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Abstract

In this article we shall address the physics involved in the Mind pro-
cess . We shall show that our brain speci�cally our cortical brain which
is the seat of information �eld that can be taken as a Higgs �eld and
that carries a minimum symmetry SU(3) of a three-level information �eld
. It is a Hilbert space of three complex wave functions. The projective
Hilbert space from the brain constitute our mental space. We can think
of the neurons as the broken gauge symmetry of the cortical brain. In this
sense, the three dimensional network of neurons is a gauge �ber - bun-
dle.We will show that the three states of brain characterised by the state
of Consciousness, (with the state of deep sleep) and the state of REM
sleep are two aspects of only two possible gauge symmetry breaking of cor-
tical brain. The relevance of functional resonance magnetic spectroscopy
of brain with respect to our conclusions will be shown.

Part I

Introduction

The main function of human brain is to help us comprehend the world that
surrounds us so that we can have a reasonable description of the events of
the world as well as an adequate representation so that we can survive in it.
This representation is nothing but a transcription of the excitations as they
stream in from the outside world into bits and pieces of information thanks
to our preprogrammed genetic blue-print. In the brain cells, astrocytes (which
are electrically insensitive) and neurons (which are electrically sensitive) , the
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cortex region has the fundamental task of producing mental representations out
of a brain space. As the pixels of information, called qubits or the quantum bits
of information pile up, our mind reorganises it all in some recognisable pattern
, rebooting its own architecture continually to encounter the dynamics of the
world and sets up what we can only call its incessant mental activity. Whether
a Mind space was there to start with , just like whether electromagnetic space
preceded electromagnetic waves may well be a chicken and egg question, futile in
the very least. But what is for certain is that the wealth of information that brain
gathers so meticulously and hoards so preciously would be quite meaningless if
mind cannot be called in to give it a sense or direction and elaborate strategies
of survival. And yet it is the reality of mind that we often seem to forget. This is
based on the fact that none of the mind processes can be measured or �seen� and
in the end it remains totally private . The physics of this process, if there is one,
is very frustrating to physicists. For physics has to do with ′all ′ reality in nature
and to do so one has introduced the concept of Hermitian operators boosted
with a local gauge invariance principle so as to to ensure total objectivity of any
measurement . This space is the Hilbert space ([1]) where hermitian operators
act on complex functions called wave functions, also called basis vectors, which
give eigen values that are measurable. Every machine man has invented is a
hermitian machine, conceived to perform a precise measurable task . How can
something that is felt to be real and yet remain not-measurable? In this paper
we will try to give beginning of some sort of answer, with the irrational belief
that physics must hold a key to that locked black box which we call our mind.

This paper has three basic sections: a section concentrating on cortical brain,
its Hilbert space and its symmetry elements , a section devoted to conscious
mind and the concomitant gauge symmetry breaking and �nally the piece de-
voted to two states of sleep: REM sleep and deep sleep. We will endeavour to
show that each of these three state of cortical brain carries a di�erent signature
of gauge symmetry breaking. There is a fundamental structural and mathe-
matical unity between these three spaces that cohere to make our brain the
extraordinary theater of phenomena that we know it to be. In the end, Mind
turns out to be our primal reality.

The paper in order to facilitate its readability cover these topics in the
following order:

• Cortex or our brain as a Hilbert space of complex information carrying
wave functions : Brain as a Higgs boson

• Neurons are seen as broken symmetry state of the Higgs boson

• Mind space is shown to be a projective Hilbert space

• Conscious state of Brain as a coherent state vector in the coset space

• Rem (rapid eye movement sleep) and Deep sleep states:Two distinct sym-
metry breaking channels

• Signatures of Consciousness from functional resonance spectroscopy
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• Memory states are derived from massless gauge photons

Part II

General Symmetry considerations

1 Some Elemental Topology and aspects of Ho-
motopy

We need to de�ne a few terms so as not to be confused by what we mean by
the word topology . Topology has to do with spaces and relationship between
them . Topology permits us to de�ne and di�erentiate geometric nature of one
space from another ([2]) . It also tells us how one can go from between two
spaces so that one can form a map of one space or another . To give one simple
example an ordinary three dimensional sphere is topologically di�erent from a
torus . While sphere is compact and connected, a torus is not . Such spaces
are characterised by their genus which is the number of holes or disconnection
the enclosed space contains . A sphere has a genus number zero while a torus
has one . These numbers are topological invariants and can be derived from
Gauss-Bonnet theorem, called also Euler number or Chern number.

The simplest space is our daily Euclidean space of di�erent dimensions x,y,z
etc, that one calls �at Euclidean space space, E . Its dimensionality one or two
or three or n is given by the notation En. The space of real scalar objects a,b,c
are known as a real space manifold R. Next in degree of complexity, one also
de�nes complex numbers of the form a + ib, where i is the imaginary quantity
i=
√
−1. A space made of such numbers is called a complex space C . This

is a space, for example of quantum wave functions ψ of Schrodinger equation
and the number n of such wave functions or dimensions are denoted by Cn.
This has the alternative denotation known as a Hilbert space, with some added
requirements on wave functions.Thus Cn has 2n real dimensions of the space
R2n. We also introduce at this point topological notation of a sphere . What
physicists call an ordinary three-dimensional sphere, , topologists call it a 2-
sphere, basically a two-dimensional spherical surface denoted by the symbol S2.
A four dimensional sphere will be a 3-sphere S3 . What it is really is that a
physicist is talking of the volume of the sphere, while a topologist is talking of
the surface of the same sphere. In this paper we shall continually go from one
space or notation to another and this should not cause confusion. It should be
noted that the topological spheres are always taken to be unit spheres, with a
radius r =1.

One de�nes a 'round' sphere Sn by its equation

r.r =

n∑
n=0

(
x0
)2

+
(
x1
)2

+ · · ·+ (xn)2 = 1 (1)
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We adopt the topological system of notation that a sphere Sn is a n-dimensional
manifold that is embedded in n+1 �at Euclidean space En+1. Thus our ordinary
sphere designated as S2 is embedded in 3 Euclidean dimensions, X,Y, Z, E3 of
our ordinary space .

Homotopy is a fundamental relationship between two spaces which tells us
whether one space can be continuously deformed into another without tearing
or glueing. To go back to our torus, one can do so and transform it into a
teacup. Both have just one hole and is characterised by the same homotopy
class . To a topologist a doughnut and a teacup with just one handle is one
and the same! The important message is that you cannot continuously go from
one homotopy class to another . This is also the central idea behind mapping.
The invariance that one has to respect is Poincaré index that allows or does not
allow such mapping. Let us give a few examples.

The simplest map that comes to mind is a 1→ 1 geographical map of earth's
surface to a point on a piece of paper. Every piece of painting or a drawing
on a paper or canvas of some object is a map, but not necessarily one to one.
Going from three to two dimension is the essence of this mapping. The missing
dimension is subtly hidden in the perspective chosen, which is called 'a�ne
connection' in topology. From the few lines here we can understand that there
are two kinds of mapping: one to one and many to one. A simple example of the
later is the function value of cos θ by any reverse mapping or imaging of cos−1 θ
from its value, say 1( e.g cos θ = 1for all θ = 0,±nπ, with n=1,2,...∞). A true
inverse function does not exist. A more substantial example will be a mapping
or image y(x), meaning a field y, for a set of points x belonging to some spatial
domain X . Let us denote by Y, the manifold of possible values for y. A manifold
is a sphere Sn. For example let Y=S1, a circle , if y is a two component vector
of �xed length or take Y=S2 a 2-sphere, if y is a three component vector of �xed
length etc. Let us begin with X and use a one dimensional domain interval by
0≤ x ≤ 2π. Consider a �eld distribution y(x). Hence at each spatial point xi
∈ X,there is an image point or map y(xi) in Y. As x varies from 0 to 2π,the image
point or �eld value traces out a curve in Y starting at y(0) and �nishing at y(2π).
let us limit ourselves to a periodic boundary condition where y(0)=y(2π) = y0 .
This the mapping from many to one. One calls y0, the base point , returning at
the base after a spatial voyage in X. A compact way to write this is y(∂X) = y0,
where ∂Xdenotes the boundary points of X. In our particular case, the image
point traces out a closed curve pegged at y0 . In all con�gurations that we shall
consider there will exist such image loop and vice versa. A central motivation
of our paper will be to treat our mind as an image space . A topological study of
the system will reduce to the study of the corresponding image loop in Y ([3]).

There are two basic homotopy rules one has:

• Any two loops belonging to the same homotopy class can be continuously
deformed into each other. Thus these set of loops are indistguishable from
one another and can continually change from one to the other.

• Loops belonging to di�erent classes cannot be continuously distorted to
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each other . These sets of images will remain strictly separate and distin-
guishable.

