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Chatillon-sous-Bagreux, Seine, France
Trauslated by James L. Laver, Sun Oil Company,
Marcus Hook, Pennsylvania 19061

Abstract—A method is given for caleulating the relaxed flow of aseous mixtures
consisting of a diatomic molccule togsther with atoms generated by its dissociation.
Following this, the principal formulas are given for use in applying the method to
a mixture consisting of a given number of chemical species and reactions, Computa-
tional results are provided for hydrogen, showing the tendency toward relaxed flow
of the principal parameters and functions involved in the suggested method.

INTRODUCTION

TrE calculation of the performance of a rocket motor can be made
in different ways, depending on the hypotheses accepted @ priori.
Very simple methods have already been applied: thus, for example,
when the femperature, pressure, and composition of the gaseons mixture
in the combustion chamber are known, specific impulses and character-
istic velozities have been calculated for a given nozzle by considering the
flow isentropic, the chemical composition remaining invariable, This
flow, called “frozen,” is very easy to analyze. Similarly, Aows have been
determined by assuming that the different species composin g the gaseous
mizture react among themselves, the composition at any point being
that of chemical equilibrium, the entropy remaining always constant,
This kind of flow is calied flow with equilibrium composition, or just
¢quilibrium flow. The determination of the conditions at the nozzle
throat, where the flow velocity is supposed to be equal te that of sound,
is the only calculation which is a little difficult.

However, the performances thus obtained are either too pessi-
mistic for frozer flow or optimistic for equilibrium flow in the majority
of cases, the reality lying between the two. This is due to the many

1 Translated from Entropie, No. 5, 21-34 {1965) with the kind petmission of
O.N.ER.A,
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158 R. PRUD HOMME

phenomena which are ignored when one or the other of the two preced-
ing hypotheses is made. Thus the flow is considersd unidimensional,
and the effects of a boundary kayer, of heat transfer, of chemical reac-
tion rates, and of vibrational relaxation of the molecules arc neglected.
In particuiar, in the temperature ranges considered, the phenomena
of chemical relaxation assume importance. We will restrict ourselves
here to their study. :

In effect, relaxation phenomena are not important throughout the
entire fength of the nozzle! We distinguish between three zones of flow:
First of all, in the combustion chamber and in a large part of the con-
vergent portion of the nozzle, the flow is practically equilibrium flow,
then a zone of chemical relaxation appears, which is more or less
extended and which mayinclude the throat, and finally, the fow becomes
frozen in the divergent part of the nozzle and remains that way to the
outlet.

Bray® looks on the relaxation zone as being extremely narrow, the
progression toward equilibrium being suddenly frozen, and the location
of freezing being determined by a criterion related to the rates of dis-
sociation and recombination. The real flow can thus be replaced by a
succession of two flows, one at equilibrivm and the other one frozen.
Because of this vicw, Bray's method ignores any variation of entropy
due to chemical reaction.

We, on the other hand, proposec to calculate the flow as exactly as
possible by supposing that relaxation phenomena play a more or less
important rofe throughout the nozzle. 1na problem of this type, we are
going to encounter certain difficulties, in particular, if for frozen flow
and for cquilibrium flow the equations were ordinary becausc no
differential equation came into play; oa the other hand, in the case of
flow with relaxation, we are meeting with a system of differential
equations which js rather difficult to resclve by numerical integration,
primarily in the first zone where the fiow is close to equilibrium.
Moreover, the curves of sclution of the system contain a singular
point somewhere in the divergent portion of the nozzle, which cannot be
exactly determined. Thus weare forced to employ restrictive hypotheses
and to utilize an approximate method of calculation.

Our aim is thus to find an approximate method of calculation which
takes maximum account of chemical relaxation phenomena and gives
better results for the evaluation of the performance of rocket motors
than the limits of frozen and equilibrium ffow.
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METHOD OF CALCULATION OF FLOWS WITH
CHEMICAL RELAXATION
Qur work refers to gaseous flow in a nozzle of axial symmetry. The
gaseous mixturc considered is composed of diatomic molecules A, and
of atoms A obtained by dissociation of the molecules A,, the dissocia-
tion and recombination reactions being of the type:

Ag 4 M dissniation > A+ A = M, (I)

i -
recoibinaticn

Species M could be u melecule Ay or an atom A or even a neutral species
not participating in the reaction.

The gas mixture is supposed to obey the law of mixtures of perfect
gases; it is proceeding from a combustion chamber where the gases are
supposed fo be at rest and the flow which follows is effected without
heat exchange with the outside medium, Finaily, the phenomenen shall
be unidimensionzl, i.e., all the thermodynamic variables as well as the
compesition of the gas mixture will be considered the same at any point
of 2 cross-section at right angles to the axis of the nozzle, which has
abscissa x and area X,

Kinetic Study of the Chemical Phenomena

[n this section the origin of the chemical relaxation, i.e., of the rates
of reaction, is to be taken up. Classical chemieal kinetics® shows us that,
at constant volume, the net rate of appearance of species A from the
two reactions of Equation (1) is the following:

dz’:i = 2[knP".\, - 'kn(P”.a)gle 2
where it Is assumed that the specific reaction rates of recombination,
k. and thus also the specific rates of dissociation, %), are the same in
the presence of species A, as of species A,

This equality, which brings into play the mass per unit volume, p,
the concentrations in terms of number of molcs per unit mass, 7, and
LI the total number of moles per umit mass, #, and the time, ¢, can be
replaced by the following one for the case of a dynamic flow at constant
mass rate such as we are considering:

