the high non-linearity, we discretize the BSDE using NV = 240 time steps, and
implemented hidden layers with d + 10 = 11 neurons. Figure (1 (resp. Figure|2)) depicts the
estimated functions u(t,.) and D,u(t,.) estimated from DBDP1 (resp. DBDP2) scheme.
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Estimates of u and Z using DBDP1. We took the parameters defined in (5.1))

Averaged value

Standard deviation

DBDP1

1.46332

0.01434

DBDP2

1.4387982

0.01354

Table 1: Estimate of u(0,z¢) where d = 1 and xzp = 1. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.4686938.
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5.1.2 Increasing the dimension

We extend the example from the previous section to the following d-dimensional problem:

1 0.2
> = — = — =
d>1, o N e % d]Id, T=1,
ft,x,y,2) = (cos(:i‘)(e% +3)+0.2 sin(i))e% — 1 (sin(z) COS(Q_?)CT_t)2 + o (u(Lg.2))?,
g(x) = cos(),

with z = Z?:l Z;.

We take N = 120 in the Euler scheme, and d+ 10 neurons for each hidden layer. We take
1000 trajectories in mini batch, use data renormalization, and check the loss convergence
every 50 iterations. For this small maturity, the scheme [HJE18| generally converges, and
we give the results obtained with the same network and initializing the scheme with the
linear solution of the problem. Results in dimension 5 to 50 are given in Tables and
Both schemes and work well with results very close to the solution and close
to the results calculated by the scheme [HJE1S8]. As the dimension increases, scheme
seems to be the most accurate.

Remark 5.1. In dimension 50, the initial learning rate in scheme [HJE18] is taken small
in order to avoid a divergence of the method. In fact, running the test 3 times (with 10
runs each time), we observed convergence of the algorithm two times, and in the last test:

one of the ten run exploded, and another one clearly converged to a wrong solution.

Table 2: Estimate of u(0,z9) where d = 5 and xzy = 15. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.46768.

Table 3: Estimate of u(0,zg) where d = 10 and z¢p = 1;9. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is —1.383395.

Averaged value | Standard deviation
DBDP1 0.4637038 0.004253
DBDP2 0.46335 0.00137
Scheme [HJE18| 0.46562 0.0035

Averaged value | Standard deviation
DBDP1 - 1.3895 0.00148
DBDP2 -1.3913 0.000583
Scheme [HJE18| -1.3880 0.00155

Averaged value | Standard deviation
DBDP1 0.6760 0.00274
DBDP2 0.67102 0.00559
Scheme [HJE18| 0.68686 0.002402

Table 4: Estimate of (0, zg) where d = 20 and z¢p = Tgy. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.6728135.
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Averaged value | Standard deviation
DBDP1 1.5903 0.006276
DBDP2 1.58762 0.00679
Scheme [HJE1S] 1.583023 0.0361

Table 5: Estimate of u(0, z¢) where d = 50 and x¢y = I59. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.5909.

5.2 PDEs with unbounded solution and more complex structure

In this section with take the following parameters

1
UZ*ICb /'[/:07 T:17

Vd
1 2

flay2) = k@) + oomy(laz) + 5 (5:2)

where the function k is chosen such that the solution to the PDE is equal to

d d
T —
u(t,x) = Tt Z(sin(xi)lxi@ + zi13,>0) + cos <Z 1xl> :

=1 =1

Notice that the structure of the solution is more complex than in the first example. We
aim at evaluating the solution at x = 0.51;. We take 120 time steps for the Euler time
discretization and d + 10 neurons in each hidden layers. As shown in Figures |3| and [4] as
well as in Table [6] the three schemes provide accurate and stable results in dimension d =
1.

Averaged value

Standard deviation

DBDP1 1.3720 0.00301
DBDP2 1.37357 0.0022
Scheme [HJELS] 1.37238 0.00045

Table 6: Estimate of u(0,xg), where d = 1 and zp = 0.5. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.37758.

In dimension 2, the three schemes provide very accurate and stable results, as shown in

Figures [f] and [0}, as well as in Table

Averaged value

Standard deviation

DBDP1 0.5715359 0.0038
DBDP2 0.5707974 0.00235
Scheme [HIE1S] 0.57145 0.0006

Table 7: Estimate of u(0, zg), where d = 2 and xy = 0.513. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.570737.

Above dimension 3, the scheme [HJE1§| always explodes no matter the chosen initial

learning rate and the activation function for the hidden layers (among the tanh, ELU, ReLu
and sigmoid ones). Besides, taking 3 or 4 hidden layers does not improve the results.
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We reported the results obtained in dimension d = 5 and 8 in Table [§]and 0] Scheme
(3.6) seems to work better than scheme (3.7) as the dimension increases. Note that the
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standard deviation increases with the dimension of the problem.