These classes are called homotopy classes and will lead to Poincaré invariants.
Let us take one simple example, taken from Shankar (ref). Let the �eld space
be Y= E2-{0, 0} which is an Euclidean space from which the origin is missing .,
a restricted space where the null vector is excluded. Let y0 be any point in this
space . It is quite clear that any loop not enclosing the origin can be collapsed
to y0 , but those which do enclose the origin cannot be. These latter loops can
be further classi�ed by an integer m , which will tell us how many times a given
loop is going around the origin . One calls the loops indexed by di�erent values
of m as non homotopic. Consider the set

{
y0, y1, y2....y∞

}
where ym stands

for all loops that encircles {0, 0} point m-times. The index m is also known as
winding number, a measure of how often one space (x) winds around another
space (y) and can be given the de�nition

m =
1

2π

� 2π

0

(
dy

dx

)
dx (2)

Such a set of ym constitutes a group , obeying group axioms. The �rst ho-
motopy group or Poincaré's fundamental group is denoted by Π1(Y) where the
subscript 1 is indicating that X acquires the form of a closed loop (which is one
dimensional, hence the subscript 1 ) which is topologically S1, and is a 1-sphere.
The integer m indicating the class of loops is represented by an in�nite series of
additive integers Z and expressed as

Π1(E2 − {0, 0}) = Π1

(
S1
)

= Z∞ (3)

The in�nite Abelian group of electromagnetism falls in the same class given by

Π1 (U1) = Z∞

The gauge symmetry group U(1) is non compact not simply connected space so
that Bohm-Aharanov e�ect can occur. It can be similarly shown that Π2

(
S2
)
=

Z∞ . Here the subscript 2 is saying that the X-space is a 2-sphere going around
a Y which is taken to be another 2-sphere. This is second homotopy group of
Poincaré. The integer m= 1 map also called identity map where X covers Y
as the skin of an orange covers the orange in S2. The general Poincaré rules
of wrapping one topological space (e.g : con�guration space X) around another
(e.g: �eld space Y) are given by

Πn(Sm) = Z∞, for n = m

= I, for n ≺ m (4)

where I is the identity (not the same as identity map) element .
Let us go back brie�y to quantum mechanics where one works with complex

vector space, called Hilbert space . Like real vector space, its dimension is given
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by the number of its basis vectors, each one of which is a complex function. A
space with one complex element is known as C1, one with two complex elements
is C2 etc. For example one has

C1 =
(
x0+ix1

)
C2 =

(
x0 + ix1

x2 + ix3

)
Real space R is embedded in the higher dimensional space C just as real

numbers are embedded in complex numbers.We note that the complex vector
space C1 is the wave function space of the Schrodinger wave function ψ. Such a
space may be carrying a paricle of electrical charge , q. The space C2 designates
a so-called spinor wave function carrying spin or iso-spin σ.

It is important that we introduce here the internal symmetry that concerns
us most, that of Lie group. Such a group has a number of elements, call them
E. To qualify as a member of Lie group, we have to have

dE

dθ
= iE (5)

For such a group, any element can be written in the form

E(θ1, θ2, · · ·, θn) = exp

(
n∑
i=1

iθiFi

)

The quantities Fi are the generators of the group and the θi are the parameters
of the group. They are a set of i real numbers that are needed to specify
a particular element of the group. Note that the number of generators and
parameters are the same . There is one generator for each parameter . We now
illustrate though several examples.

The group U(1) is the set of all one dimensional complex unitary matrices.
The group has one generator F=1 and one parameter, θ.It is given by

E(θ) = e−iθF = e−iθ

The group element produces a complex phase change of the wave function. Since
the space is C1, one calls it U(1) symmetry. The group elements commute

E(θ1)E(θ2) = E(θ2)E(θ1)

Such groups are called Abelian.
This is also the inner symmetry of the Schrodinger wave function ψ given

by its invariance to rotation in its own charge space, where the scalar electrical
charge q is the generator of rotation θ

ψ′ = ψexp− iqθ (6)
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If we take the space C2, then writing for the spinor wave function ξ, we will
write it as as two row one column complex vectors

ξ =

(
ξ1
ξ2

)
(7)

The unitary transformation of the wave function from one wave function to
another is known as U(2).

It has four generators and four parameters,

E(θ1, θ2, θ3, θ4) = e−i
θjFj

2

The generators Fj are given by the four 2x2 Pauli matrices, σ0, σ1, σ2, σ3 .we
will the invariance of the spinor wave function to internal rotational symmetry
in the internal spin space of σ given byIf we require that the matrix be unitary
U(2)U(2)†=1 and We shall have the generators

F0 = σ0 =

(
1 0
0 1

)
, F1 = σ1 =

(
0 1
1 0

)
, F2 = σ2 =

(
0 −i
i 0

)
, F3 = σ3 =

(
1 0
0 −1

)
(8)

Since the generators do not commute with each other, this is a non-Abelian
group. In case of SU(2) symmetry, one has got an unit determinant, it will
remove one parameter and one generator and the symmetry is called the SU(2),
the special unitary matrix. The symmetry operation on the spinor wave function
as

ξ = ξ′ = Eξ = exp
(
i
σ

2
θ
)
ξ = SU(2)ξ

The structure of the SU(2) group is de�ned by its Lie Algebra, with F0 generator
missing and is given by the three remaining generators F1 , F2 , F3 whose
commutators are given by

[Fi, Fj ] = iεijkFk

[σi, σj ] = iεijkσk

Here εijk are the Levi-Civita symbol. Just as U(1) symmetry operates in
the charge space q of the particle with wave functionψ,the SU(2) symmetry
operation is taking place in the spin space of the spinor wave function ξ .

We begin by accepting that a general information �eld is a �eld with N-
complex wave functions of SU(N) symmetry and may be represented by a scalar
�eld Φ(x) in its adjoint representaion . An adjoint representation is where
number of vectors is of same dimension as the number of generators , which is
N2-1 . The generators Ta form a Lie group of continous local rotation in the
symmetry space and is given by operators of the form

Ω(x) = exp− iTkαk(x) (9)

The α′s are the rotation angles.The generators Tk of the Lie group form a vector
space and has the commutation relationship

[Tk, Tl] = ifklmTm (10)
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Here fk,l,m are the structure constants, completely antisymmetric and the gen-
erators do not commute.

2 Brain space as an information �eld space with
SU(3) symmetry

A �classical� Maxwellian electron has only electrical charge and is describable
by one complex wave function . Such an object has got just one energy level.
When we go to a �Pauli� electron , it gets an extra degree of freedom in the form
of an internal quantum number called spin, Pauli spin σ = 1

2. . Now we need
two complex functions or two wave functions to describe it, one for Info-spin
'up' and another one for Info-spin 'down'- a two level system. If we translate
the vocabulary to quantum unit of information then our Pauli electron is just a
qubit of information . Our brain can be thought at least just to be that, a store
house of quantum information bits which will then qualify it to have a basic
symmetry U(2) , that of two complex functions. But we have to add to it , the
part that arrives from the outside world (including from our own body), which
is in the charge sector . As a result it is an Infospin space as well as a charge
space that has symmetry U(1) . Hence we must add a third complex function to
the two already existing so that it becomes a composite of three wave functions
or a three level system. This we shall express as

Ψ =

 ψa
ψb
ψc

 (11)

Thus we will take our Brain as a homogenous Hilbert space of three complex
functions , a C3- space. We can also think of the three wave functions ψi as
complex coe�cients of three basis vectors

| a �=

 1
0
0



| b �=

 0
1
0


| c �=

 0
0
1


This way we can write our Brain information �eld as a wave function

| Ψ �= ψa | a � +ψb | b � +ψc | c � (12)

With respect to quark analogy each of the three basis vectors can be considered
as quons .