VIS = ey, — ko Bp, &)
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where the time does not enter explicitly, but where the abscissa, x, and
the speed of flow, V, appear. It should be observed that although the
form of Fquation (3) is well defined, this is not the case for the
temperature-dependent functions, kg and kg here is the first problem
posed by the study of relaxed flows. Several theories provide a2 way of
determining the specific rates, kr and &y, Thus the collision theory*?
o that of the activated complex? result in expressions of the form

& =aexp [E{(RT)], @)

for kg and kp; in this expression, £ is the energy of activation of the
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Figure [.—Specific Reaction Rates as Funetions of Temperature for:

H+H+H ~H+H ——
H+H+Hy—H + Hy————

According to the Formulas Given by Different Authors. (1) Patch,
(2) Sutton, (3} Eschenroeder, (4} Rink, (5} Gardiner, (6) Westenberg.
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reaction, R the universal gas constant, 7 the absolute temperature, and
@ the Arrhenius factor, which is a function of the temperature and
whose expression is generzlly assumed to be of the form

a=Ar-+*, 5

where the constants 4 and # differ according to the authors,

We will not diseuss these diverse theories in detail, but will simply
note that specific reaction rates differing by a factor of 100 are not
uncommon. By way of example, Figure | shows the temperature-
dependence of the specific recombination rate of hydrogen according
to different authors. In our calculation, average values will be used,
but the true influence of the errors in &y and ky upon the relaxed
flow remains unknown.

General Equations

L. Eguations of chemical concentraiion

The following relations are obvious. They bring together the con-
centrations and the atomic mass, W, of the element A:

n = ny + a, (conservation of species); (6
1/Wy = ny -+ 2n, (conservation of mass), )]

A third relation connects the concentraticns, the temperature T
and the pressure p, in the case of chemical equilibrium: Tt is the law
of mass action, which introduces the equilibrium constaot in terms of
the pressures KA‘:

LS .
- =Ky, 8)
ny

in the case of relaxed flows we write analogously :

K, (1 B). )

LY

This relation introduces the non-dimensional paramoter B, which
we will express, in what follows, as a Function of the reaction
velocity,
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2. Eguation given by the chemical kineties

By taking into account the equilibrium relation

ka K,
k,RT
and putting
|4
Am—m—————, I
2p%eun * ny* o
the speed of appearance of species A can finally be written as
dn, B
2R =, 11
A A (11
3. Consercation of mass flow rate
The mass flow rate is conserved, whence:
pY=o— (2

2(:]

4, Conservation of energy

For adiabatic flow the conservation of energy can be expressed
by a relation between the enthalpy per unit mass A at a point of flow,
the velocity V, and the enthalpy per unit mass in the combustion
chamber; thus

By =h+ 87, (3
where the expression for the enthalpy per it mass A is the following:
b= ny(Hr)a + na (He'ds,, {14

(Hy®)y and (Hy")a, being the standard molar enthaipies of species A
and A,, respectively.
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5. Adiabaticity

The nozzle plays the role of an adiabatic wall: during constant flow,
the conservation of the quantity of heat @ can be expressed by

dg _
dx ' {3)

Under these conditions, Gibbs’ formula? giving the elementary
variation of the entropy per unit mass takes the following form:

ds dn, dn_,)
—=—R|M, — —= 16
dx ( * dx M, dx e

The free enthalpies M, and M 1, can be expressed in terms of the
standard free enthalpies by means of the following equations:

Moo= (M), —In fnép.
n (17}
My, = (M%), —In—2p.

Taking into account Equations (7) and (9) as well as the relation

In K, =21M), — (M), {18)
we obtain at last:
ds R dn
—==In(l — B —=_ 19
PR R {19

Te complete Equation (19), we now give the expression for the
entropy per unit mass of the mixture:

5= a,(81°)y + 1y (51",
— R(niln— t n_h]n*—’ +=nin p) (19
n n

(S4”)s and (S4°),  being the standard molar entropies of A and A,
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Study of the System Defining Relaxed Fow
The set of the following independent equations summarizes the
preceding results and defines retaxed flow completely:

() n=mny + na,

|
by —=mn Mays
()WA AT N,

nn
(© ﬁ’ = pK4 (L —B),
A

dn
d) B=A—,
@ dx
¥
A= - ———,
© 2p%kynn,’
H
f) pV =7
( ) # E!;v.'l ' (20)

©& h = ny(Hos + na (He W,
(h) ha=h + 3V,
() £ = nRT,
p
G) s = 135, a + 15, (S,

— R(nj\]rln—A -I—nhlnM +nln p) ,
n n

ds R dn
K= =ZIn(1 —B—.
()dx 211( )dx

1. Elfmiration of the varables p and V'

Equations (g} and (h) give the follewing expression for velocity:

¥ = 2k — (Ho"Wans — (Ha'kagfta)i

@n

¥ in the following equations is assumed defined by Equation (2I)
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where V is expressed as a function of the temperature T and of the
concentrations.

Under these conditions, the sct of Equaticns (20) can be recuced to
the following three equations after elimination of p and ¥

dinT dinp  Hdn,
C —Rn—~+——==¢, 22
M dx g dx +T dx 22
TCyydn T dinp 1 Hydn dinX
1 P')—-—— (—+——-A: . @3
( + v, ) dx dx 2n Kdx 4 @
B_dn {24)
A dx

to which Equations (20¢) and {20e) must be added as well as the follow-
ing definitions:

H=(H)s — HHx, @5)
and

Cot = 1aCos + 14, Cps 26)

where (7, and Cy, represent the specific heats of A and A, at constant
pressure. Cpe will be called the specific heat at constant cencentrations
and pressure of, more simply, the frozen specific heat.