Table 8: Estimate of u(0, zg), where d = 5 and xy = 0.515. Average and standard deviation

Averaged value | Standard deviation
DBDP1 0.8666 0.013
DBDP2 0.83646 0.00453
Scheme [HJE18| NC NC

observed over 10 independent runs are reported. The theoretical solution is 0.87715.
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Table 9: Estimate of u(0, zg), where d = 8 and xy = 0.51g. Average and standard deviation

T
1.0

T T T T T
0.0 0.2 0.4 0.6 0.8
X

Averaged value | Standard deviation
DBDP1 1.169441 0.02537
DBDP2 1.0758344 0.00780
Scheme [HJE1S] NC NC

T
10

Z and its estimate at time ¢ = 0.0085.

observed over 10 independent runs are reported. The theoretical solution is 1.1603167.

When d > 10, schemes ([3.6) and (3.7) both fail at providing correct estimates of the
solution, as shown in Table[I0] Increasing the number of layers or neurons does not improve

the result.
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Figure 5: Algebric error of the estimate of v using DBDP1. We took the parameters in
(5.2) and set d = 2 and 2o = 0.514.
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Figure 6: Algebric error of the estimate of u using scheme (3.7). We took the parameters
in (5.2) and set d = 2 and zp = 0.51,.

Averaged value | Standard deviation
DBDP1 -0.3105 0.02296
DBDP2 -0.3961 0.0139
Scheme ﬂHJElSﬂ NC NC

Table 10: Estimate of u(0,x0), where d = 10 and xy = 0.50;p. Average and standard
deviation observed over 10 independent runs are reported. The theoretical solution is
—0.2148861.
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5.3 Application to American options

Consider the stock price X; = (X},..., X?) of d assets with the following dynamics under
the risk neutral probability measure:

dX} = rXjdt + o; X AWy,

where W. = (W1,...,W%) is a d-dimensional Brownian Motion, o = (071, ...,04) € R, and
r is the risk-free rate.
The value at time ¢ of an American option with payoff g and maturity T is given by:

u(t,z) = sup Ele”""g(X;)],
TE'ﬁ:yT

where T¢ 1 is the set of stopping time with values in [¢, T, and is solution of the variational

inequality R
min [ — du — Lu,u—g] = 0, on[0,T)x (0, 00)?
u(T7 ') = g7 on (07 oo)d7
with
d
202m2D2 (t,z +7‘Z:172D su(t,x) —ru(t, x),
i=1

as proved e.g. in |[JLL90J.
Let us define the change of function v by: u(t,z) = e"wv(t,log(x)), (where log is applied
component-wise), which is solution of the following variational inequality

{ min (-9 — Lv,v —§) = 0, on][0,T)x R? (5.3)

o(T,.) = g, on ]Rd,

where
g(t,x) = 6_”9(6”),

ZJQDQ Vi + Z r— fa )Dy,v;.

In this section, we test the scheme described in section on in the special case
of a geometrical put with strike K =1, T =1, r = 0.05, Xn = 1 o =02fori=1to
d, and payoff (K — [, X{)4, as con81dered previously in [BW12| In dimension d, the
case boils down to the resolution of an American option in dimension d = 1: indeed, the
option payoff involving only the product of the asset values, it can be written as the payoff
of a single asset with a trend equal to dr and a volatility o1v/d, so that it can be very
accurately estimated e.g. with a tree-based method. Results given in Table [11| show that
scheme is very accurate for the pricing of American options.
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Dimension | nb step value std reference
1 10 0.06047 | 0.00023 | 0.060903

1 20 0.060789 | 0.00021 | 0.060903

1 40 0.061122 | 0.00015 | 0.060903

1 80 0.0613818 | 0.00019 | 0.060903

5 10 0.10537 | 0.00014 | 0.10738

5

5

5

20 0.10657 | 0.00011 | 0.10738
40 0.10725 | 0.00012 | 0.10738
80 0.107650 | 0.00016 | 0.10738

10 10 0.12637 | 0.00014 | 0.12996
10 20 0.128292 | 0.00011 | 0.12996
10 40 0.12937 | 0.00014 | 0.12996
10 80 0.129923 | 0.00016 | 0.12996
20 10 0.1443 0.00014 | 0.1510
20 20 0.147781 | 0.00012 | 0.1510
20 40 0.149560 | 0.00012 | 0.1510
20 80 0.15050 | 0.00010 | 0.1510
40 10 0.15512 | 0.00018 | 0.1680
40 20 0.16167 | 0.00015 | 0.1680
40 40 0.16487 | 0.00011 | 0.1680
40 80 0.16665 | 0.00013 | 0.1680
40 160 0.16758 | 0.00016 | 0.1680

Table 11: Estimates of the American option using RDBDP. Average and standard deviation
over 40 independent runs for different numbers of time steps are reported.
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