8



These information carrying particles like quarks are info-doublets, u and d
and an info singlet s , will have fractional charges. The analogy of these three
wave functions with quarks (see:Zuber& Itzkyson ibid) must be remembered. If
we characterize the inner symmetry by traceless Hermitian matrices , this will
be SU(3).While Pauli spin σ has three symmetry elements or generators, of the
SU(2) symmetry given by the three Pauli spin 2x2 matrices, σ1,σ2, σ3 , the SU(3)
symmetry has equivalently eight Gell-Mann ([4]) the 3x3 traceless λ−matrices
or generators (an SU(N) matrix has N2 - 1 symmetry elements which is 8 for
N=3 ). These symmetry elements span an eight dimensional space . These are
given in �gure 1:

Figure 1: Gell-Mann matrices

We begin by accepting that a general information �eld is a �eld with N-
complex wave functions of SU(Nm) symmetry and may be represented by a
scalar �eld Φ(x) in its adjoint representation . An adjoint representation is
where number of vectors is of same dimension as the number of generators ,
which is N2-1 . The generators Ta form a Lie group of continuous local rotation
in the symmetry space and is given by operators of the form

Ω(x) = exp− iTkαk(x) (13)

The α′s are the rotation angles.The generators Tk of the Lie group form a vector
space and has the commutation relationship

[Tk, Tl] = ifklmTm (14)

Here fk,l,m are the structure constants, completely antisymmetric. The infor-
mation scalar �eld in the adjoint representation of SU(Nm) is expressed as

Φ(x) =
∑
a

φa(x)Ta (15)

The Ta's are N×N matrices of the SU(Nm) group. Because we are considering
only local rotation in space-time, the information �eld Φ(x) is also a Higgs
�eld. We note that Higg's �eld is a spin zero �eld, the most basic singlet
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representation one can have while the gauge �eld A µ(x) is a spin 1 �eld like
our photons, but unlike photons some of them can carry charge and are often
called gauge photons. It has been demonstrated ([5]) that any �eld in the adjoint
representation can act as an e�ective Higgs �eld. Orientation of the Higg's vector
Φ(x) in the quon space (color space in quantum color dynamics) at a given space-
time point x de�nes a gauge . In e�ect, for our our cognitive brain , it tells us to
which direction our mind is pointing to , it gives us the possible polarisation of
our mind. We will come back to this point later on. The basic idea at this point
is that objective nature of any information requires it to be independent of our
perspective, of our mental gauge. This is built in the simplest gauge-invariant
Lagrangian one can write for our �eld Φ(x).There are two essential ingredients
in such a Lagrangian: One has to introduce a gauge potential A i

µ to counteract

any local space-time variation of the information �eld Φ(x) in the form of ∂Φ
∂x as

it completes its trajectory. We call this gauge potential our awareness potential
A. One introduces also a self-interaction term between Φ(x) �elds, negotiated by
the gauge photons. A typical phenomenological Lagrangian which is standard
in the literature ([6]) is written as

L = (Dµφi) (Dµφi)−m2φ∗i φi − λ (φ∗i φi)
2 − 1

4
M µνM

µν (16)

There are four sets of terms in this Lagrangian that one should explain .
Note the subscript i is the index of a particular component of the Higgs �eld
vector. The �rst term is a gradient energy of variation in space and in time: the
space-time point µ is three of space and one of time where one does not admit
cross-terms. Written in terms of covariant derivative de�ned as

Dµφi = ∂µφi + gfijkA
j
µφk (17)

The second and third terms of the Lagrangian are quadratic and quartic self-
interaction terms with parameters m & λ which can be positive or negative and
the last term gives the �eld energy term , coming from the gauge �eld tensor,
an energy stored in the mind space. It is the price brain pays to make the
information objective. When it is present, it appears to our mind as a stress.
For electro-magnetic gauge it is the term

(
E2 +B2

)
, the electromagnetic �eld

energy. It is present only in the conscious brain state and absent when we are
in deep sleep state . Hence our sense of deep relaxation as we come out of deep
sleep, but we will come to these aspects in the next sections.These �eld tensors
are also non-Abelian and do not commute mutually unlike electromagnetic �elds
which are Abelian. Here µν are physical space-time indices and g is the coupling
constants that connect the gauge potential to quon information �eld Φ(x). The
superscript on M − fields will go from 1 to 8 . The A-gauge potentials are
vector bosons with spin=1 .

When one minimises the Lagrangian with respect to φi to set ∂L
∂φi

=0 at
some φi=φ0, one may �nd that φ0 does not have the full symmetry G of the
Lagrangian but some lower symmetry H≺ G such that

Hφs = φs

10



This is known as the phenomenon of spontaneous symmetry breaking. The
Lagrangian or Hamiltonian retains the full symmetry G of SU(N) but the lowest
energy state φ0 does not. It is invariant under H ∈ G. We also have

Gφs = φ′s

We see that the broken energy state is not invariant under the action of the
parent gauge symmetry. To understand what is happening in the symmetry
breaking process, we need to look at the coset space de�ned by G

H
which gives

us those symmetry elements not involved or consumed by symmetry breaking.
We look at two distinctly di�erent scenarios whose essential conclusions we will
summarize here : di�erent text books exist to give us details we need ([7]).

1. If from the very start we consider , not local rotation as in the expression
of 9, but a global rotation, given by

Φ′ = Φexp− iα (18)

where the angle α is applied at the same time at all space points , then
the Lagrangian above remains essentially the same except that the gra-
dient term does not need to be corrected by the vector potential and the
covariant derivative will be just our ordinary derivative . In such a case no
gauge potential need be invoked, symmetry breaking from G→ H will be
entirely manifested on the information �eld wave function . No mind pro-
cesses are involved in the description since we are have ascribed mind to
be a gauge �eld. The coset space G

H
now signi�es the number of massless

bosons or Goldstone modes that the broken symmetry state has and are
available for excitation if some external energy is brought in the system.
Being massless, one can have excitation beginning at zero energy upwards
in a continuous spectrum. The H symmetry elements are locked in φ0 and
are massive. This is also known as a Goldstone mechanism of symmetry
breaking.

2. Now let us go back to the scenario of local rotation we started with.
This is known as the Higgs mechanism of gauge symmetry breaking ([8]).
Now the gauge symmetry G is fully involved from the very beginning to
give the objective character to the information �eld in order to make it
frame independent. The symmetry that would have to be broken is the
gauge symmetry . The coset space G

H
remains the same but tells us a

di�erent story . The H-gauge bosons or symmetry elements involved in
the broken symmetry state are the free or massless gauge fields while
the coset space are housing G

H
massive gauge �elds . All the Goldstone

modes have disappeared . One says that G
H

gauge bosons have become

heavy by eating G
H

Goldstone modes. This is the situation when some of
the mind-elements will be missing from mentation processes. The mind
processes we are conscious of are only with those gauge elements that are
free , massless to be excited like ordinary photons and only these will be
of cognitive relevance.
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Let us look more carefully into the Higgs boson state Φ as a state where full
gauge symmetry is unbroken . Does this imply that Φ is invariant under G?. If
we write for a symmetry element, the unitary transformation

U = expiQaαa

where the commutation relationships between charge (generators Q of unitary
transformation) are [

Qa, Qb
]

= CabcQc

then true de�nition of invariance of the wave function to a symmetry operation
is

Qa | Φ �= 0

This is seen from the operation

U | Φ �= expiQaαa | Φ �= (1 + iQaαa + · · · ) | Φ �= 1 | Φ � +iαaQ
α | Φ �

We immediately see that only if Qα | Φ �= 0 that one can ful�ll the criterion of
full gauge invariance of the wave function. This full gauge invariance rede�nes
Φ as our vacuum state | 0 � because

G | 0 �=| 0 � (19)

2.1 Topological symmetry space of a single Neuron: A
Symmetry Breaking of vacuum state

Vacuum brain space | 0 � was taken in the previous section as the space of Higgs
boson carrying the full gauge symmetry G, a SU(3) symmetry of a three level
biological system. It is considered as a homogeneous �eld space of information
�eld. If there is self-interaction, the vacuum state can be unstable and can lower
its energy spontaneously by breaking into some lower symmetry state. In the
case of our brain this happens in the physical space of a neuron cell. This is a
spontaneous gauge symmetry breaking phenomenon all over again . There are
only two possible symmetry breaking patterns possible . This can be seen by
diagonalising the matrix representation of Φ and to begin with we take the full
symmetry group U(3) of the three quon wave functions of Ψ. One diagonalises
it with ([9])

ΦD = Ω(x)Φ Ω†(x) =

 η1 0 0
0 η2 0
0 0 η3

 (20)

The eigen values give us the symmetry breaking patterns.
There are only two possibilities. Either all the Eigen values are non-degenerate

and we have η1 6= η2 6= η3 ; then the symmetry breaking pattern is

U(3)

U(1)× U(1)× U(1)
=

SU(3)

U(1)× U(1)
(21)
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This probable state of the neuron, we have called A-symmetry breaking. We
will show later that that the U(1)×U(1) gauge space is not a stable symmetry
pattern . In fact this symmetry broken state gives, we think the Dream State.
The other possibility will be called B-symmetry breaking pattern . In this
situation , two of the Eigen values will be equal and degenerate, so that we may
take η1 = η2 6= η3. This gives the symmetry breaking

U(3)

U(2)× U(1)
=

SU(3)

SU(2)× U(1)
(22)

The B-symmetry breaking is a stable symmetry and gives the neuron the
state of lowest energy. This is the ground state con�guration, the Sleep State.
We have shown (in the appendixA) that the symmetry of a single neuron is that
of a space that carries information and electrical charge both at the same time
. The neuron space is globally of U(2) symmetry but locally we can envision a
separation of spin and charge which will give a symmetry SU(2) ×U(1) that we
designate by H.