From Equations (22), (23), and (24) the following equations
and sets of equations can be deduced; note that matrix w* is the
following:

Cpe —Rn
w* = : an
1+——TC;' ~1
V
dinT _ Hdn,
dx T dx
w* =
dinp 1 Hydrn, dInZ
— A=+ ==+ — 28
dx (2n V”) dx i dx @)
dny, B
dxr 4
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is a set of the differential equations

dinT “y'd"
n Pl
w* =
d LB, +dms g
inp —(;’qL——ﬂ) n, +din 29)
B
dnA=Kd.x.

The corresponding difference equations are

o
A _HA
InT T LY
w* =
Alnp —(2l + i:;) An, +AlnE (30)
n
B
A"AZK'A%

We will utilize (in an approximate method of calculation) this set of
equations, connecting to the nearest second order the variations
Aln 7, Alnp, An,, and Ax.

2. General remarks

With the help of Equations (f) and (i), the pressure p can be expressed
as a funetion of the temperature T, of the abscissa x, and of the con-
centrations, so that Bf A can be considered a function of these variables:

2 2

B _ 2p'kgnng [l o mmy, ::1, N
A 14 pE

and, after elimination of dp/dx, the set of Equations (28) can be

written:

dinT
det (m(*DA.T]) -
dx

dInE  [H(aRT R /B
—R _[# —1) = R)(E 32
" Tx [T( Vv )+2}(A)m.1-.a>' 32

dn, _ (B
dx (A)(m.T.xl ’
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When Lhe quantity det (»*) is not zero, this system satisfies the
Lipschitz® conditions and therefore has a single solution (7,y,Aa)
provided two initial conditions, e.g., T, = Tiog and 1y = ny iy, are
fixed.

The calculations prove that there is 2 point in the nozzle which we
will call F, where the determinant det {w*) vanishes; this generally
implies that 4T/dx is infinite. Point F is located downstream of the
geometric throat.

If we take it for pranted that the real steady flow does not contain
any point where the temperature gradient is zero or infinite, we must
require the following conditions to be simultaneously satisficd at
point F:

det (w*) = 0
. (33)
RpdIE [E(nRT_ [) + E:I_E o
dx Ty 21A

These conditions can be interpreted in various ways. Thus Westene
berg® considers the rate # as an a prior! unknown, since the proper
value of the rate satisfying conditions, Equations (33), can be deter-
mined by approximation. Tn the following we will assume that the rate
#it has been chosen a priori and is close to the real rate, and we will sge
how it is possible to solve the problem in the case where the Row is close
to equilibrium flow in the convergent portion of the nozzle,

3. Stabiiity of the linearized system

Although the methods of linearization are subject to question in
the totally general case, a study of the stability of the lincarized system
leads to conclusions well verified by calculation.

Let us therefore assume as known a rclaxed flow and et us induge the
following differences at a point of abscissa X3t

Ti=hTy—-InT,

A=Inp' —Inp, (34)
Ay =mn,' — my .

We want to follow the variations of the differences 7, p, and i1, which
differentiate the perturbed system of temperature 77, pressure p’,
and concentration »," from the given relaxed flow of temperature T,
pressure p, and concentration #,. Let us designate the difference
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x — x, by & Then we will be able to reach conclusions concerning the
stability of the linezrized system.
The linearized system, Equations (28}, can be written:

CF'd_T_Rnd_p E%-:o,
d dx T d%
TCp\dT  df 1, Hyda
14 == —F —+—)ﬁ‘:0, 35
( + yE )df d.\"Jr n V¥ dx 39

247 1
APK_A!HA_%.FETf};_.—nA:o‘
an,, d%¥ RT 27
= being equal Lo wy*nryny .
From the definitions of the following matrices

T
=ip)
Lits.
I~ H
Cp( —Ri F
TC, 1 H
Av=|1 o1 == 36
+ Ve n V¥ 6
0 0 na’Ka,
L. My,
[0 o 0]
O R
v L
LRT 2a,

we obtain the following matrix equation with constant coefficients:

*

JLL-=SCy ) @7)
dz

This differential equation has the fellowing general solution:

B* = @ X,* ket + X (38)
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where the constant coefficients a,, a,, and a, are determined by the
initial difference.

X,* and X,* are column matrices associated with two independent
fixed vectors perpendicular to the vector of components,

Mo 1

RT' 7 1a

X3* is the column matrix,

Xy* = | Z |, where the quantities ¥ and Z are defined by the equations:
!

TP 2 T 2 (%)
det (%) ’ T det(e™)

4 is the only non-zero eigenvatue of the charaeteristic equation
associated with Equation (37); it is expressed by

1 am,, det(QH

= s 40
27A pKyny® det (0*) (40
where (1* is the following matrix:
¢, i _zH_ o
T T
2H
| — = —1 0

Q RT 40

TCx 1 2H 1 2H

T = gy =) —fegfogp

+ ¥ w(n + V’) W(n + Vz)

whose precise significance we will see further down. Calcnlations made
for hydrogen show that det (2%} vanishes at a point E located up-streant
of the geometric throat. It is negative upstream of E and positive
downstream of E. 1is thus negative between peints E and F and positive
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glsewhere,. When A is negative, the system is unstable; when 1 is
positive, the following situaticns can arise:

(1) &, and a, are not both zero; then when X becomes infinite, the
difference £* tends toward @, ¥,* + 2,X,*, a non-zero column matrix.
The new flow does not rejoin the initial flow but becomes stabilized
along a new progression.

(2) a, — a, — 0. When ¥ becomesinfinite, all differences tend toward
zero; stability is obtained. Stability of the linear oscillator associated
with the equations of relaxed flow thus occurs when 1 is positive and
when the initial differences are proportionz] respectively to ¥ for Ty, to
Z for py, and to unity for A, .

This last conclusion is important to the method we are about to
explain, for the differences satisfying the preceding proportionality
relations are precisely those applying to the possible first-order crrors
which our calculation procedure might introduce.

Thus we see that a brief study of the stability of the linearized system
can alsa provide interesting information on the real sysiem.

Method of Corrections

The particular form of the matrix equation of Equations (28) allows
us to consider a family of progressions along the nozzle. In effect, we
can look on the collection of progressions as satisfying the matrix
equation of Equations (28), with the second equation:

replaced by a relation of the type:

STy T TR ) =0 @)
dx dx = dx
index  designating the progression considered.
The relaxed flow forms a part of the family of progressions (i),
where the function £(i) has a particular form f,: Equation (42)
becomes:

d
oot = AR, @3
dx
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Thus a progression (i) will be characterized by the following two cqua-
tions:

dIn T _ H din sy

dx T dx

o* = , (44)

dlIn Pity = l E)dﬂa‘n + dinXx

dx (2n v dx dx

dinT dlnp dn,

Ly, — ,—, =2 x| =0, 45

A ( P " Tax ' dx ) (3)

and we will further assume that it satisfies Equations (20), except, in
general, Equations {c), (d), (e), and (k) which are peculiar to relaxed
flow.

Progression (i) will be utilized in the caleulation of the relaxed flow
between abscissas x; and x, + Ax,

Therefore, at abscissa x,, the temperature, pressure, and concenfra-
tions are assumed equal for the two flows; however, the derivatives are
different and & first-order caleulation of the variations A In T, Alnp,
and An, will give different values of 7,p, and n, at the abscicsa
x; + Ax.

Putting

Al TY) = Al Thay, — (Aln Ty,
Ain iy =AM pha. — (Aln ply, (46)
(Any ) )l' = (An )1, — (Any)g,

the values of x, 4+ Ax will be the following, approximately to the
second order:
Trewbn + Ax} = Ty + Ax) + T ()4 In TR,
Prei.(X; — AX) = pry(xy -+ Ax) + Prer (% )(A In ) an
Rarer Xy = Ax) = m,04(x; + Ax) +- (A"A)Iﬁl'-
In the following the first members of Equations (46) will be called

corrections, The corrections thus verify the following matrix equality
approximately to the second order:

H .
AT T (Any )
w* = (48)

1  H
@nai] |- (5 + ) @i
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Thus we see that if we know how to calculate progression (7), we will
have an approximation of the relazed flow by utilizing Equations
(47) and (48).

The present problem is to determine progression (i}, which should be
the one most acceptable for our calculations.

In the following paragraphs we will study two progressions which
we will call “pseudo-equilibrium” and “pseudo-frozen,” respectively.
The quantities pertaining to these progressions will be provided with
indices (") and (), respectively,

The advantage of these two progressions lies in the circumstance
{hat their associated systems of differential equations have integrals
which make their calculation just as easy as the calculations of equilib-
rium and frozen flow.

On the other hand, they are defined in large portions of the nozzle
and are very close to relaxed flow. As they do not present instability
problems, we can regard them as a stable basis for relaxed flow.

1. Pseudo-equilibrium
We will call pseudo-equilibrium a progression (e') whose associated
function . is the following:

fur= — 14 By=0, (49)

where Be. is a numerical constant with values between 0 and 1. Such
a progression has the following first integrals:

s =n{Sr)a + "Az(s'r“h.

—R(nAInE—l- a0 224 o pl1 = Bed), (50)
h n

P ,il.g 51

" nRT ) (51
niy

By =1 ——=2—, 52

) PRy " ©2

where s”, #1, and B are constants.
All the thermodynamic functions can be calculated from Equations
(50) and (52) by means of the temperature T only.
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In particular, it is possible to determine the maximum impulse
(p¥)e; we note that this maximum is reached when

det (Q*) = 0.

We observe that point E, which was defined in the study of the stabil-
ity, 15 such that, in it, (pV)ey is a maximum and we will call it for this
reason the throar of pseudo-equilibrium.

On the other hand, we note that the pseudo-equilibrium becomes a
progression in a state of equilibrinm and of entropy s', when Be. = 0
in Equations (50), (51), and (52); with this equilibrium in the nozzle,
the flow rate i will be defined by the sound velocity in the geometric
throat. The situation will be analogous for pscudo-cquilibrium in the
nozzle. But, in the following, our preaceupation with this question
will be unnecessary, as the flow rate chosen will be that of relaxed flow
and we will not need to consider pseudo-squilibrium for the entire
nozzle but rather a sequence of pseudo-equilibria in intervals of small
length Ax.