This symmetry breaking is accompanied by a confinement phenomenon :
the quons will be con�ned within a region the size of a neuron tube of radius∼
r.This localisation of the broken symmetry state costs a localization energy of
the wave function and it can only do so if it can recuperate through symmetry
breaking of Higg's Φ a condensation energy. If the energy balance is negative
then and then only we shall have locally a con�nement of the new phase in
the the neuron tube as a localised wave function φs. Without the symmetry
breaking this would have been impossible.

2.2 Brain as a gauge �ber bundle of neurons

Brain can be thought as a three dimensional net work of neurons interconnected
through synaptic junctions; It can also be thought of as a gauge �ber bundle.

If we consider a single neuron as a gauge �ber, then our brain carrying the
Higgs can be considered as a �ber bundle of symmetry G and the two symmetries
are related by the well-known topological product expression ([10])

G = H ×M (23)

This expression is very important from our point of view. It says that locally
( and we are interested in gauge covariant local �uctuation of Higgs boson
amplitudes) our brain is a geometrical product of the neuron symmetry H
acting on a base space-manifold M. We shall de�ne this base space manifold as
the conscious mental space , which will be shown to be also a projective Hilbert
space . G has eight symmetry elements, H has four elements from U(2) or
SU(2)×U(1) symmetry and hence M is a manifold space of dimension four; it
is a S4 compact surface and has �ve euclidean dimension E5. This just happens
to be the sensorial space dimension of our �ve senses, as we mentioned before!

M is the de�nition of the coset space

M =
G

H

13



When the vacuum state | 0 � spontaneously breaks to H, we can write the
corresponding set of states as | φs �, taken to be a collective state so that

H | φs �=| φs �

Thus the set of states | φs � is invariant to the symmetry operation H ∈ G.
Since the energy of this state, because the symmetry of the vacuum is broken
spontaneously , E|S� ≺ E|O�; we take the state | S � to be the ground state of
the cognitive brain. This is the Sleep state. Because by de�nition coset space
is empty of states ( the Higgs mechanism has emptied the coset space of the
Goldstone bosons) , see the schematic �gure below:

Figure 2: Higgs symmetry breaking

we will have the empty coset band (like a conduction band ) separated by
an energy gap4C from the �lled S−band which is �lled with S state particles.
The energy gap 4C is a pure symmetry driven gap . We shall identify the gap
by calling it the consciousness gap, a minimum energy necessary to �re a neuron
across the synapse (∼ 100mev), the so called rest potential of a typical neuron
([24]). States in the coset band | φc � are excited states out of ground state
| φs � through the action of gauge symmetry elements in H which contain a
set of Non-Hermitian operators E±α (akin to raising and lowering operators S±

in the spin operators), we have

E+
α | φs �=| φc � (24)

There is no continuum of states available until we hit the C-band to get the
φc.We shall show in the next section why we call the coset band the consciousness
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band . For the instant only argument we have forwarded is that the Euclidean
dimension of the coset space re�ects the dimension of the �ve distinct sensorial
functions that is involved in cognition and mentation whenever we are conscious.

3 Coset Space as a Projective Hilbert space: M
manifold as our Conscious mental space

Mind is de�ned as the image place, a many to one mapping from brain space
H→M. There can be no reverse image . This means in very plain language that
measuring Functional magnetic resonance spectroscopic intensities in patches
of the cortical brain in a scanner will not give us slightest indications of the
representations occurring in the mental space . Yet, this vast image space is our
only reality. By image we mean all that is mental . The euclidean dimension
of M is �ve, it is E5 . This is exactly the �ve senses that human beings possess
( vision, audition, olfactory, touch and gustative). This number is entirely
determined by the symmetry of the gauge �ber (our neuron) . M from the
topological aspects of the relationship is

G = H ×M (25)

• M is a projective Hilbert space , (Bengtsson, ibid) called CP2 projected
from the Hilbert space of brain which is a C3. In our speci�c case the
projective space is CP2. The superscript 2 signi�es that in M-space the
number of wave functions is two and not 3 as in the brain-space. If the
Hilbert space were C2 , the projective Hilbert space would have been CP1,
which is an ordinary 3-dimensional sphere or S2.

• Quantum mechanically it is called a ray space, a map of many equivalent
rays from cognitive brain to one in the mental M. An open circuit in the
brain-space will trace out a closed curve in the M-space . Physicists call it
a Berry phase ([11]). One also calls it a parameter space ([12]) . This may
be one reason why our mental alters profoundly with chemical parameters
like neurotransmitters.

• It is also a Coherent-Spin state space ( [14]), a point to which we shall
come back in the next section.

3.0.1 Nature of M-space:projective Hilbert space

When we take the C3 Hilbert space H of our brain and consider a subset of
vectors in the space of

{
C3 − (0, 0, 0)

}
, we are essentially by excluding the null

vector 0 at the origin, creating a di�erent Hilbert space H ? which is charac-
terised by an equivalent class of Hilbert space 'vectors' given by

Z ′ = cZ ∈H ? (26)

here c is complex& � 0
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The action matrix c has SU(3) symmetry and the fact that it is positive and
non-zero makes the complex Z's as nonadditive quantities . These cannot really
be considered as vectors (they are more like points that cannot have the usual
vector additivity rules since null vector is not in the group ) and are known as
equivalent rays ([15] ). The equivalence comes from the fact that for ( | Z |= 1
and c∼ expiθ , a phase factor ) the two states Z and Z' are physically exactly the
same state, they map to the same ray and this is true only if c 6= 0. . Actually
a pure state corresponds to an entire equivalent class of vectors and there can
be more than one equivalent class..This is usually done in such a way that the
vectors are normalized to unit length but di�er by their phase factors.The space
of pure states for N-Hilbert space vectors is the projective Hilbert space CPn

where n is N-1.The new Hilbert space H ?of symmetry SU(3) is the principal
fiber bundle corresponding to our brain space over the manifold M . Neuron
space N taken as a gauge symmetry U(2) comes from that assumed fora single
neuron, taken as a two level system . IfH has the dimension C3 , the projective
placeM will have dimension C2 which is called CP2. This is given by the quotient
or coset space

brain

neuron
=
SU(3)

U(2)
. =

SU(3)

SU(2)× U(1)
= M ≡ CP2

The bare symmetry of the �ber is U(2) but should be viewed as a neuron fiber

U(2) ≈ SU(2)× U(1) (27)

This decomposition is very apt description of the incoming signals into the
neuron where it will live both as a qubit SU(2) and as a charge U(1). The general
linear and homogeneous subspace CPn are of major importance topologically .
They are de�ned as the images of the complex space Cn+1 under the natural
map from the vector space to the projective space. It in this sense our M - space
is a manifold where the actions and dynamics of information in our cortical brain
the B space is faithfully mapped as images in M . Hence we call it our mental
space.

An in�nite number of possible motions along the curves C in the Hilbert
spaceH of cortical brain will project to a given closed curve C̃ in the M space.
The curves C in the B-space are lines along which a piece of information is being
transported on a curved surface by parallel transport and su�ers a net angular
displacement of its vector such that the direction with which it started is quite
di�erent at the same point where it comes back to. (see �g).
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Figure 3: Berry phase

The angle di�erence γ (called anholonomy) in the �gure gives rise to the
dynamic Berry phase([11]) .This is what we think confers meaning to the infor-
mation pixel. This is the curve C in the B-space ( a spherical surface is used
for the sake of illustration only) but in the next �gure we see what the curve is

like in the projected M space, C̃ .
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Figure 4: Projective Hilbert space

It is after the closed circuit in the M (here given a generic name P to
indicate that it is a projective space)that one sees it as an accumulation of Berry
phase, γ(C). In the picture of projective Hilbert space, as Aharonov & Anandan
had shown ([12]) one does not need to evoke an adiabatic path over which our
information pixel travels. The linear subspaces of CPn are of major importance.
Not only these are the images from Cn+1 which is the original Hilbert space of
our brain-space, the theater of all actions but it is also a natural map from the
vector space to the projective space which we consider to be our mind space. It
is also interesting to observe that topologically CPn is like Cn except for CPn−1

which is attached at 'in�nity' !
CP1 is the 2-sphere S2, our ordinary 3-dimensional sphere, the familiar ball

also known as Poincaré-Bloch sphere in our euclidean E3 . Our proposed mental
space M is CP2 is a manifold 4-sphere S4 . We have called it our sensorial
dimensions, an equivalent Euclidean space E5-space. Any surface of manifolds
greater than S2 , e.g S3 , S4 and so forth , of respective Euclidean dimensions
four , �ve etc are quite impossible to visualise . But this can be done in a
completely di�erent way, which we owe to Majorana ( [13]) called Majorana
representation , the so called stellar representation of spin S. To appreciate
Majorana construction, let us go back to the Bloch-Poincaré sphere, the 2-
sphere S2 .

The 2-sphere S2 is the parameter space for a single spin S = 1
2
object, like

a qubit or any equivalent two-level system . The 4-sphere S4 is the sensorial
parameter space of our mind � two spin 1

2 objects with a symmetric spin
combination of S = 1, a three level system. Any point on the S2 surface is a
state of the qubit. If we take an unit sphere, radius | r |= 1, and enquire about
the state of the spin 1

2 particle (is it up or down), we observe that along every
radial direction (with its θ, ϕ ) the spin is 'up' along that direction . Therefore
space of the spin state is isomorphic to the set of all directions in space�our
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ordinary physical space and hence to S2 =CP1. This is what gives the great
strength to Bloch sphere . A point on the surface S2 can be written in terms of
its wave function or probability of the point being an up or down info-spin

| Ω �=| θ, ϕ �= cos
θ

2
|↑� +sin

θ

2
expiϕ |↓� (28)

In terms of spin raising and lowering operators S+&S− , the state | θϕ � can be

expressed as exp ( θ2e
−iϕŜ+− θ

2e
iϕ ˆS−) ,which is the displacement operator that

would act on a reference state | S,−s � where S is the spin quantum number
and s is its lowest diagonal element to give the state | θϕ �.The coordinate
of the point i on the sphere can be written as a complex number zi (subscript
i, indicates the spin in question, not to be confused with i, which is the usual
imaginary quantity)

complex number zi = tan
θi
2
expiϕi

Majorana showed that when one has a system of not just one spin 1
2 but n spin

1
2 system, corresponding to a projective space CPn, the vectors in Cn+1 are in
one to one correspondence with the set of a n-th degree polynomial

w(z) = Z0(z − z1)(z − z2)......(z − zn) (29)

Here Z0 is a reference vector. The complex roots of the equation w(z) =0 for
zi=z1, z2 ... zn will give us positions of n-unordered spins or n-stars on the S2

Bloch sphere . This is the stellar representation . It is now to be considered
as a celestial or Majorana sphere . The major tour de force of Majorana was
to demonstrate how the same S2 or our ordinary three dimensional sphere can
house not just one star (one spin 1

2 ) but any spin S. And each star can move in
its proper orbit of closed curve and accumulate an independent Berry phase (ref:
Ganezarek et al[16]). One can write the recursion topological product space

CP1 = S2

CP2 =
S2×S2

s2

CPn=
S2 × S2 × .......× S2

sn

Here sn is the symmetry group of permutation of n-objects. Thus CP2 looks
like two three dimensional spheres stitched together.

3.1 Coherent Spin State

The Majorana stellar representation also works when the spins are ordered . This
is the reason why we can obtain n-spin coherent state on the S2- sphere. Each
coherent state is then a constellation of blazing 'stars' in the night sky. We will
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work with S2- sphere, whose surface is the whole parameter space of a spin S= 1
2

object.
Spin states of maximal projection along some direction of space are called

spin-coherent states and are in some respects most �classical� available . For
any spin S, the spin coherent states can be drawn on a 2-sphere, thanks to
Majorana representation . For a single neuron , with two levels the projective
Hilbert space is a CP1 or a 2-sphere S2. This is the world of qubit. Thus we
can call the Majorana celestial sphere., also as the cognition sphere.

We can de�ne the spin coherent state as the highest value of the spin operator
Ŝ written as

≺ Ω | Ŝ | Ω �= Sn (30)

Here n is the unit vector speci�ed by Ω.The most interesting property of the spin
coherent state vector Ω sweeping out the surface of the Bloch-Majorana sphere
S2 is that its topological structure naturally carries Dirac's magnetic monopole
([8]), placed at the very center of the sphere . The unitary representation of

| θ, ϕ � as exp ( θ2e− iϕŜ+− θ
2e
iϕ ˆS−) is the coset representation of the manifold

SU(2)
U(1) = S2 ≡ CP1. In this representation SU(2) is �ber bundle of the principal

�ber group U(1) . Physically we can think of it as an electrical charge moving
over the surface S2 and interacting with a magnetic charge at the origin of the
sphere . Here the quantum state is embedded in a topologically non-trivial
space which is at the origin of magnetic monopole (ref: Yang & Wu). In our
case of information carrying qubits in the neuron , the �magnetic charge� at the
center of the sphere is to be read or interpreted as a mental charge of quantised
strength 2S=1, to make the �Dirac string� invisible . From the spin coherent
state | Ω � we can also derive expression for the Monopole gauge potential,
A (x). This is also called a gauge potential for the simple reason that it makes
the trajectory of the information particle gauge invariant or covariant, as we see
in the next section.

3.2 Spin coherent State & SU(2) gauge �eld : Abelian
monopole

Let us take two vectors, a state vector | 1 �=| ψ(x) � and a second vector which
we take to be its derivative or tangent | 2 �=| ∂µψ(x) �. On a �at euclidean
surface we shall have ≺ 1 | 2 �= 0. These two vectors are orthogonal. But
this not so in a curved surface . This orthogonality is required if we want to do
parallel transport of a vector along any curve on a curved space (�g 4), which
leads to the Berry angle γ as we have seen earlier. The orthogonality between
the two vectors can be achieved through a Gram-Schmidt procedure.

We write the vector | 1′ �=| 1 � and write | 2′ �=| Dµψ �, which is a
covariant derivative. To achieve orthogonality between 1' & 2' vectors we write

| Dµψ �=| ∂µψ(x) � − | ψ(x) �≺ ψ(x) | ∂µψ(x) � (31)

This results in
≺ ψ(x) | Dµψ �= 0
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We have obtained ≺ ψ(x) | Dµψ(x) �= 0. To get this,We have simply sub-
tracted out of | 2 � its projection on | 1 �. The gauge covariant derivative can
also be written as

| Dµψ �=| ∂µψ(x) � −iA µ(x) | ψ(x) �

Here A µ(x) is a grass root de�nition of vector potential

A µ(x) =≺ ψ(x) | ∂µψ(x) � (32)

This is a perfect analog of the electromagnetic vector potential but our parame-
ter space x is not the ordinary three dimensional space . In the case of our spin
coherent state, x is the whole S2− surface and the state vector ψ is designated
| Ω � and µ indicates the three orthogonal axes (n,ex, ey) on the sphere. The

Berry's phase factor along a closed path C̃ on S2 along a path is given by (this is
the analog of Bohm-Aharanov phase with electromagnetic vector potential A)

expiγ = expi

�
C̃

dxµAµ(x) (33)

Like the electromagnetic vector potential (Maxwell vector potential) the SU(2)
vector potential is Abelian but the major di�erence between the two is that
while the former is de�ned on a �at Euclidean metric, the latter is de�ned on
the curved S2 surface. This makes the emergence of magnetic (mental in our
case ) monopole possible, as we mentioned earlier, a topologically non-trivial
space .

We write the gauge invariant quantity

≺ Dµψ | Dνψ �=
1

2
[Gµν(x) + iFµν(x)] (34)

The �rst term on the right hand side is the real, symmetric Fubini-Study metric
of distance on the curved sphere but the second term is real antisymmetric Berry
curvature of the gauge �eld space , written explicitly as

Fµν(x) = ∂µAν(x)− ∂νAµ(x) (35)

This term is the equivalent of electric and magnetic �eld tensors of Maxwell's
electromagnetic �elds. Now we can see why there is a real di�erence of SU(2)
vector potential A (x) from that of Maxwell's vector potential A(x) . SU(2)
curvature , because of its special topology has a conserved topological charge Q
given by the surface integral

�
S2
Fµν(x)dxµ ∧ dxν = 2πQ (36)

The topological charge can easily be obtained by transforming the Stokes sur-
face integral into a Gaussian volume integral. This charge is the �rst Chern
number. In the physical language this is magnetic (mental) charge and is seen
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as the derivative of the magnetic �eld, just as electric charge is the derivative
of electrical �eld . This term is totally absent from Maxwell's equation and a
source of asymmetry of Maxwell's equation . It exists in the SU(2) gauge �eld
because of its topology. Our SU(2) �eld arises because of information qubit in
the neuron, the Chern number Q will be the measure of mental charge located
at the origin which is the center of the three dimensional sphere. Origin of this
charge is purement topological and is not associated with field of any ′mind ′

particle. From this center , a �mental �eld tensor� Fµν(x) will radiate out in
the mental space. The charge corresponds to a singularity (Dirac monopole) in
the Fµν(x) .