We are now in the position to list expressions for the corrections
satisfying the matrix Equation (48), By putting Be. == By, the follow-
ing values are obtained:

rel B dry)
= - — =2 A
CLEL Y[(A){Xﬂ ( dx )E’cxg] %

ot ) (@] o
(Aln ple = Z| (A oo ™ Uax o, Ax (53)

e By (dmy A
(Aa)e [(A %) (dx)e‘:xn] -

where Y and Z are defined by Equations (39).

Equations (47) finally give the values of T,p, and n, at the abscissa
Xy -+ Ax.

In fact the calculation of the pscudo-equilibeium is easier when the
temperature rather than the abscissa is fixed so that Telx, + Ax) is
given instead of x; + Ax; and we will write:

Teldy + Ax) = T(x) — AT, (54)

This remark does not alter our method at all,

Bl
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Finaliy Equations (53) show that, because of Equation (38), an
error in the value of .

[(Rho = (Gl

is of little importance because the relaxed flow is stable with respect
to such differences.

2. Practical utilization of the method of corrections with pseudo-

equilibrium.

Two problems become evident:

(1) When the mass flow rate st and the initial conditions are fixed,
the progression obtained will not, in general, correspond to a real flow.

(2) To apply the method of cotrections, the real conditions at at least
one point of abscissa x must be known.

These two problems require us to make restrictive hypotheses which
will limit the range of applicability of our method.

da. First hypothesis.

We assume that between the combustion chamber and the geometric
throat of the nozzle the real flow is close to the equilibriem flow.
This means that Equation (43) should be satisfied to the second order
by the squilibrium values; iz, we must have

Afa, d-’h)
— ) -1 —4) =0, 55
(pKA,nA’)e rad ), 3
or because of Equation (8):
Ae (d—”i‘) o~ 0. (56)
dx Je

Now only has it become possible to assume that equilibrium flow
constitutes a goad approximation of relaxed flow. To specify Equation
(56), we note that the following inequality:

Ae (‘%)e <, 57

must be verified in the convergent part of the nozzle. Here ¢is a positive
number given in advance and always much less than one.
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o

dx /e

is an increasing function of the abscissa x, it will suffice that the in-
equality, Equation (57}, be verified in the throat.

Unde: these conditions we will assume that the value #re of the
mass flow rate of the equilibrium flow appropriate to the given nozzle
can be chosen (o take the place of the mass flow rate #. This first
restrictive hypothesis is satisfied when the temperature T in the con-
vergent portion of the nozzle is sufficiently elevated for chemical
equilibrium to be practically realized there.

1t should be observed that the first term of the inequality, Equation
(57}, is analogous to that employed in Bray's eriterion®. However,
when the inequality is realized with ¢ close to one and at times even
equal to 2, Bray assumes that chemical equikibrium occurs and that
the flow becomes frozen when

AQ(E"_A)
dx Je
becomes greater than a chosen value of s,

Our procedure thus differs significantly from the one proposad by
Bray.

b. Second Hypothesis.

To resolve the second problem, the actual conditions at the nozzle
entrance must be known.

But only the conditions in the combustion chamber are given, where
thermodynamic equilibrium is assumed to hold vigorously at zerg
velocity, To express our second hypothesis, we fall back on the basic
equations of relaxed flow. Obviously the following matrix equation can
be deduced from Equations (30):

AlnT 0
oA K, (1 — By = r’% , (58)
Alnp In

where (¥ is the matrix defined hy Equation (41).
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[n the case of pseudo-equilibrium we find an equation of the same
form:

(Ala T)e o
a|@amik, 0 - BN | = 0 | (59
(Aln p)e AlnZ

By subtraction of Equation (38) from Equation (59) member by
member, the following equation is deduced on the assumprion that at
the point of abscissa x, considered the quaatities are chosen as in
the treatment of pseudo-equilibrivm.

AT 0
or|am gt - Bt | = | 2B . (60)
1—B
(Aln Pl 0

The correction of temperature and pressure can be calculated from
Equation (60) by means of the variation of the parameter & and inde-
pendently of the abscissa x.

Finally, the following expressions are obtained for the corrections:

det (w*) Y AB

Aln TR = =2 ,
(Aln T Tdet@n L—B

det (w*) z AR

Tdet @) LB’ 61)

(A pfF = -2

det (w*) AB

A rgl‘ N, Pl .
(Bny)e TR QM1 — B

Our second hypothesis consists of the assumption that, between the
combustion chamber and a point of abscissa x; near the entrance of the
nozzle, the values of B arc equal to those of the product

dn
Ae[=2).
( dx )e
Starting with the combustion chamber where the velocity is zero, we
finally obtain the following set of equalities where the values in the
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combustion chamber are designated by the index (0):

AR dn
— =Auxp|—2] 62
i—-8 “ IJ(c:lx)t’(x.: 2
—2m g "
H
oo = Toa 4 | ——— 5 | e (2),
M €
Cn! + RTn W
Pz = Peixp: {63)
zﬂ% .
n
A =] I o) R
L
Cor RT: /w0

Beginning with a point of abscissa x,. we are thus in a position to
apply the method of corrections step by step. The scheme of caleulation
carried out between points of abscissas x, and x, +¢ & outlined
below.

Values known for X,,: all the thermodynamic paraméters and their
first derivatives with respect to x, all the concentrations and their first
derivatives:

1. Determination of the pseudo-equilibrium by calculation of Be.

and 5’
2. Calculation of pe(x, +1) and (i A)e-(,m; such that

Te’("n-ﬂ’ = T'xn} —AT

with the help of Equations (50) and [52).