An important property of the spin coherent state is that | Ω ≡ θ, ϕ � state
is embedded in a topologically non-trivial geometrical phase, the two dimen-
sional Majorana-Bloch sphere S2. Let us rewrite expression spin coherent state
coordinates on the Bloch sphere as

| Ω �=| θ, ϕ �=

(
cos

θ

2
+ sin

θ

2
exp− iϕS+

)
|↓� (37)

In this expression the spin coherent states are one to one correspondence to the
points of S2 except for the north pole where all values of the point correspond to
the same point . It is also the point where there is a singularity in de�ning the
Dirac vector potential . Because of the inherent ambiguity in this description,
we can try an alternative expression

| Ω′ �=| θ, ϕ �′=
(
cos

θ

2
expiϕ+ sin

θ

2
S+

)
|↓� (38)

once again from this south pole di�culty we face the same set of problems and
the two sets of coherent states are to be related by a phase factor

| Ω �=| Ω′ � exp− iϕ (39)

These two wave functions are physically identical and in order to be so, we need

exp− iϕ = 1

Geometrically these two coherent states de�ne the two non-singular 'patches '
of S2 coming in from north and south pole and overlapping in the equatorial
region. The phase factor between the two patches is the gauge degree of freedom
h given by

h = expiϕ ⊂ U(1) (40)

This is the Abelian or electromagnetic U(1) gauge degree of freedom of the Dirac
monopole situated at the center of the sphere carrying an unit monopole charge
g . This is a scalar topological charge. Vector potentials and �eld tensors we
have de�ned so far are also Abelian, gauge invariant, observable and mutually
commuting.
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3.3 SU(3) coherent states, non-Abelian monopole

What do the SU(3) coherent states look like ? The Majorana description of the
two spins, S=1 on CP1 surface of the Bloch sphere S2 is inadequate . We want
coherent state vector | ξ � to be in a one-to-one correspondence to points on
the CP2 surface which is S4. For this is the sensorial space because of which
which we live and our coherent state vector (Conscious mind vector) is scanning
each and every one of these points of this surface as it moves in time.

Coherent states cannot be generated in a �nite dimensional Hilbert space
. Both the U(2) symmetry space of the neuron system and SU(3) symmetry
based Cortical brain are �nite dimensional Hilbert space . To generate SU(2)
coherent state ([14]) one had to use the the non-Hermitian S+, S−operators
of the Cartan Algebra that operating on a reference state , say |↓� create an
in�nite tower of excited states which will constitute our coherent spin state.
The basic idea behind the projective Hilbert space is exactly the same � to
be able to have a compact in�nite tower of excited states on the the projective
space we will need SU(3) non-Hermitian operators . In order to illustrate, let
us go back to the spin coherent state of SU(2) symmetry. Its projective Hilbert
space is CP1 which is precisely the coset space manifold

SU(2)

U(1)
= S2

The unitary representation exp ( θ2e
−iϕŜ+ − θ

2e
iϕ ˆS−) is the coset representaion

SU(2
U(1) and is a displacement operator that by acting on a reference spin state

would create the three dimensional coherent state vector | Ω � sweeping out
over the S2 surface .

A generalised coherent state can always be generated by the same procedure
([17]): �nd the coset space for the symmetry in question, use it to write down
the displacement operator ξ, operate on the reference state chosen and generate
the coherent state . Our Hilbert space of the brain is taken to be of SU(3)
symmetry, of a three level system denoted by G . We write the neuron space
symmetry of two complex wave functions of the two level system as U(2)=
SU(2)×U(1) and we denote it by H. The coset space is

G

H
= M ≡ S4 (41)

To determine the required displacement operator, we go back to the eight Gell-
Mann symmetry operators λi enumerated above and investigate the required
Cartan basis. ( See Appendix B). Consider a set of operators {λi} closed under
commutation

[λi, λj ] = λiλj − λjλi =
∑

2i fijkλk

The {λi} spana algebra g which are elements of the covering groupG. It is more
convenient to write the {λi} in terms of standard Cartan basis

{
Hi, Eα, E−α = E†α

}
:

[Hi, Hj ] = 0, [Hi, Eα] = αiEα
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[Eα, E−α] = αiHi, [Eα, Eβ ] = NαβEα+β (42)

The H-operators are the commuting diagonal operators which are λ3&λ8 matri-
ces, the Eα are the raising and lowering operators in SU(3) analogous to S+&
S− raising and lowering operators in spin SU(2) system. The SU(3) generalized
coherent state is generated by an element g ∈ G acting on the �xed state | φ0 �,
our vacuum state

| g �G= g | φ0 �
We note that the group element g acting on the reference state | φ0 � gives us a
new state | g �G 6=| φ0 �. The reference state or the vacuum state | φ0 � is not
invariant under the full group G. However it is invariant under the maximum
subgroup H of G such that a group element h of H gives (ref: Ryder)

h | φ0 �=| φ0 �

In such a case one says that there has been a spontaneous symmetry breaking
from the parent symmetry G or SU(3) → H or U(2) . The coset space manifold
G
H is just another way of looking at the projective Hilbert space which we have
adopted as our mental space S4. Let us take an operator m in the coset space
de�ned by g=mh, then we can write

m = DG(ξ) = exp

{∑
α�0

(ξEα − ξ∗E−α)

}
∈ G

H
(43)

Let us denote the coset space manifold by ξ which can also be considered as
the parameter space .This leads to the SU(3) displacement operator which will
give us a new set of coherent states by operating on the vacuum state which we
write as

| ξ �= DG(ξ) | φ0 � expiϑ = Φ(ξ)expiϑ (44)

Here a phase ϑ is restored to the wave function. The Wave function Φ(ξ) is the
coherent state

| Φ(ξ) �= DG(ξ) | φ0 � (45)

The set of generalised coherent states satisfy the normalisation�
| Φ(ξ) �≺ Φ(ξ) | dΓ(ξ) = I

dΓ(ξ) is the surface element or the G
H closet space.These SU(3) coherent states

| Φ(ξ) � are in one-to-one correspondence to the points on the coset space G
H .

The coherent − state vector is eight dimensional E8 and is roaming in time
over the mental space or parameter space (sensorial space) S4. We can call this
coherent state vector as the true conscious mental order parameter . We can
write the time evolution of the system as a generalised Berry's angle over the
ξ − space,using the expression of gauge potential A or its basic de�nition one
form ω given earlier 32

ω

[
G

H

]
=

�
Γ(ξ)∈GH

≺ Φ(ξ) | dΦ(ξ) �=

�

c

A • dξ̂ (46)
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ξ̂ is an unit vector de�ned in the G
H parameter space. When the rank of the group

is larger than 1, as is our case for SU(3) , the gauge potential is non-Abelian
([17]). Now it is simple to write down the �eld tensor or gauge connection as

F≡≺ dΦ(ξ) | dΦ(ξ) �=
∑
αα′

ωαα′dξα ∧ dξα′ (47)

Here the 2-form Berry curvature ωαα′ is given by

ωαα′ =

[
≺ ∂Φ(ξ)

∂ξα
| ∂Φ(ξ)

∂ξα′
� − ≺ ∂Φ(ξ)

∂ξα′
| ∂Φ(ξ)

∂ξα
�
]

4 Dynamics and Emergence of Consciousness :
Brain's Default Mode

To see the , let us de�ne a Green function as an evolution operator in time in
the SU(3) coherent states

G (tf , t0) =≺ Φ′(ξ) |Texp

{
−i

� tf

t0

H(t)dt

}
| Φ(ξ) � (48)

Here T is the time ordering operator of a causal, retarded green's function and
H(t) is the Hamilton operator. We can rewrite the path integral as action
integral in the form

G (tf , t0) =

� tf

t0

[dΓ(ξ(t))] exp {iS(ξ(t)}

Here S[ξ(t)] is the action expressible as

S [ξ(t)] =

� tf

t0

dt

{
≺ Φ(ξ(t) | i d

dt
| Φ (ξ(t) � − ≺ Φ (ξ(t)) | H(t) | Φ(ξ(t) �

}
(49)

Here the �rst on the R.H.S is purely geometric giving us the Berry trajectory
while the second term is the usual evolution of the coherent state from one time
to another and will give([18])

G ($, p) =
1

$ + iδ − ξp − Σ(p, $)
(50)

This expression is just Fourier transformation from of equation48 time and
physical space to energy and momentum space. We want to emphasise that
writing the coherent state Green's function in this way is vital if we are to
understand the myriads of non-destructive experiments that Neuro-physicists do
to probe the mental state of brain in − vivo . This is the functional resonance
spectroscopy and this is best of what we can do today . But before coming
to that , let us clarify the implications of this Green's function. The term εp
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is the single particle energy , more speci�cally ε0
p =εp − µp where εp is the

bare single particle measured from µp the chemical potential of the N-'particle'
system (N=| Φ(ξ) |2). The term Σ(p,$) is called self-energy. It sums all
the interactions the particle undergoes with its surroundings and is most likely
related to the Berry phase. It has a real part and an imaginary part that we
denote by Re Σ(p,$) and Im Σ(p,$).The real part brings about an energy shift
to the bare particle energy εp but the Imaginary part , re�ects the dynamic loss
or absorption of energy as the coherent state Green's function moves on its
trajectory . While the real part with the bare-particle energy gives us the pole
of the Green's function, the imaginary part, branch cut of the Green's function
gives us the spectral weight of the dynamic process: it tells us the spectrum of
energy that the system ( coherent state ) will lose or gain as it travels . Explained
in a simpler way, these are the mental processes or excitations involved that we
want to characterize or measure , if we can. We display these terms, real part
of energy and the spectral function A (p, $) as