3. Calculation of E(x,.,) with the hel p of Equation (51), then
caleulation of x,,,.

4. Calculation of the corrections with the help of Equatinns (53).

5. Calenlation of T(x,.)), p(xn, ), A (1) with the help of Equations
(47) and determination of B(xy,,) by means of Equation (c) of Equa-
tions (20).

We note that our method eannot be applied betwean points E and F
and that in the vicinity of these points the corrections are so lacking
in precision that its application there is not advised either. This restrice
tion, by the way, is true for ali approximate methods.
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Therefare, we will choose two points E’ and F' of abscissas g << A
and xg > xp, Tespectively, and assume that the values of xp. are
deduced from those obtained for xg. by a pseudo-equilibrium calcula-
tion without correction. Points E’ and F' will be chosen very close to
the geometric throat, and their choice will be determined by the signs
of the quantities det (w*) and det (Q*), respectively.

The values found for F’ arc false, but as the zone E'F" is very small,
the values of T\, p, and n, vary little and, farthermore, the errors com-
mitted satisfy the stability conditions of the linearized system.

3. Pseudo-frozen
We will call “pseudo-frozen™ a progression satisfying Equation (44)
and the following:

dinT diep dny dn,
AT, . Ras [t St ={—2] =0. %)
ft( P Ta dx dx = dx x) (dx )f‘ (&4

We will assame that progression () also satisfies the other co nditions
defining a progression (). The system of equations associated with this
progression possesses the following three first integrals:

" = np(8S57)a + s (St))s, — R inp. (63)

where 57 is 4 constant

, |4
= ;%‘Epm (66)
constant = H,. (67)

As in the ease of pseudo-equilibrium, Equations (65} and (67) allow
{he determination of all the thermodynamic parameters independently.
of the abscissa v and as a function only of the temperature T.

Furthermore, we ohserve that the quantity (p ) is a maximum when
the following equality is realized at point F, which, therefore, is called
the throat of pseudo-frozen flow:

det (w¥) = cp.(ﬂg;—r _ 1) + Rn=o0. (%)
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The carrections obtained by utilizing pscudo-frozen flow are the
following:

AT = Y(— Ax,

%)

(A e = z(f) Ax, (69)

gy

(An e = (E) Ax.

x;)

Possible errors in the values of

B
- A
(A)tx.: *

will not be disturbing, for they satisfy the stability conditions, The
calculation itself is performed in the same manner as in the case of the
pseudo-equilibrium.

In general, the values of B/A decrease rather rapidly in proportion
to the advance into the divergent part of the nozzle, and it will be
interesting to use the method of corrections starting with a certain
abscissa for which we will have

B _|B_ d_".&)
A (dx o
(See figure 2.)

A

Furthermore, pseudo-frozen flow with correction will advantageously
replace relaxed flow for large abscissas where B is close to unity.

Utilization of pseudo-frozen flow from the point E” of the preceding
paragraph gives for F’ results rather different from those obtained by the
assumption of pseudo-equilibrium, but the values begin to coincide again
after a certain abseissa, as calculations made for hydrogen have shown.
This result is very encouraging, and can be considered as confirmation
of the stability of relaxed flow.

) (70)

4, Real flow

On account of our hypotheses and the results obtained in the case of
hydrogen, it appears likely that the flow found by the method of
pseudo-equitibrium with corrections is close to relaxed flow.
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However, the region of the geometric throat, i.e., the region of the
neozzle contained between points E' and F', remains indeterminate. We
have employed a pscudo-cquilibriur to determing the conditions at F'
from a knowledpe of those existing at E', but the fact nevertheless
remains that we know nothing about the flow between these two points.
In fact, there is no reason why the pseudo-equilibrium employed should

e

[ 15| I
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Figure 2.—D Tmceof\j—{

x|
in the Case of Hydrogen at 7° = 4000 °K and p = 10 atm,

be adapted to the nozzle considered, Tor the maximum of the quantity
(p¥)e is probably not equal to rifZ,, the ratio of the rate of mass flow
to the area of the ¢ross-section of the nozzle at the geometric throat C.

If we assume that between E' and F' pseudo-equilibrium is a good
approximation of relaxation, the shape of the nozzle between these two
points and, in particular, the radius of the throat's cross-section must
be medified in snch a way as to adapt the pseudo-equilibrium to the
new nozzle thus obtained.

To find the area of the perpendicular cross-section Xy, the point
where (pV)e is a maximum must be found, Le., the point where
det (%), is zero. This caleulation is analogous to that employed for
determining the values of the thermodynamic parameters at the throat
in the case of equilibrium flow.
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Thus it dazs not matter which profile, tangent to the old profile at
the points of abscissas vy, and xy. and satisfying the preceding condition,
will be suitable. Point F will be determined by writing that det ({2*)y
vanishes there and that the simultaneous conditions of Equations (33)
are verified there with B = B,, since both for equilibrium and for
pscudo-equilibrium there is no indeterminacy at the frozen throat,

DBy replacing the relaxed fMlow by a pseudo-equilibrium between E'
and F’, we therefore have eliminated the problem posed by the fiozen
throat; thus another condition shows up:

det (O*)e = 0,

ans_ an
dx

Finally, we must assume that the radius of curvature of the nozzle
profile be continuous at E’ and at F'.

RESULTS GBTAINED IN THE CASE OF A FLOW
OF HYDROGEN
Figure 3 shows the profile of the nozzle considersd. The reactions
taking place arc of the type of Equation (1), element A being the atom
of hydrogen; the specific recombination rate is that used by Westen-
berg:?
: kg =2 % 10 T-1¢mb mole2 secl. {(72)

The case where the temperature in the combustion chamber is about
4000 °K. and the pressure about 10 atm was studicd in more detail.
This cage satisfies the hypothesis of Equation (53) well with £ = 0.3;
increments of temperature AT == 5 °K werechosen. The results obtained
were plotted in Figures 4, 5, 6, 7, 8, and 9. These results have allowed
us to make the following observations: First of all, when the abscissa
xy at the start of the calculations is rather small, the subsequent flow is
very close to equilibrium flow, and the values obtained are found to
ascillate in 2 sigaificant manner up to a certain abscissa and then to
become stabilized. This result appears to be disconcerting at first, but
we have found that the representative curves obtained by the use of
different starting points converge to a unique curve.

The choice of the characteristic temperature steps (initially
AT = 5 °K was chosen, then AT = 100 °K) has Lttle influence on the
flow in the convergent portion, and when we employed steps of
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AT — 5°K. again in the divergent portion, the flow was found to be
dentical with the preceding one.

Thus the determination of the thermodynamic parameters in the
convergent portion is rather rapidly made without need for the employ-
ment of very small steps. ©On the other hand, we are forced to use

N /
\ /

e

"
T 2z 3 4 5 B 7 8 9 W1 ow B MBS Kem

Figure 3.—Plot of the Cross-seciional Area Ratio as a Function of the
Abscissa For the Nozzle Whose Parametric Equations ace the Following,
for the Abscissa and the Radivs of the Cross-section, respectively:
21251 —0.03% + 0,0012889+°
- L + 0.001288%*
0.26794916¢% — 27.000041 19¢* — 65113583000
1+ 9313691427

r=T0.71067812 +

rather small steps in the divergent portion, for the corrections become
important and the precision of the results will depend on the stop size.

Tn the region downstream of the divergent portion the parameter B
tends to unity asymptotically; there is thus rapid “freezing” and our
development can be replaced to advantage by a pseudo-frozen flow,
e.g., from B = 0.99 on.

We also made calculations for cases that do not satisfy the hypothesis
of Equations (55). Thus, by maintaining a combustion chamber
temperature of 4000 °K., but taking pressures of | atm or 0.1 atm, the
flow obtained is not likely to correspond to a real flow and, in particular,
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Figure 4 —Temperature Profile of Hydrogen Expansion with T° = 4000 K.
and g° = 10 atm, Equilibrium, » Relaxed, (3 Frozen from the Com-
bustion Chamber,
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Figare 5.—Pressure Profile of Hydrogen Expansion with T° ~ 4000 'K
and p° = 10atm. @ Equilibrium, @) Relaxed, ‘8 Frozen,



R. PRUD"HOMME

y meley’y
| |
s L o
! i | :
sabbtet b b ettt
H.N\! | i | | |
o ' |1
‘N ! { |
4,20 ":\ : | i | e
hY H f
‘:}\'-- C
A\ M
1‘\\‘ i | i
o b
[RH J i |\"| i ;
1 a 3 4 5 6 7 B 3 w1 1215 ¥em

Figure 6 —Profile of Atomic Hydragen Concentration in Hydrogen Expan-
sion with T° = 4000 °K and p° = 10atm. (D) Equilibrium, ) Relaxed,
@ Frozen.
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Figure 7.—Change of the Parameter B in Relaxed Flow of Hydrogen
Expansion with T° = 4000 °K and p° = atm.
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Figure 8.—Change of det(w*) in Relaxed Flow of Hydrogen Expansion
with T° = 4000 °K and p° = 10 atm.

the flow rate # chosen is surely false: but the criteria of stability have
been found to be well verified. )

However, in the present state of our method’s development, it seems
that we should limit oursclves to the cases for which the restrictive
hypotheses for pseudo-equilibtium are verified.

1

T
I
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[: -

I f

|

Figure 2. —Change of det(2*) in Relaxed Flow of Hydrogen Expansion
with T° = 4000 "K and p° — 10 a1,
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Figure 10 shows the modification of the nozzle profile in the region of
the throat, as indicated in the discussion of real flow.

Figure 2 shows that, from an abscissa of x = $ cm on, we should use
the method of corrections for “pseudo-frozen” flow, as the corrections
for this case are less.

o

4 ¥em

Figure 10,—Maodification of the Throat Between Points E‘and F'.

EXTENSION OF THE METHOD OF CORRECTIONS
TO SEVERAL REACTIONS

When the gaseous mixture includes ¥ chemical species formed from
L elements so that K reactions arc possible, our method can be general-
ized very well, This is due to the lincar character of the equations.

The detail of the theory will be the subject of a later publication.
Nevertheless, the principal equations obtained are given here.

The rth equation between the species ¢ can be wrilten:

N N
S0, 81 3,080, )
=1 =1

where »;, and #;,” are the stoichiometric coefficients with respect to
the specics & in the two terms of the reaction.

It is always possible to choose L independent chemical species,
ie., none of them can be obtained by a reaction among the other
L—1.