εp = εp − µp +ReΣ(p,$) (51)

A (p, $) =
−2ImΣ(p, $)

[$ − εp − µp + ReΣ(p, $)]
2

+ [ImΣ(p, $)]
2 (52)

The spectral weight is everything we need to understand a typical N.M.R type
of experiment specially the fmri in-vivo expt one performs. It has two key parts:
the segment where Im Σ→ 0. This is where Green's function reveals its pole or
Eigen energy at

$ = ε− µ+ReΣ(p,$) (53)

We note that to �nd the pole , one needs this equation which has to be solves
self-consistently, so that there can be whole region of $where there is not going
to be any solution . This the region of energy gap and where there is no spectral
weight. The spectral weight at the pole is given by

ImΣ(p,$) = 0

A (p, $) = 2πδ {$ − ε− µ+ ReΣ(p, $)} (54)

It is important to realise that at the pole position , the spectral weight is a sharp
delta-function with no imaginary part . Strictly speaking it will not show up in
an energy loss measuring experiment. On the other hand for all other energy
spectrum (excluding the gap region where there is nodensity of states ), the
spectral weight is spread out in energy giving us an idea the energy absorption
and loss (see �g) . This is the inelastic part of the experiment which will take
spectral weight away from the elastic or pole part and spread it out in the loss
part giving the pole part a renormalized weight R(p)≤ 1

A(p, $) = 2πR(p)δ {$ − ε− µ+ReΣ(p,$)}

This allows us to write the sum rule

1

2π

� ∞
0

A (p, $)d$ = 1 (55)
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Now we are in a position to understand the functional resonance spectroscopy
experiment FMRI which gives a sort of image of our brain ar rest or in activity,
also called BOLD contrast imaging experiment . BOLD signi�es Blood Oxygen
Level Determination . What this in-vivo N.M.R experiment does is to give us an
approximate local ratio of oxygenated blood or hemoglobin to non-oxygenated
hemoglobin depending on whether brain is at rest or in activity . The exper-
iment is based on the fact that our neurons do not have internal reserve of
energy in the form of sugar or oxygen.When they are active and start �ring
they need more energy to be brought in quickly and locally. This is the process
called hemodynamic response where blood becomes locally oxygen enriched and
the ration of oxyhemoglobin to deoxyhaemoglobin increases. Since oxygenated
hemoglobin is diamagnetic and deoxygenated hemoglobin is paramagnetic with
more free magnetic spins, the deoxygenated region looses quicker its spin reso-
nance peak while the oxygenated region where neurons are more active appears
as bright resonance patches. Essentially what the N.M.R probe is giving is a
spectrum of energy loss processes. Region of brain where more activity and en-
ergy absorption is going on is essentially the more dissipative part. The broad
energy spectrum of the spectral region of A (p, $) of �gure () is drawn with
one delta-function peak at energy $ = 0, which because of Im Σ(p,$) = 0
, is completely non-dissipative. But in the rest of the �gure , beyond the en-
ergy gap region we see the dissipative part extending over a spectrum of width
∼ 4$b , with a small peak structure at $ = $C with an assumed band width
4$c ∼ 4c. We assume that this whole dissipative region is where lot of brain
or neuronal activity, as seen by bright FMRI patches, is going on . But recently
the neurologists ([19] ) discovered a very surprising phenomenon. They found
that even when the brain is at rest , the broad dissipative part remains as intense
as if we were at full mental neuronal activity. This was very disturbing. When
we are at rest, brain literally is doing nothing, sitting motionless or making our
mind a blank or day dreaming without any concentration of any kind , brain
seems to be chattering away . Raichle and his group called it brain ′s default
mode . They associate the small peak structure with conscious brain activity
while its broad background with everything that is going on behind the screen of
which we are not conscious of . Consciousness part seems to consume twenty to
�fty times less energy than the default mode. If we want to give a time aspect
to these two processes, conscious and unconsciousness states , we see that a
conscious process is taking about τc ' ~

4 seconds while the background process

takes a much shorter time period τb ∼ ~
4$b . Since 4$b �4c, we shall have τb

� τc. We can associate τb time with decision making time behind a conscious
act, a very short time when lot of high frequency neuronal �ring goes on, that
we are not aware of or conscious of. Actual consciousness has a much longer
lifetime and only then we are aware of what is going on. Consciousness is part
of dissipative channel in the brain . Both conscious and non-conscious processes
are occurring where Im Σ(p,$) 6= 0 . Hence both are loss processes, only a very
small part we are conscious of . Rest is default mode. When we go back to the
pole at energy $ =ε− µp +ReΣ(p,$) = 0 by construction , because it is by a
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Im Σ(p,$) = 0 mental 'spot', we cannot be conscious of anything when we are
there. Its zero band width confers on it in�nite life time but that too we cannot
be conscious of ! The coherent state will remain at that energy level inde�nitely
like an electron in its orbit unless we act on the state by changing Fermi level or
move in the parameter space. This 'pole position ' in the CP2 mental space can
be named the state of Sleep . BOLD signal will be inexistent or very weak in
this state, brain is least oxygenated and energy expenditure rate is at its min-
imum. We have drawn an energy gap 4in�gure (A) in order to indicate that
going from the Sleep state to subconscious default mode or Conscious state and
this can only be a �rst order thermodynamic process initiated in the neuron
when it overcomes some threshold potential or at some critical current. It has
been conjectured-([20]) that only when our cortical brain is globally activated
that one develops a subjective experience.

4.1 Speci�c Issues

4.1.1 REM Sleep : Oniric dreams

We had mentioned in section 2.1 the two di�erent scenarios of symmetry break-
ing, A & B. In the last few sections we brought out that scenario B, which is

SU(3)
SU(2)×U(1) gives us the ground state | φs � which is the state of sleep . The

second route of symmetry breaking was shown to be SU(3)
U(1)×U(1) which will give

a new state | φd � which we shall dream state, characteristic of REM (Rapid
eye movement sleep ) , a state in which about 50% of our sleeping time is con-
secrated. It is higher in energy than the deep sleep slate but unlike that state,
sleep is more agitated with accompanying eye movements as if the sleeper is
acting out visually the vivid scenes he is acting out in his dreams . There are
a number of very important cognitive functions of REM sleep but there is no
overall consciousness . In this state, the symmetry breaking gives us two wave
functions that can be written as a column

φd =

(
φ1

φ2

)
(56)

The unitary symmetry that operates is

φ′d = Udφd

Here Ud is a 2×2 matrix that can be written as

Ud = U(1)× U(1) =

(
exp− iq1ϑ 0

0 exp− iq2ϑ

)
This is a two dimensional representation of U(1) . As the angle ϑ varies, the
matrix generally does not repeat itself and the range of values of the matrix is
unbounded.This is because in the dream state the charge q1

q2
will be an irrational

number. This is a very strange electromagnetic gauge space, that is unbounded
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and is of in�nite volume and non-compact. U(1)×U(1) is a torus subgroup.
It winds around the torus without ever meeting itself again, just as a dream
does never exactly repeating itself. There is no monopole [21] . We call this
gauge space, the oniric space , the enchanting magic world of Alice. To end
this section we may mention the greek legend of dream state embodied by two
divinities that one can write as a column vector

Dream =

(
Eros
Hypnos

)
These two states in mythology are completely entangled with each other and
Freud seemed to have simply appropriated the whole concept . In our analysis
we just discovered one plausible basis of the same ideas about how we dream.

4.1.2 Conscious Mental Order Parameters

The ground state | φs � is at a energy 4C below the vacuum state energy
taken as zero of our energy . The upper four gauge bosons in the consciousness
band start its continuum at the consciousness band. Like any photon of the
electromagnetic gauge �eld, where each �eld tensor can be either an electric
�eld tensor or magnetic �eld our mixed state gauge photons will also live each
in two modes of polarization, in two orthogonal tensor �elds . Our four gauge
potentials or their tensor �elds have altogether eight �eld tensors . Hence they
signify eight modes of mind polarizations, eight di�erent mental functions that
we can write down as Conscious mind-order parameter. These are:

χ(x) =



Attention
Executive function
Somato− sensory

Motor
Memory

Emotional regulation
V isual
Auditive


The four di�erent gauge �elds with their equivalent mental attributes are

seen here as pairs of orthogonal polarisation modes (attention & executive func-
tion, somatosensory paired with motor, memory & emotion, visual linked with
auditive ).The eight of the mind's polarisation modes have given rise to eight
order parameters of brain . Neurologists tell us where some of these order
parameters are located .

These order parameters can also be thought as eight centers of a variety of
brain-functions which are deeply associated with our whole mentation process.
These we see clearly in the attached �gure delineated by Brodman known as
Brodman's areas ([24])). Brodman's areas show subdivisions all of which carry
distinctive mental attributes that we illustrate by the di�erent colorings.The
full symmetry of the massless gauge photons of gauge group H is evident here.
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Figure 5: Order parameters of cognitive brain

4.1.3 Memory as a classical soliton

The gap 4c has a whole set of localized states, which can be called memory
states. This comes about when the wave functions in the consciousness band
φc interact with the four massless gauge photons as can be seen in the accom-
panying Figure below:

Figure 6: Memory levels

There are now two sets of levels, the lower set is in the energy gap and these
are mixed localized states of information �eld clothed with gauge photons which
have developed mass . As the �gure shows, the memory states will be spread
out all throughout the energy gap. These states are our seats of memory.The

30



upper set is in the continuum and these will carry consciousness. The energy
gap will protect the memory states from decaying into the continuum as long
as 4c≥ kT.

These states are �nite positive energy states localized only in certain space-
time region, when and where incidents occurred to become memory. Memory by
de�nition is an energy �eld localized in a slice of three dimensional space and one
dimensional Minkwoski time, t. In the �gure A, the energy is spread over range
4c and momentum range 4kc so that the energy is localized within a temporal
range 4t ∼ ~

4c and a spatial range4x∼ 1
4kc . Here x is a three dimensional

coordinate {x, y, z}. The total energy δE that is stocked in this region should
be of the order of the �eld energy of the gauge photons . These photons are
now localized within a speci�c -space-time region size ∼ 4x4t. Such an object
can be called a Yang-Mills soliton. These solitons are our memory states. If our
time t be taken as the Euclidean time τ (going from -∞ to +∞), then we have
gotten a pure four dimensional space where like space, the time dimension τ
does not ��ow� and has become an additional space dimension. This buttresses
the observation that in our memory the images do not age and retain the pristine
quality of freshness. They do not live in Minkwoski time.

Let us look a little more critically the problem. Memory may be thought
as a correlation function in time between image I(0) at time t= 0 with that at
time t, I(t) written as

M(t) =≺ I(t)I(0) � (57)

We can equally express it in the Fourier space of frequency ω through the
transformation

M(ω) =
1

2π
%

�
dtM(t)expiωt (58)

= %M(∞)δ(ω) + %

�
dt [M(t)−M(∞)] expiωt

= I0δ(ω = 0) + ρ

�
dt [M(t)−M(∞)]expiωt (59)

The �rst term of the correlation function , the ω = 0 term is very interesting . It
gives us the permanent memory , our autobiographical and learned-skills mem-
ory part . It is the static part and can be thought to be as a Bose-condensation
in temporal space instead of conventional physical space.

The �nite energy of these states in a localized region of space-time allows to
qualify these long-time memories as a static Yang −Mills solitons. Because the
theorem of Deser([22]) forbids static Yang-Mills soliton in all spatial dimension
n except for n=4, we conclude that the �ve fold dimension of our mental space
, the coset space G

H must be written as the Minkwoski space x,y,z,τ& t where τ
is the Euclidean time serving as the fourth axis of space, where the Minkwoski
time remains t. The metric of the mental space is then (1,-1,-1,-1,-1). Thus
we have to conclude that our long term memory resides in Euclidean time, τ .
The short time memory on the other hand decays in Minkwoski real time t.
Because the spatial dimension of mind space is four E4 (S3) and that of our
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Figure 7: Memory short and long term

ordinary daily physical space is three E3 (S2) , mental space cannot be mapped
or photographed into physical space: Π2(S3) = 0.

Conclusion

• We have shown that our brain can be described as a Hilbert space in C3

of three complex functions that exemplify a three level system carrying a
SU(3) internal symmetry.

• A symmetry breaking into neuron states can occur either to the deep-sleep

state SU(3)
SU(2)×U(1) or to the dream state SU(3)

U(1)×U(1) .

• Our mental space was de�ned as the projective Hilbert space having a
CP2 manifold, basically the image space. Projection from the brain space
to mind-space is a many to one imaging .

• Mind space was shown to be a �ve dimensional Minkwoski space (space
x,y,z,τ&time t) has four spatial dimensions which is the space of our
permanent memory. As a direct result of the extra spatial dimensionality
of mind space over ordinary physical space, images in our mind cannot
be projected onto the ordinary space: an image in the mind cannot be
photographed!
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• Projective Hilbert space was also shown to be the space where conscious-
ness emerges as a coherent state vector.

Appendix A

Symmetry Space of a single neuron
A neuron is a single cell creature. Charged excitations dribble into it from

outside world (or our body ) via the dendrites . But there is no way such an
excitation will reach into the axon of neuron without �rst getting cleared by the
genetic soma (�g 5) . The basic architecture of the neurons is clear: that what
enters the axon of the neuron is more than the electrical excitation . Through
its somatic passage it also picks up some information.

We shall propose a reasonable model that catches the essence of the trans-
formation process from dendritic excitation to axons where genetic molecules
will play the key role ([23]).

Genetic space is the space of complicated organic molecules which form the
basis of all genetic functions. What one calls genetic alphabet is comprised
of just four molecules. These four magic genetic molecules ( called nucleotide
bases) of our genomic alphabet A are:

A =


Adenine
Guanine
Cytosine
Thymine

 =


α
β
γ
δ

 (60)

In the last column we have abbreviated the nomenclature to keep it readable,
and think of a, b, c, & d four real numbers enclosing a real space R4. Although
in the elaborate construction of our genetic code, these molecules live as codon
units of composites of triplets of such molecules, strung along the double helix,
what we really have is repeated use of these four letters that serve as the cru-
cible into which the excitations from outside world plunge into and come out
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of. Our genome is a vast space of special information carrying molecules on
inter-twinning helices , of about 3-billion of such molecules that are arranged in
sequences called genes. But there are also genetic material which do not consti-
tute genes. In point of fact only only about 1.5% of the genomic molecules are
used as genes, the rest is either inter-genetic and intra-genetic (introns) which
do not function neither as genetic code nor as protein producing amino-acids.
This vast 98% is simply there as dark matter, like some intergalactic space. We
can imagine our genes as a stretch of archipelago strewn and scattered like some
beads on a necklace surrounded by a vast ocean of non coding genetic molecules.
These other molecules empty of codons will be our center of attention. One does
not know what roles these 'empty' molecules play. There is a whole developing
science of epigenetic that postulates that these molecules are very susceptible
to external environment and through that may in�uence the actual genes.

As soon as an outside dendritic excitation enters the genetic R4 region, the
excitation will take the imprint of four genetic molecules and fragment into a
primal information �eld I (r) with four real parameters at space point r, which
we write as

I (r) =


fα(r)
fβ(r)
fγ(r)
fδ(r)

 (61)

These four f-�elds have a representation S3, a 3-sphere for four real number
space R4. Let us now write the four parameters as two complex information
�elds or two complex column vectors components of the wave function ψ(r) ,

ξ(r) =

(
| 1 �
| 2 �

)
≡
(
z1(r)
z2(r)

)
=

(
fα(r) + ifβ(r)
fγ(r) + ifδ(r)

)
We can write

ξ′(r) = U(2)ξ(r)

Here the internal symmetry space enjoining the two complex functions is a
complex 2×2 matrix denoted bu the general unitary matrix, is called U(2).These
transformations of signal space I (r) in R4 to two dimensional complex space
C2 is the Hopf map S3 → S2 [3].

Appendix B

SU(3) generators and Root vectors ([9])

Let Ta=
λa
2 be the generators of the SU(3) group . There are two diagonal

generators, namely T3 & T8 . They are said to form a Cartan subalgebra . The
two diagonal generators form a two dimensional vector H

H = (T3, T8)
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The remaining six non-diagonal generators can be grouped together as follows:

E±1 =
1√
2

(T1 ± iT2)

E±2 =
1√
2

(T4 ± iT5)

E±3 =
1√
2

(T6 ± iT7)

The commutators of H with the non-diagonal generators can be written as

[H,E±a] = ±waE±a, a = 1, 2, 3

The vectors wa are called the root vectors . Their components are

w1 = (1, 0)

w2 =

(
−1

2
,−
√

3

2

)

w =

(
−1

2
,+

√
3

2

)
The root vectors have unit length. They are neither orthogonal nor independent
and form an over-complete set ∑

wiaw
j
a =

3

2
δij
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