Let 1; be the number of moles of species &7 per gram of mixture and
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let us designate by «* the column matrix of the other species numbered
L-+1ltoN

= . | (74)

Ay
The L independent species are thus determined as a function of &* by
the following equation:
iy '
=0 | — Erax 75)

n nr’®
The quantities m° represent the number of gram atoms of element A’
contained in a gram of mixture.
The matrices D* and E* are the following (the «, stand for the
numbcr of atoms of element A’ contained in the formula weight of
species £7):

% "t Ay
D= |. - s (76}
Xrr "t #pp
matrix D* has an inverse,
o 1925 TR
Ex=| | - (7
XL Ly " %Ly

Furthermore, by defining matrix H* as the foliowing
(Y (H7%)
H* — . — (ES)![[D*)—l]! _ R (?8)

{(Hr)x (Hz%)
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an equality of differential forms is obtained which is fully comparable to
the matrix equality of Equations (29) obtained for molecule Ag:

r H*
dln T f(——)dd*

w* = , . )]
dinp| |—ddn— U dar 1 dmE
n P

The relaxed flow is thus perfectly defined when we add the following
equations to Equation (79):

My My
Be— @G| . |-y .| o
My M
da* "
&y, @1

B* is a cofumn matrix of N — L rows correspondingto N — L reactions
numbered from 1 to N — 1, e.g., whese matrix of the stoichiometric
coefficients G* has an inverse and is the following:

(Wra — P (Liy-r — Vi1, ¥-L)
G* = . . (82)

(e —2ay (Y- — "’.!VJ.\‘#I)

The terms M; of Ecuation (80) arz numerically close to the free
enthalpies of species &7 divided by the product RT.

The vectorial function p* depends on the specific rates of the reactions,
the thermodynamic functions, and the concentrations. .

Just as in the case of the diatomic molecule Az, we caa bring together
a family (i) of progressions which satisfy Equations (79) and ¥ — L
supplementary equations of type:

dinT d]nP’Mlx)=0‘ (83)
dx dx  dx

f(!](Tr p,a*, s
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Twa arhitrary progressions of family (i) have been chosen:
(I) the pseudo-equilibrium defined by Equation (79) and the matrix
equation:

Be.® + (G*) — (E*):‘(D*)-I]i

My M 0

» (84

where Be* is a constant column matrix;
(2} the pseudo-frozen flow for which there are & — I, equations
summarized by the matrix equation:

0
doe* )
— = &5
™ _ (85
o
The throat of the pseudo-equilibrium case satisfies the equation:
it
G —Re By
T
TG, (H*Y
1+ V;’ —1 TS =0, (86)
L _p* T
RT
with the following definitions:
1 1
U= [ .| — (MDY ., (87)
1 1
Wiy o 0 m- - 0
I+ - + (E*)‘[(D‘)’I]' . . (.D’)—‘IE‘
4] n V_" 0 ﬂ[fl

(88)



190 R. PRUD'HOMME

The throat of the pseudo-frozen flow satisfies the equation:
det (m*) = 0.

Thus it is obvious that relaxed flow can be determined by means of
restrictive hypotheses, starting with calculations of pseudo-equilibria,
which are not more complicated than calculations of equilibrium
and corrections.

Finally we want to give the relations which connect the corrections:

H*)
AT - (T) (o)
w* =

1 b
Anp] |-l - ¢ Vz)'(ﬁa*)'e‘?l'

The pseuda-frozen state could be employed equally well.

CONCLUSION

First results of the calculations indicate that the propesed method of
corrections leads to an approximate determination of relaxed flows.
Tn the case of hydrogen flow, the calculation has been performed by
means of an YBM 610. The calculation of one point by the method of
corrections on the basis of pseudo-equilibrium takes about twenty
minuies, while on the basis of a pseudo-frozen state it takes only ten
minutes. The method of corrections employs calculational programs
of the performances with equilibrium fiow and frozen flow of the kind
such that the calculation time could be considerably reduced with a
more powerful machine. However, we believe that we have reached
our goal, which was the approximate determination of the performance
of a rocket on the basis of relaxed flow; in fact, the proposed method
leads to calculation of the specific impulse and, especially, of the
characteristic velocity.

We thirk we will be able eventually to determine the errors caused by
our first-order approximation, as well as to learn the influence of the
values of the specific reaction rate kn on the relaxed flow. This will be
the subject of later calculations. Finally, the calculations of relaxed
flows in the case of several species will be the subject of a later publica-
tion.
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A A, M
{z)

NOMENCLATURE
Species present
A cross-sectional area normal to the axis of the nozzle

. . nn
Non-dimensional parameter equal to 1 — =

Numerical constant PRt

Molar specific heat at constant pressure of species A and A,,
respectively

Specific heat per unit mass of the mixture at constant
pressure and concentrations

Function characterizing a progression (/)

Enthalpy per unit mass

Stand molar enthalpy

Specific reaction rates of dissociation and recombination,
respectively

Equilibrium constant in terms of partial pressures

Free enthalpies of species A and A,, respectively

Standard molar free enthalpy

Number of moles of species A and A,, respectively, con-
tained in a unit mass of mixture

Total number of moles per unit mass of mixture

Rate of mass flow

Static pressure

Quantity of heat

Perfect gas constant

Standard molar entropy

Entropy per unit mass of mixture

Absolute static temperature

Time

Velocity of flow

Atomic mass of A

Abscissa of a cross-section normal to the axis of the nozzle
Mass per unit volume of the mixture

Exponent indicating a matrix

Natural logarithm

Determinant of a square matrix

Exponent indicating the transpose of a matrix

Exponent indicating the inverse of a matrix or of an
operator
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(i) Index signifying a progression of family (/)

e Index referring to a pseudo-equilibrium

f’ Tndex referring to a pseudo-frozen state

e Index referring to equilibrium flow
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